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Phase transitions in the open Dicke model: A degenerate-perturbation-theory approach
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We study the steady-state behavior of the open Dicke model, which describes the collective interaction of
N spin-1/2 particles with a lossy, quantized cavity mode and exhibits a superradiant phase transition above
a critical light-matter coupling. While the standard model conserves total spin, Kirton and Keeling [Phys. Rev.
Lett. 118, 123602 (2017)] demonstrated that even infinitesimal homogeneous local dephasing destroys this phase
transition and that local atomic decay can restore it. We analyze this interplay using degenerate perturbation
theory across subspaces of fixed total spin, S. For coupling strengths above the threshold, there exists a critical
spin value Sc such that the superradiant phase transition occurs only for S > Sc. The perturbative approach
captures how weak dephasing and decay induce mixing between different S subspaces, yielding a steady-state
spin distribution whose width scales as 1/

√
N . This framework requires only the first and second moments and

can be implemented via different methods that can yield these two moments (for example, the second-cumulant
approach), circumventing the need for full density matrix calculations. These results bridge the quantum Rabi
model and Dicke physics, elucidate the roles of dephasing and decay in collective quantum effects, and apply
broadly to open quantum systems with degenerate steady states.

DOI: 10.1103/l55z-kjwt

I. INTRODUCTION

Dicke superradiance [1–3] describes the collective radia-
tion of N inverted atoms confined to zero dimensions. Expe-
riencing the same field, the atoms spontaneously synchronize
during the decay. This renders constructive interference be-
tween the emitted photons, leading to initially increasing
photon emission rate, i.e., a burst of light with peak intensity
scaling as N2, instead of N for independent atoms. Referred
to as a “superradiant burst,” this phenomenon has been ob-
served in various physical systems [4–12]. In recent years, the
advancements in ordered atomic arrays enables strong con-
trol over atomic positions [13–22]. These extended systems,
with interatomic separation no longer negligible to the photon
emission wavelength, are also reported to show the Dicke
superradiance [23–26] and are reviewed in Ref. [27] for planar
atomic arrays and Ref. [28] for one-dimensional atomic arrays
coupled to a waveguide. Such an experimentally accessible
phenomenon has been considered as a witness to the atomic
entanglement [29]. Recent years, there has been a growing
interest in superradiance due to its potential to generate highly
entangled photonic states [30,31] and lasers with ultranarrow
linewidth [32–39].

Instead of the transient superradiance of the fully excited
atomic ensemble, Hepp and Lieb [40], later expressed in a
more physical language by Wang and Hioe [41], focused on
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the ground state of the system with N atoms coupled to a
quantized cavity mode. For coupling strength beyond a critical
value, the ground state undergoes a continuous phase tran-
sition, characterized by the emergence of macroscopic and
coherent occupation of the cavity mode. In the thermody-
namic limit where N → ∞, the average cavity photon number
〈a†a〉/N vanishes in the normal phase while the superradi-
ant phase is identified by the cavity photon number 〈a†a〉
proportional to N . In addition to the corotating terms consid-
ered by these works, Refs. [42–44], associating the so-called
generalized Dicke model, take the counterrotating terms into
account and correct the critical coupling strength by a factor
of 1/2. By Ref. [45], the unbalanced Dicke model, sometimes
known as the anisotropic Dicke model, features more degrees
of freedom due to different coupling strengths for corotating
and counterrotating terms and exhibits exotic phases like the
nonergodic [46,47] and counterlasing ones [48]. Despite the
intriguing many-body physics, these phases have not been
observed experimentally until recent years. The challenge lies
in the requirement for an extremely strong coupling strength
comparable to the cavity and atomic frequencies. Theoreti-
cally, the existence of the phase transition has been under
debate due to the so-called A2 term [49–55]. Thanks to the
adiabatically eliminated Raman process through the excited
states [56–63], the effective coupling strength can be tuned by
the external driving and the A2 term can be circumvented so
that the superradiant phase transition is not prohibited by the
no-go theorem [49].

In addition to the equilibrium dynamics above, dissipative
processes lead to an open system and the interplay between
unitary dynamics and dissipation leads to phase transition in
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the nonequilibrium steady-states (NESS) of cavity QED sys-
tems [56,60,64–70] and atomic clouds in free space [71,72].
In the standard open Dicke model, the dynamics of N indis-
tinguishable two-level atoms are theoretically described by
collective spin operators since the total spin, S, is a conserved
quantity. However, decoherent processes like local dephasing
[70,73] and local decay [74] break the spin conservation. As
a result, the system is no longer within a fixed total spin
subspace of size O(N ). Utilizing the permutation symmetry
[75,76], Ref. [75] reduces the complexity to O(N3) and points
out that an infinitesimal dephasing destroys the transition to
the superradiant phase, while the introduction of the indi-
vidual decay restores it. Since the steady states of the open
Dicke model exhibit high degeneracy, this phenomenon is
reminiscent of degenerate perturbation theory [77–79], where
an infinitesimal perturbation causing the mixing between the
degenerate states will qualitatively modify the behavior of the
system [80]. Despite the discussion on the degeneracy and
perturbation theory of the Liouvillian in Refs. [81–87] as well
as the total spin mixing effect in Refs. [70,73,74,76,88–91],
to the best of our knowledge, the application of degenerate
perturbation theory on the phases of the open Dicke model is
not fully explored. In fact, one motivation of this study was to
show that degenerate perturbation could reproduce results for
a system involving a phase transition.

The conventional open Dicke model mainly focuses on
the fully symmetric subspace with total spin S = N/2. In
this work, we explore all the S subspaces and note that the
steady-state behavior, especially the existence of a phase tran-
sition, depends on the total spin, S, as well: Given a coupling
strength greater than the critical value, there is a critical total
spin Sc where the phase transition is available for S > Sc

only. We use degenerate perturbation theory to investigate
the effects of homogeneous local dephasing and local decay
on the superradiant phase transition. Explicitly shown by the
coupling matrix obtained from the degenerate perturbation
theory, these perturbations mix adjacent S subspaces and yield
a new steady state, whose probability distribution in each total
spin subspace, p(S), is indicated by the null eigenvector of
the coupling matrix. In the thermodynamic limit, this distri-
bution approaches a δ function with a width scaling as 1/

√
N .

In addition, degenerate perturbation theory can give the
spectrum Liouvillian eigenvalues which contains information
beyond the steady state.

As with all the degenerate perturbation theory, when the
perturbation is weak enough, the probability distribution p(S)
is determined by the contribution of the two perturbations to
the overall perturbation. In particular, in the thermodynamic
limit, pure local dephasing yields the δ function well below
Sc while an infinitesimal contribution from local decay ren-
ders the δ function above Sc—that degenerate perturbation
theory could reproduce this result was not obvious. Because
the coupling matrix only depends on the steady-state values
of the first- and second-order moments, this method can cir-
cumvent solving the full density matrix master equations by
utilizing mean-field theory or other methods that gives these
two moments. This allows the computation for N → ∞ and is
applicable to systems having high degeneracy in steady states
(for example, generalized Dicke models [46–48], two-photon
Dicke models [92–98], or driven Dicke model [99]).

