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Collective emission and selective radiance in atomic clouds and arrays coupled
to a microring resonator
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We theoretically investigate the collective dipole-dipole interactions in atoms coupled to a nanophotonic
microring resonator. The atoms can interact with each other through light-induced dipole-dipole interactions
mediated by free space and through the resonator whispering-gallery modes. The differing characteristics and
mismatched wave numbers of these modes give rise to complex dynamics and provide new opportunities for
controlling light-matter interactions. We explore these phenomena in the context of an experimentally realized

atom cloud and study the potential of the proposed subwavelength atom arrays.
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I. INTRODUCTION

The study of collective effects due to dipole-dipole interac-
tions has been a major topic of interest since Dicke described
the concept of superradiance in his seminal paper in 1954 [1].
There has been abundant research following this on the differ-
ent aspects of collective dipole interactions like superradiance,
subradiance, and collective Lamb shifts [2—12]. These effects
have been utilized for applications in quantum control