This paper is organized as follows. In Sec. II, we present
the fundamental equations of motion and outline the perturba-
tive framework, including the key approach for evaluating the
coupling matrix. Section III is devoted to benchmarking and
validating the degenerate perturbation theory and analyzing
critical behavior in terms of total spin. We further examine
the spin-mixing effects arising from the two perturbations,
explore the Wigner distribution of photons, and discuss the
scaling behavior with atom number. Section IV gives the
summary and outlook of this framework.

II. THEORY

A. Open Dicke model, symmetries, and equations of motion

To investigate the effect of perturbations on the open Dicke
model, it is necessary to study the dynamics of the unper-
turbed system. In this work, we consider N atoms coupled to
a single-mode cavity. Each atom is considered as a two-level
system, with the ground state denoted by |0〉 and the excited
state represented by |1〉. The associated spin operators are as
follows:

σ̂+
n =|1〉n〈0|n, σ̂−

n =|0〉n〈1|n, σ̂ z
n =|1〉n〈1|n−|0〉n〈0|n , (1)

where n is the index of the atom. Confined in a volume small
enough compared to the wavelength, the atoms are indistin-
guishable due to their identical coupling to the cavity mode.
In other words, the system has permutation symmetry [75,76],
where the density operator elements remains the same after
interchanging any pair of atoms:

P̂i, j ρ̂P̂†
i, j = ρ̂, (2)

where P̂i, j is the permutation operator involving atom i and j:

P̂i, j |s1, . . . , si, . . . , s j, . . . , sN 〉
= |s1, . . . , s j, . . . , si, . . . , sN 〉 , (3)

where si = {0, 1}. In this case, the atoms can be modeled by a

collective spin �̂S = {Ŝx, Ŝy, Ŝz}, where:

Ŝα = 1

2

∑
n

σ̂ α
n , α = x, y, z, (4)

where σ̂ α
n are Pauli matrices of the nth atom, and the total spin

operator is defined as:

Ŝ2 =
∑

α

Ŝ2
α. (5)

The elements {Ŝx, Ŝy, Ŝz} obey the commutator relations:

[Ŝx, Ŝy] = iŜz. (6)

Throughout this paper, we let h̄ = 1.
The unitary dynamics of the unperturbed system is de-

scribed by the well-known Dicke Hamiltonian:

H = ωca†a + 2ω0Ŝz + g√
N

(Ŝ+ + Ŝ−)(a + a†), (7)

where a (a†) is the annihilation (creation) operator of a photon
in the cavity and ωc is the energy of the corresponding photon.
Further, ω0 is the transition energy of each atom, and Ŝ+ (S−)
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is the raising (lowering) operator of the collective spin:

Ŝ+ = (Ŝx + iŜy), Ŝ− = (Ŝ+)†. (8)

The parameter g describes the coupling strength between the
cavity mode and the atomic ensemble. By Hepp and Lieb
[40], the coupling strength should scale as ∼1/

√
N so that

the thermodynamic limit is well defined.
In addition to the unitary dynamics, the cavity is lossy, and

the dissipative process is described by the Lindblad superop-
erator:

Lκ [ρ̂] = κ

(
aρa† − 1

2
a†aρ − 1

2
ρa†a

)
, (9)

where κ is the dissipation rate of the cavity photons.
Finally, the density matrix of the unperturbed open Dicke

model evolves via the following master equation:

d ρ̂

dt
= − i[H, ρ̂] + Lκ [ρ̂]. (10)

One can check that the equations of motion for the un-
perturbed open Dicke model only involve collective spin
operators, which only change the projection on the z axis, M,
but conserve the total spin, S. As a result, the density operators
as well as the dynamics with the same S form a series of
subspaces labeled by the total spin, S. Besides, the similarity
between the scaling effect of g and Ŝ± in Eq. (7) motivates the
exploration through all possible S. For the following discus-
sion, we refer to the subspace associated with the total spin S
as the S subspace and the corresponding steady-state density
operators by ρ̂S .

In this work, we explore all the S subspaces so that the crit-
ical coupling strength, gc, in Refs. [56,75] can be generalized
to [100]:

(g2S̃)c = ω0

2ωc

(
ω2

c + κ2

4

)
, (11)

where S̃ = S/(N/2), the ratio of a given S to the maximum
total spin Smax = N/2, is called “normalized total spin” in this
work. Instead of a single critical point gc, Eq. (11) defines
a critical curve S̃c(g) or gc(S̃). In other words, for a fixed
coupling g, there is a lower bound on the total spin states,
corresponding to S̃c(g), that can undergo the superradiant
phase transition. Equivalently, for each total spin state, there
is a S̃-dependent lower bound on the coupling for the emer-
gence of the superradiance, associated with gc(S̃), as shown
in Appendix A.

B. Perturbed open Dicke model

In the form of Lindblad superoperators, this section de-
scribes two �L-type perturbations under investigation in
this work: the local dephasing �Lφ[ρ̂] and the local decay
�L↓[ρ̂]. The dynamics of local dephasing can be described
by [76]:

�Lφ[ρ̂] =
∑

n


φ,n

4

(
σ̂ z

n ρ̂σ̂ z
n − ρ̂

)
, (12)

where 
φ,n is the dephasing rate of the nth atom. We note that
this perturbation preserves the permutation symmetry only if


φ,n = 
φ . We call this process “homogeneous local dephas-
ing,” where “homogeneous” means identical dephasing rate
for each atom.

The local decay dynamics, describing the individual spin
losses to the mode outside of the cavity, has the form:

�L↓[ρ̂] =
∑

n


↓,n

(
σ̂−

n ρ̂σ̂+
n − 1

2
σ̂+

n σ̂−
n ρ̂ − 1

2
ρ̂σ̂+

n σ̂−
n

)
,

(13)

where 
↓,n is the decay rate of the nth atom. Similarly to the
local dephasing, this perturbation preserves the permutation
symmetry only when 
↓,n = 
↓. This process is named “ho-
mogeneous local decay.”

One can check that even though these two kinds of per-
turbations preserve the permutation symmetry, they do not
conserve the total spin and hence cause the coupling between
different S subspaces. One difference between the two pertur-
bations lies in the change in excitations: �Lφ[ρ̂] preserves
the excitation while �L↓[ρ̂] lowers one excitation. To in-
tuitively understand the effects of the two perturbations on
S, one can imagine a state vector on a generalized Bloch
sphere whose radius approximately represents the maximum
S. The dephasing tends to keep the z component while killing
off the coherence (the projection on the xy plane), shrinking
the length of the vector and hence reducing S. On the other
hand, the local decay push the vector toward lower z com-
ponent while reducing the xy component. If the state vector
is originally in the half sphere with lower excitation, then
the projection on the z axis is enlarged so that the length
does not shrink as much as the dephasing case. In other
words, local decay tends to preserve S in higher values. By
Appendix A, the superradiant phase requires S > Sc and we
can expect that local decay inclines to preserve the phase
transition.

C. Degenerate perturbation theory

Degenerate perturbation theory can explicitly show the
coupling between different S subspaces. This section gives
a quantitative description of this mixing effect by evaluating
the coupling matrix elements; see Refs. [80,101] for a more
detailed treatment. In this section, the photon degree of free-
dom is traced out because (i) it does not contribute to the
degeneracy of the steady states and (ii) the perturbations under
investigation do not involve photons. In addition to the spin
conservation in Sec. II A, the density operators with the same
total spin share the same equations of motion and will reach
the same steady state. Given the total spin, S, and the atom
number, N , the Dicke state |S, M〉 with

Ŝ2 |S, M〉 = S(S + 1) |S, M〉 , Ŝz |S, M〉 = M |S, M〉 (14)

has the degeneracy of DS [1,73,76]:

DS = (2S + 1)
N!(

N
2 + S + 1

)
!
(

N
2 − S

)
!
. (15)

By Ref. [80], the steady-state density operators of the un-
perturbed open Dicke model in each S subspace can be
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represented by the Dicke states

ρ̂S =
∑
M,M ′

ρS
M,M ′ |S, M〉 〈S, M ′| , (16)

and generally have the degeneracy of D2
S . When the permu-

tation symmetry is taken into account, the degree of freedom
from the angular momentum coupling can be traced out. As a
result, the degeneracy within each S subspace collapses from
D2

S to 1, and the degeneracy of the overall density operator
becomes NS , i.e., the number of possible total spins. These
degenerate steady-state density operators can be used as the
basis {ρ̂S} for the steady-state density operator of the per-
turbed model using degenerate perturbation theory.

Based on the definition of the left-operator:

ρ̂S,L =
∑

M

|S, M〉 〈S, M| , (17)

the generalized projection of the density operator ρ̂S′
on the S

subspace resembles the biorthogonality of the left- and right-
eigenvectors of a non-Hermitian matrix:

Tr(ρ̂S′,Lρ̂S ) = δSS′ . (18)

The basic idea to evaluate the coupling matrix elements is
to apply the perturbation superoperator to the steady-state
density operator and evaluate the projection on each ρ̂S′

:

CS′S = Tr(ρ̂S′,L�L[ρ̂S]), (19)

where �L, the perturbation operator, can be either the ho-
mogeneous dephasing �Lφ or the homogeneous individual
decay �L↓ or a mixture of the two. The evaluation process
is elaborated in Appendix C. One can check that the coupling
matrix, under the homogeneous local dephasing and local de-
cay, is a tridiagonal matrix. This means both the perturbations
only couple the adjacent S subspaces.

Despite the tremendous reduction of complexity due to the
permutation symmetry, the full density matrix calculation of
the steady-state {ρ̂S} becomes challenging for N � 50. To go
beyond this limit, we further derive the expressions of the
coupling matrix elements and find that they can be represented
just in terms of the expectation values 〈Sz〉 and 〈S2

z 〉 in each S
subspace of the unperturbed system (Appendix D), opening
other possibilities to evaluate the coupling matrix elements.
These expectation values can be calculated via various meth-
ods including the Heisenberg equations of motion (MF2),
enabling the calculation for N ∼ 105.

III. RESULTS

This section shows the effects of the two perturbations on
the superradiant phase transition using degenerate perturba-
tion theory. We validate the degenerate perturbation theory
via numerical calculations and comparison of the mean-
field theory results with the full density matrix calculations.
Throughout this paper, all rates are normalized to the cavity
decay rate so that κ = 1 (by the proposal in Ref. [56], the
value of κ can take 2π × 20 kHz). We let ωc = 1, ω0 = 0.5
so the critical coupling strength for S = N/2 is gc(S̃ = 1) ≈
0.56. Unless otherwise explicitly stated, the coupling strength
is g = 0.9, leading to S̃c ≈ 0.3858, Eq. (11).

The calculation methods in this work are denoted as below:
For unperturbed systems, the full density matrix simulation
via Eq. (10) is denoted by DM, while the mean-field calcula-
tion without/with cumulant expansion up to the second order
is denoted by MF1/MF2 (with 
φ = 
↓ = 0 in Appendix E).
These methods will be attached with a perturbation strength
if any perturbations are directly introduced into the equa-
tions of motion (for example, DM at 
 = 10−4 or MF2 at 
 =
10−4). Meanwhile, degenerate perturbation theory methods
are denoted with a prefix “DPT.” For example, the degenerate
perturbation theory method using 〈Sz〉 and 〈S2

z 〉 from DM/MF2
is denoted by DPT-DM/DPT-MF2.

A. Comparing eigenvalues from degenerate perturbation theory
and exact diagonalization of Liouvillian superoperator

This section verifies the validity of degenerate perturbation
theory by comparing the eigenvalues of the coupling matrix
Ĉ from degenerate perturbation theory and the exact diago-
nalization of the Liouvillian matrix. Based on the math tool
called Fock-Liouville space [83,102], the density operators in
the Master equation, ρ̂, can be reshaped into vectors, �ρ, and
the Lindblad superoperator can be mapped into a matrix, L̂ ,
which is called Liouvillian matrix throughout this work. As a
result, the Master equation becomes a matrix-vector product
form:

d �ρ
dt

= L̂ �ρ. (20)

Since the matrix L̂ is non-Hermitian, the eigenvalues are gen-
erally complex, corresponding to left and right eigenvectors
subject to biorthogonality. Throughout this work, by “eigen-
vector,” we refer to the right eigenvectors unless otherwise
stated. The vectorized density operator evolves as:

�ρ(t ) =
∑

n

cneλnt �ρn, (21)

where λn is the nth eigenvalue corresponding to the nth eigen-
vector �ρn:

λn = −γn + iνn, (22)

where γn indicates the decay rate associated with the nth
eigenvector while the imaginary part accounts for the oscil-
latory behavior. In particular, the eigenvalues are either pure
real or come in complex conjugate pairs so that the dynamics
is Hermitian. The parameter cn is the projection of the initial
vector �ρ(0) on �ρn, which can be obtained by

cn = �ρL
n · �ρ(0), (23)

where �ρL
n is the left eigenvector of the nth eigenvalue.

For a time-independent Liouvillian, there is at least one
eigenvalue with a real part equal to 0. For the open Dicke
model with κ > 0, these stationary states become the NESS
with λn = 0. By Eq. (21), if the density operator is prepared in
the NESS, then it will stay in this state forever. As described in
Sec. II C, due to the degeneracy, the unperturbed open Dicke
model has NS zero eigenvalues so that the steady state is a
linear combination of the corresponding NS NESS, weighted
by their overlaps with the initial state, cn. However, the pertur-
bations of Eqs. (12) and (13) lead to only one zero eigenvalue.
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FIG. 1. The cluster of three eigenvalues with the least-negative
real parts under the dephasing perturbation, leading to the long-term
behavior under investigation. The atom number N = 4, with g = 0.9,
ωc = 1, ω0 = 0.5, and κ = 1. The perturbation strength 
φ and the
eigenvalues λ are scaled to κ . The results from DPT-DM agree well
with the exact diagonalization of the Liouvillian matrix.

As a result, the steady state of the perturbed system is unique
and not dependent on the initial state.

For N = 4 atoms, the comparison between the three least-
negative eigenvalues of the coupling matrix, Ĉ, and the
Liouvillian matrix, L̂ , is shown in Fig. 1 for homogeneous
local dephasing.

The imaginary parts of the eigenvalues are not shown
because these eigenvalues are pure real (the imaginary parts
from the exact diagonalization of the Liouvillian matrix is
∼10−14, and the degenerate perturbation theory is ∼10−20).
When the perturbation strength goes to zero, the largest three
eigenvalues approach 0 and become degenerate. In other
words, the degeneracy of the steady states in the unperturbed
model is 3, in agreement with NS = 3 for N = 4. Since we
are only interested in the long-term behavior of the system,
we do not show the fourth and following eigenvalues because
they start at ∼ − 0.017 instead of 0, corresponding to rela-
tively fast decay even without perturbation. When 
φ �= 0,
the three eigenvalues become proportional to the perturbation
strength and split. By Ref. [80], the reason for the linear
dependence of the eigenvalues on the perturbation strength is
that both homogeneous local dephasing and individual decay
only appear in the form of the Lindblad superoperator. By the
lowest-order degenerate perturbation theory, these perturba-
tions only contribute to the first-order correction to the real
parts of the eigenvalues. By Eqs. (C9) and (C11), the coupling
matrix is proportional to the perturbation strength. This not
only explains the linear relation between the eigenvalues and
the perturbation strength but also implies that the eigenvectors
are not dependent on the perturbation strength as 
φ,↓ → 0+.
As a result, when the perturbation is weak enough, the steady
state only depends on the perturbation type but not its strength.

One can check that the eigenvalues of the coupling matrix
agree well with the exact result from the Liouvillian matrix,
except for the finite error for the third eigenvalue when the
perturbation strength is relatively large (
φ and 
↓ ∼ 0.01).
This is because we are using the lowest-order perturbation
theory, and higher-order corrections come into play when

FIG. 2. The steady-state probability distribution p(S) under the
combined perturbation parameterized by f = 0, 0.2, 0.4, 0.6, 0.8, 1
in Eq. (25) obtained from DPT-DM for N = 40. The parameters
are g = 0.9, ωc = 1, ω0 = 0.5, and κ = 1. The superradiant phase
transition happens for S̃ > 0.3858 (the region to the right of the
vertical black solid line).

the perturbation strength increases. This agreement indicates
that degenerate perturbation theory can capture the long-term
dynamics of the system, including the steady state behavior.
The plot for local decay has similar features and is not shown
here.

B. Effects of homogeneous local dephasing and local decay
on NESS

Without perturbation, the steady-state behavior of the
open Dicke model in different S subspaces is reviewed in
Appendix A, where the phase transition happens near the
critical normalized total spin S̃c given a fixed g. When the
perturbation is present, by Sec. II C and Appendix C, the
coupling between adjacent total spins leads to a unique null
eigenvector of the coupling matrix, �p0 = [p(Smin), p(Smin +
1), . . . , p(N/2)]. By Eq. (C1), the elements of the null eigen-
vector, p(S), describe the probability of the perturbed system’s
NESS being in each S subspace and hence is called the “prob-
ability distribution” in this paper. In this section, we study the
behavior of p(S) due to the mixture of perturbations �Lφ and
�L↓, parameterized by f :


φ = f 
, 
↓ = (1 − f )
, (24)

so that:

�L = �Lφ + �L↓ = f
∑

n




4

(
σ̂ z

n ρ̂σ̂ z
n − ρ̂

)

+ (1 − f )
∑

n




(
σ̂−

n ρ̂σ̂+
n − 1

2
σ̂+

n σ̂−
n ρ̂ − 1

2
ρ̂σ̂+

n σ̂−
n

)
,

(25)

For N = 40, g = 0.9, ωc = 1, ω0 = 0.5, and κ = 1, we plot
the probability distribution p(S) for various values of f and

 = 0.01 in Fig. 2 using DPT-DM, Eq. (19). To explicitly
show the position of the peaks of p(S) under different f , the
expectation value of the normalized total spin,

〈S̃〉 =
∑

S

p(S)S̃, (26)
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FIG. 3. Expectation value of the normalized total spin as a func-
tion of f . Obtained from DPT-DM for N = 40 atoms, the parameters
are the same as Fig. 2.

is shown in Fig. 3 as a function of f , using the p(S) in Fig. 2.
The solid black lines in both Figs. 2 and 3 show the crit-

ical total spin as a reference. When the homogeneous local
dephasing fully dominates the perturbation ( f = 1, orange
curve in Fig. 2), the peak of p(S) approaches S̃c, leading
to 〈S̃〉 ≈ 0.38, corresponding to the rightmost data point in
Fig. 3. With increasing contribution from the individual decay
(0 � f < 1), the peaks in Fig. 2 move away from S̃c, leading
to increasing probability in S̃ > S̃c and the rising 〈S̃〉 in Fig. 3.
In other words, the position of p(S) is modulated by f , leading
to different probabilities below/above the threshold of phase
transition. Given the steady-state behavior of the open Dicke
model in Appendix A, this probability distribution can be
used as weights to calculate the average observables of the
perturbed system, such as the Wigner distribution illustrated
in Appendix B.

C. The thermodynamic limit

In addition to the perturbations, it is necessary to check the
system-size effect. To approach the thermodynamic limit, the
degenerate perturbation theory is implemented via the MF2
results of the open Dicke model (DPT-MF2, see Appendix D).
For N = 50, 100, 200, 1000, g = 0.9, ωc = 1, ω0 = 0.5, and
κ = 1, the probability distribution for f = 1 (pure local de-
phasing) and f = 0 (pure local decay) is shown in Fig. 4.
Note that here we scale the probability p(S) by the number
of possible total spin NS to avoid p(S) → 0 when N → ∞.
This is because

∑
S p(S) = 1 has NS terms—greater N leads

to more terms and p(S) scales as ∼1/NS to ensure total
probability conservation. One can notice that the distribution
becomes increasingly narrower with increasing N . To study
the dependence of the width on the number of atoms, the
Gaussian function:

pG(x) = A

σ
√

2π
e− (x−x̄)2

2σ2 (27)

is used to fit the curves in Fig. 4 as well as for higher N
up to 105, whose standard deviation σ is a measure of the

FIG. 4. Scaled probability distribution for pure local dephasing
( f = 1, the peaks on the left) and pure local decay ( f = 0, the peaks
on the right) obtained from DPT-MF2 with N = 50, 100, 200, 1000.
The parameters are the same as Fig. 2. The black solid line indicates
S̃c and the blue solid line refers to 〈S̃〉 = 0.7891 evaluated from MF1
with f = 0.

distribution width. As is shown in Fig. 5, the logarithm of σ

and N shows a linear relation.
This indicates a power law:

σ ∼ Nβ. (28)

As is shown in the legend, fitting the symbols yields the power
β ≈ −0.500693. So the width of the probability distribution
is approximately to the order of 1/

√
N . The same procedures

are performed for other f , leading to the same scaling with N ,
except for a narrowing region near f = 1 with lower β, which
can be seen in Fig. 13 in Appendix F.

FIG. 5. Relation between the logarithm of σ and N for the curves
with f = 0 in Fig. 4. The linear relation, indicated by the red straight
line from fitting the symbols, infers the power law between them.
This relation holds for different ranges of N: 100–1000 with incre-
ment of 100, 1000–10 000 with step of 1000 and a single point at
N = 100 000.
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FIG. 6. Same as Fig. 3 except that 〈S̃〉 evaluated using MF2 at

 = 10−4, DPT-MF2, and MF1 at 
 = 10−4 as a reference.

In addition to the width, we also investigate the peak
position of p(S) by comparing to S̃c (black solid line) and
〈S̃〉 evaluated from MF1 (blue solid line) in Fig. 4. One can
check that for pure local decay ( f = 0), the peak approaches
the MF1 result as N grows, but for the pure local dephas-
ing case ( f = 1), it is below S̃c, regardless of N . Here we
claim that degenerate perturbation theory is valid while the
discrepancy between the peak position of p(S) using MF2
results and the 〈Ŝ〉 from MF1 calculations only appears at
f = 1. To justify degenerate perturbation theory, we compare
the 〈S̃〉 obtained: (i) directly from MF2 at 
 = 10−4 and (ii)
by Eq. (26), with p(S) obtained from DPT-MF2 in Fig. 6. One
can check that for N = 103 the behavior of DPT-MF2 agrees
well with MF2 at 
 = 10−4 and the relative error Er becomes
increasingly small as N becomes larger (Er ∼ 10−4 when
N = 105). In other words, degenerate perturbation theory
correctly predicts the steady-state behavior of the perturbed
equations of motion—this supports the validity of degenerate
perturbation theory and we do not distinguish between the
〈S̃〉 obtained from DPT-MF2 and MF2 at 
 = 10−4 in the
following discussion. As a reference corresponding to the
thermodynamic limit, with the same parameters, we also plot
the 〈S̃〉 obtained from MF1 at 
 = 10−4. When f < 0.95,
both DPT-MF2 and MF2 at 
 = 10−4 agree well with MF1
at 
 = 10−4, but when f → 1 the two curves (DPT-MF2 and
MF2 at 
 = 10−4) with N = 103 gradually deviate from the
MF1 result. To understand the dependence of this discrepancy
on N , the same calculations of DPT-MF2 for N = 104 and
N = 105 are also plotted in Fig. 6. One can notice that the
DPT-MF2 results are consistently approaching the MF1 result
except for the f = 1 case, where 〈S̃〉 ≈ 0.3311 regardless
of N .

This work focuses on the peak position of p(S) in two
cases: f = 1 and f → 1−, corresponding to the pure local
dephasing and the introduction of infinitesimal local decay.
The consistency between MF1 at 
 = 10−4 and DPT-MF2
(or MF2 at 
 = 10−4) facilitates the prediction of the peak
position of p(S) other than f = 1 and especially for f → 1−.
In Fig. 7, we plot scaled probability distribution the same
as Fig. 4 except that f = 0.999 and N = 103, 104, 105. One
can see that the probability distribution is narrowing and

FIG. 7. Same as Fig. 4 except that f = 0.999 and N =
103, 104, 105. The black solid line shows 〈S̃〉 = 0.3864 evaluated by
MF1 at 
 = 10−4.

approaching the 〈S̃〉 evaluated by MF1 at 
 = 10−4 (black
solid line). As is shown in Fig. 6 (red curve), this 〈S̃〉 ap-
proaches S̃c from above as f → 1− (One can check that the
〈S̃〉 obtained from MF1 at 
 = 10−4 at f = 1 coincides with
S̃c.).Based on the discussion above, we can infer that

p(S) → δ(S − S+
c ) (29)

in the thermodynamic limit when approaching only dephas-
ing ( f → 1−). As for the peak position of p(S) exactly at
f = 1, there are two possible values indicated by the 〈S̃〉
obtained from MF1 at 
 = 10−4 and DPT-MF2(or MF2 at

 = 10−4, equivalently) in Fig. 6. To confirm which one
is accurate, we plot the p(S) obtained from DPT-DM with
N = 50, 100, 200, 400 in Fig. 8, compared to S̃c (or 〈S̃〉 ob-
tained from MF1 at 
 = 10−4, black solid line) and the 〈S̃〉
evaluated by DPT-MF2 for N = 105 (or MF2 at 
 = 10−4,
blue solid line). One can check that the full density matrix
p(S) is narrowing and approaching the MF2 result with grow-
ing N . In other words, at f = 1, the MF2 result indicates

FIG. 8. Same as Fig. 4 except for the p(S) obtained from DPT-
DM for N = 50, 100, 200, and 400 at f = 1. The black solid line
refers to S̃c and the blue solid line indicates 〈S̃〉 evaluated by DPT-
MF2 for N = 105.
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the correct peak position of p(S), yielding 100% population
below S̃c in the thermodynamic limit. This explains why an
infinitesimal dephasing destroys the superradiant phase tran-
sition. Meanwhile, an infinitesimal individual decay, bringing
all the population above S̃c [by Eq. (29)], will restore the phase
transition.

In addition to the steady state, degenerate perturbation the-
ory can also reveal the information about long-term transient
dynamics that is not available from mean-field methods only.
For example, Appendix G illustrates the eigenvalues of the
coupling matrix (or Liouvillian spectrum) as a function of
the mixing ratio f as well as the first four eigenvectors. The
properties of these states and the reason for such patterns can
be interesting topics for future research.

IV. SUMMARY

This work investigates the effects of homogeneous local
dephasing and individual decay on the superradiant phase
transition of the standard open Dicke model from the view
of degenerate perturbation theory. Without perturbations, the
dynamics and all the states with the same total spin, S, form
a closed subspace referred to as S subspace. Going beyond
the S = N/2 subspace considered in the standard open Dicke
model, the exploration among different S subspaces of the
unperturbed model reveals a critical behavior in terms of the
total spin: Given a coupling g, there exists a critical total spin
Sc so that the phase transition only appears in the regime
S > Sc. This g-S codetermined critical behavior is described
by a boundary curve and verified by the phase diagram in the
g-S plane.

In addition to the steady-state driven Dicke superradiance
in the driven Dicke model, applying degenerate perturbation
theory to the open Dicke model yields a different perspec-
tive and discusses a different phenomenon—the superradiant
phase transition. The coupling matrix Ĉ explicitly shows that
the homogeneous dephasing and individual decay mix the
adjacent total spins, rendering the steady state a mixture
of different total spins. This mixture can be described by
the probability distribution on each S subspace, denoted by
p(S), which is the null eigenvector of Ĉ. The width of p(S)
narrows as 1/

√
N , rendering a δ-function distribution asymp-

totically in the thermodynamic limit. The peak position of
this δ function can be modulated by the ratio between the
two perturbations. In particular, an infinitesimal pure local
dephasing renders all the population below Sc and destroys the
phase transition, while an infinitesimal local decay, moving
all the population above Sc, restores the superradiant phase
transition. This gives a complementary interpretation to the
results in Ref. [75].

Benefiting from the degeneracy of the steady states of the
open Dicke model, the degenerate perturbation theory is use-
ful to investigate the significant modulation of the steady-state
behavior due to infinitesimal perturbations. Since this method
only requires steady-state 〈Ŝz〉 and 〈Ŝ2

z 〉 in each S subspace,
various methods giving these two moments, including mean-
field theory, can be used so that the calculation for very large
N is feasible. This technique can be used for other systems
having high degeneracy in the steady states like generalized
Dicke models [46–48,92], two-photon Dicke models [92–98],

and driven Dicke model [99]. In addition to the steady state,
degenerate perturbation theory can also reveal the long-term
transient dynamics by the Liouvillian spectrum modulated
by f and the corresponding eigenvectors (see Appendix G).
Investigating the properties of these slowly decaying states is
still an open question.
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APPENDIX A: RECAP THE OPEN DICKE MODEL:
STEADY-STATE BEHAVIOR IN DIFFERENT S SUBSPACES

Although the results in this section can be easily found
in or derived from Ref. [75], for completeness, we include
the steady-state behavior of all S subspaces without the
perturbations. This is instructive to understand the coupling
between different S subspaces due to the homogeneous local
dephasing and local decay. For the following discussion, by
“Wigner distribution,” we refer to the Wigner distribution for
the photon part.

As implied by Eq. (11), the critical total spin, S̃c(g),
is a function of the coupling strength, and vice versa. To
quantitatively show this relation, we start from a fixed g
to find out the corresponding S̃c and then vary g to obtain
S̃c(g). For a fixed g = 0.9, by Eq. (11), the critical normalized
total spin is S̃c(g = 0.9) ≈ 0.3858. To verify this value,
we time integrate the mean-field equations with cumulant
expansion up to the second order (MF2) from Ref. [75] for
Smin � S � N/2, where

Smin = (N mod 2)/2.

The steady-state average photon number obtained from
MF2 equations, 〈a†a〉/N , is used as the order parameter.
In addition to N = 100, 200, 1000, we also include the
first-order mean-field calculation (MF1), corresponding to the
thermodynamic limit, as a reference. The relation between
the steady-state average photon number and the normalized
total spin, S̃, is shown in Fig. 9.

The behavior of the four curves corresponding to four
system sizes is the same when S̃ → 0 and S̃ → 1, and the
difference lies in the region near the critical normalized total
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FIG. 9. Steady-state average photon number for
N = 100, 200, 1000 from MF2 and, in the thermodynamic
limit, obtained from MF1 at g = 0.9, ωc = 1, ω0 = 0.5, and κ = 1.

spin (0.2 � S̃ � 0.5), which is shown in the inset. One can
notice that for MF2 calculation, the average photon number
increases smoothly. However, the transition becomes increas-
ingly sharp and, in the limit N → ∞ indicated by MF1, there
is a clear critical point at S̃ ≈ 0.38, featuring the emergence
of nonzero average photon number. This corroborates with the
critical total spin S̃c(g = 0.9) ≈ 0.3858 by Eq. (11).

In addition to a single critical normalized total spin for
a fixed g, Eq. (11) implies a set of critical points, (S̃, g),
constituting a boundary in the S̃-g plane. To verify this, we
extend the coupling strength to a range 0.05 � g � 1.80 with
the increment of 0.05 and plot the phase diagram for the open
Dicke model in Fig. 10.

The phase diagram has a clear boundary between the nor-
mal phase and the superradiant phase, to the left of which
〈a†a〉/N → 0 while to the right 〈a†a〉/N > 0. Meanwhile, the

FIG. 10. Phase diagram on the S̃-g plane for N = 1000, ωc = 1,
ω0 = 0.5, and κ = 1 using MF1 calculation. The white dashed line
is the bondary obtained from Eq. (11).

FIG. 11. Steady-state Wigner distributions of the photon part for
S̃ = 0.1, 0.35, 0.5, and 1, corresponding to S = 2, 7, 10, and 20.
These plots are obtained from DM for N = 40 atoms at at g = 0.9,
ωc = 1, ω0 = 0.5, and κ = 1.

boundary obtained from Eq. (11) (white dashed line) matches
the boundary of the phase diagram very well.

In addition to the quantitative results using the average
photon number, the Wigner distribution is an intuitive tool
to understand the behavior of the system for different S sub-
spaces. By Ref. [75], the superradiant phase, breaking the Z2

symmetry in thermodynamic limit, is characterized by two
well-separated peaks. For N = 40 atoms, with g = 0.9, ωc =
1, ω0 = 0.5, and κ = 1, we perform full density matrix calcu-
lations and trace out the spin part of the steady-state density
operator in each S subspace. The consequent reduced density
operator for photons can be used to evaluate the steady-state
Wigner distribution for each total spin by standard techniques
[104,105]. In Fig. 11, we show the Wigner distributions for
a few total spins to demonstrate that the phase transition
depends on the total spin.

Note that g = 0.9 > gc(S̃ = 1) = 0.56 is large enough
to see the phase transition in the S = N/2 subspace, char-
acterized by two well-separated peaks in S̃ = 1 case in
Fig. 11(d). These two lobes move progressively closer as
S̃ decreases, until S̃ = 0.5 - as is shown in Fig. 11(c), the
two lobes are merging. When S̃ is lower than the criti-
cal value, as in Fig. 11(b), the two peaks merge into one
with finite stretching. Finally, when S̃ is far below the
threshold, as in Fig. 11(a), there is only a single lobe at
the origin.

APPENDIX B: STEADY-STATE WIGNER FUNCTION
USING DEGENERATE PERTURBATION THEORY

Using the probability distribution p(S) in Fig. 2, the
Wigner distribution for the perturbed system, W , can be
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FIG. 12. Steady-state Wigner distribution of the perturbed open
Dicke model parameterized by Eq. (25) for different fractions f using
DPT-DM. The parameters are the same as Fig. 2.

obtained by:

W =
∑

S

p(S)WS, (B1)

where WS refers to the steady-state Wigner distribution of ρ̂S ,
depicted in Fig. 11. The steady-state Wigner distribution of
the perturbed system for N = 40 for various f is shown in
Fig. 12.

Corresponding to the orange curve in Fig. 2, the full de-
phasing case ( f = 1), with the peak almost located at the
critical total spin, gives only one lobe at the center with fi-
nite stretching [Fig. 12(a)]. With increasing contribution from
individual decay ( f = 0), the weights on the higher total spin
(and hence more separated lobes in Fig. 11) increase, and the
lobe starts to split [Fig. 12(b) and 12(c)]. Finally, for f = 0,
the pure individual decay perturbation results in two well-
separated lobes [Fig. 12(d)]. This observation agrees with the
trends in Ref. [75].

APPENDIX C: PERTURBATION THEORY IN THE
DEGENERATE SUBSPACE, EVALUATION OF THE

COUPLING MATRIX ELEMENTS

Using the degenerate steady-state density operators ρ̂S as
a basis, the steady-state density operator within the subspace
spanned by {ρ̂S} can be written as:

ρ̂ss =
∑

S

p(S)ρ̂S. (C1)

Since both ρ̂ and ρ̂S are Hermitian and have unity trace, p(S)
must be real and sum up to 1. By Eq. (C4), p(S) is non-
negative, so p(S) can be considered as a kind of probability.
In this work, by “probability distribution,” we mean the profile

of p(S) indicating the probability that the density operator ρ̂

can be observed in the density operator ρ̂S .
As an analogy to the left and right eigenvectors for a non-

Hermitian matrix, we define the left operator:

ρ̂S,L =
∑

M

|S, M〉 〈S, M| (C2)

so that the inner product of the left and right operators can be
defined as the trace of their matrix product:

Tr(ρ̂S,Lρ̂S′
) = Tr

[( ∑
μ

|S, μ〉 〈S, μ|
)

×
( ∑

M,M ′
ρS′

MM ′ |S′, M〉 〈S′, M ′|
)]

= δSS′ , (C3)

which implies

p(S) = Tr(ρ̂S,Lρ̂ss) � 0. (C4)

The essence of the perturbation theory is to evaluate the
transition among the basis operators ρ̂S due to the perturba-
tion.

For dephasing, the perturbed dynamics can be written as:

� ˙̂ρ =
∑

n


φ

4

(
σ̂ z

n ρ̂σ̂ z
n − ρ̂

)
. (C5)

For first-order perturbation theory, we substitute the
steady-state density operator in Eq. (C1) into the perturbed
dynamics in Eq. (C5) and take the projection on ρ̂S by acting
the left operator ρ̂S,L on Eq. (C5) and taking the trace:

ṗ(S) = Tr(ρ̂S,LL[ρ̂ss]), (C6)

By Ref. [76], thanks to the permutation symmetry, we can
trace out the angular momentum coupling degree of freedom,
yielding the dynamics of the perturbation:

L[ρ̂ss] = 
φ

∑
S′,M,M ′

ρS′
M,M ′

[(
azz(S′, M, M ′) − N

4

)
|S′, M〉

× 〈S′, M ′| + bzz(S′, M, M ′) |S′ − 1, M〉
× 〈S′ − 1, M ′| + czz(S′, M, M ′)

× |S′ + 1, M〉 〈S′ + 1, M ′|
]
, (C7)

where the expression of azz(S′, M, M ′), bzz(S′, M, M ′), and
czz(S′, M, M ′) can be found in Ref. [76]. As a result, Eq. (C6)
becomes

ṗ(S) = 
φ

∑
M

[
p(S)ρS

M,M

(
azz(S, M, M ) − N

4

)

+ p(S + 1)ρS+1
M,Mbzz(S + 1, M, M )

+ p(S − 1)ρS−1
M,Mczz(S − 1, M, M )

]
(C8)

or in vector form:

�̇p = 
φÔφ �p = Ĉ �p, (C9)
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where �p = [p(Smin), p(Smin + 1), . . . , p(N/2)] and Ôφ is an
NS × NS matrix corresponding to the coupling matrix under
unit dephasing rate, with matrix element defined as:

Oφ (S, S) =
∑

M

[
ρS

M,M

(
azz(S, M, M ) − N

4

)]
,

Oφ (S, S + 1) =
∑

M

[
ρS+1

M,Mbzz(S + 1, M, M )
]
,

Oφ (S, S − 1) =
∑

M

[
ρS−1

M,Mczz(S − 1, M, M )
]
. (C10)

The matrix elements for individual decay can be obtained
using the same strategy, with the form of the dynamics resem-
bling Eq. (C9):

�̇p = 
↓Ô↓ �p = Ĉ �p, (C11)

where Ô↓ is an NS × NS matrix corresponding to the coupling
matrix under unit individual decay rate. Here we only give the
final results:

O↓(S, S) =
{∑

M

[
ρS

M+1,M+1a−−(S, M + 1, M + 1)

− MρS
M,M

]} − N

2

O↓(S, S + 1) =
∑

M

[
ρS+1

M+1,M+1b−−(S + 1, M + 1, M + 1)
]

O↓(S, S − 1) =
∑

M

[
ρS−1

M+1,M+1c−−(S − 1, M + 1, M + 1)
]
.

(C12)

APPENDIX D: DEGENERATE PERTURBATION THEORY
USING MOMENTS UP TO THE SECOND ORDER

One can check that the evaluation of coupling matrix ele-
ments in Eq. (C10) and (C12) involves the steady-state density
operators, which is expensive to obtain even when N = 50.
Fortunately, the forms of the expressions resemble the expec-
tation values of two observables. Further derivation reveals the
expressions of the matrix elements in terms of the expectation
values of Ŝz and Ŝ2

z :

Oφ (S, S) =
N
2 + 1

2S(S + 1)

〈
Ŝ2

z

〉
S − N

4
,

Oφ (S, S + 1) =
N
2 + S + 2

2(S + 1)(2S + 3)

[
(S + 1)2 − 〈

Ŝ2
z

〉
S+1

]
,

Oφ (S, S − 1) =
N
2 − S + 1

2S(2S − 1)

[
S2 − 〈

Ŝ2
z

〉
S−1

]
(D1)

O↓(S, S) =
N
2 + 1

2S(S + 1)
[S(S + 1) − 〈

Ŝ2
z

〉
S
+ 〈Ŝz〉S]

− 〈Ŝz〉S − N

2
,

O↓(S, S + 1) =
N
2 + S + 2

2(S + 1)(2S + 3)
[S(S + 1) + 〈

Ŝ2
z

〉
S+1

+ (2S + 1)〈Ŝz〉S+1],

O↓(S, S − 1) =
N
2 − S + 1

2S(2S − 1)

[
S(S + 1) + 〈

Ŝ2
z

〉
S−1

− (2S + 1)〈Ŝz〉S−1
]
, (D2)

where 〈·〉S means the steady-state expectation value within
the S subspace. Involving only expectation values instead of
density matrix elements, the mean-field calculation, instead
of the full density matrix simulation, can be used to evaluate
the coupling matrix elements, facilitating calculation for atom
number N ∼ 105 or even higher. The mean-field equations for
both MF1 and MF2 can be found in Appendix E [75].

APPENDIX E: MEAN-FIELD EQUATIONS WITH
CUMULANT EXPANSION UPTO THE SECOND ORDER

For completeness, this section includes the mean-field
equations in Ref. [75]. For an arbitrary operator Â, the dynam-
ics of its expectation value can be obtained by ∂t 〈Â〉 = Tr(Â ˙̂ρ)
and calculating the commutators between Â and operators
in the Master equation. For simplicity, here we define g′ =
g/

√
N and 
̃ = (
φ + 
↓)/2. The mean-field calculation to

the first order (MF1) includes the following four equations:

∂t 〈â〉 = −
(

iωc + κ

2

)
〈â〉 − i2g′〈Ŝx〉, (E1)

∂t 〈Ŝx〉 = −2ω0〈Ŝy〉 − 
̃〈Ŝx〉, (E2)

∂t 〈Ŝy〉 = 2ω0〈Ŝx〉 − 4g′Re[〈âŜz〉] − 
̃〈Ŝy〉, (E3)

∂t 〈Ŝz〉 = 4g′Re[〈âŜy〉] − 
↓

(
〈Ŝz〉 + N

2

)
. (E4)

To calculate the mean-field equations up to the second order
(MF2), in addition to the equations above, the following equa-
tions should be taken into account:

∂t 〈â†â〉 = −κ〈â†â〉 − 4g′Im[〈âŜx〉], (E5)

∂t 〈ââ〉 = −(i2ωc + κ )〈ââ〉 − i4g′〈aŜx〉, (E6)

∂t 〈âŜx〉 = −
(

iωc + κ

2
+ 
̃

)
〈âŜx〉 − 2ω0〈âŜy〉 − i2g′〈Ŝ2

x

〉
,

(E7)

∂t 〈âŜy〉 = −
(

iωc + κ

2
+ 
̃

)
〈âŜy〉 − 2g′〈Ŝz〉(〈ââ〉 + 〈â†â〉)

+ 2ω0〈âŜx〉 − i2g′[〈ŜxŜy〉 − i〈Ŝz〉], (E8)

∂t
〈
Ŝ2

x

〉 = −2ω0(2〈ŜxŜy〉 − i〈Ŝz〉) − 
̃

(
2
〈
Ŝ2

x

〉 − N

2

)
, (E9)

∂t
〈
Ŝ2

y

〉 = 2ω0(2〈ŜxŜy〉 − i〈Ŝz〉) − 8g′ N − 1

N
〈Ŝz〉Re[〈âŜy〉]

− 
̃

(
2
〈
Ŝ2

y

〉 − N

2

)
, (E10)

∂t 〈Ŝ2
z 〉 = g′ N − 1

N
〈Ŝz〉Re[〈âŜy〉]

− 
↓

[
2
〈
Ŝ2

z

〉 − N

2
+ (N − 1)〈Ŝz〉

]
, (E11)
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FIG. 13. Powers β in Eq. (28) as a function of f obtained from
the same parameters and procedures as Fig. 5. The red curve corre-
sponds to N ranging from 100 to 2000 with increment of 100 while
the blue line represents the range of N from 1000 to 10 000 with step
size 1000.

∂t 〈ŜxŜy〉 = 2ω0
(〈

Ŝ2
x

〉 − 〈
Ŝ2

y

〉) − 4g′ N − 1

N
〈Ŝz〉Re[〈âŜx〉]

+ i2g′Re[〈âŜy〉] − 
̃
(
2
〈
Ŝ2

z

〉 − i〈Ŝz
〉)

− i

↓
2

(
〈Ŝz〉 + N

2

)
. (E12)

To find the steady state within each S subspace using MF2,
the equations are time integrated for the starting condition of
|S, M = −S, Nph = 0〉. In the MF1 calculation, the initial state
remains the same for the spin part, except that the photon part
is a coherent state.

FIG. 14. Eigenvalues of the coupling matrix (or Liouvillian
spectrum) with the least negative real parts modulated by f . The pa-
rameters are the same as Fig. 1 except for N = 1000 and infinitesimal

.

FIG. 15. First four eigenvectors of the coupling matrix with the
least negative real parts. The parameters are the same as Fig. 14
except for f = 0.

APPENDIX F: FITTED POWERS FOR DIFFERENT f

With the same parameters and the same procedures as
Fig. 5, we fit the ln(σ )-ln(N ) curves for f ranging from 0 to 1
with increment of 0.001, yielding the powers as a function of
f illustrated in Fig. 13, labeled by “N = 100 to 2000.”

One can check that β ≈ −0.5 holds for f < 0.8 and grad-
ually drops down with increasing f but approaches back to
β = −0.5 at f = 1. By the discussion about Fig. 6, when
f → 1−, much greater N is required so that the MF2 cal-
culation results can approach the MF1 results. To understand
whether the decreasing of β results from the limited range of
N , we repeat the fitting procedure except that N ranges from
1000 to 10 000 with step size 1000 and plot the corresponding
β − f relation in Fig. 13, labeled by “N = 1000 to 10000.”
Compared to the case “N = 100 to 2000,” this curve has more
points (0.8 < f < 0.95) approaching β = −0.5, correspond-
ing to better consistency of MF2 calculation with MF1 in
Fig. 6. By this trend we infer that the power β should approach
−0.5 for N → ∞, except for a narrowing window near f = 1
with lower β.

APPENDIX G: LIOUVILLIAN SPECTRUM
MODULATED BY f AND THE CORRESPONDING

EIGENVECTORS AT f = 1

In addition to the steady state, degenerate perturbation the-
ory can also reveal the long-term transient dynamics via the
eigenvalues of the coupling matrix (or Liouvillian spectrum)
and the eigenvectors. The Liouvillian spectrum modulated by
f cannot be determined from low-order mean-field equations.
With the same parameters as Fig. 1 except for N = 1000
and the infinitesimal perturbation strength 
, the Liouvillian
spectrum is shown in Fig. 14.

053721-12



PHASE TRANSITIONS IN THE OPEN DICKE MODEL: A … PHYSICAL REVIEW A 112, 053721 (2025)

Here we only plot the first 11 eigenvalues with the smallest
real parts because we are mainly interested in the long-term
behavior. One can notice a large difference in the orders
of magnitude between f = 0 and f = 1. With f decreasing
from f = 1, the eigenvalue λn becomes increasingly negative
at first and then saturates to λn ≈ n
 at f = 0, where n is
an integer. Similarly to p(S), we also plot the eigenvectors

pn(S) for the first 4 eigenvalues with the smallest real parts in
Fig. 15.

Here we scale the eigenvectors so that the norm is 1. One
can check that pn(S) is approximately enveloped by a Gaus-
sian function and the number of nodes is n. The properties
of these eigenstates and the reason for the eigenvalues being
integers of 
 are open questions.
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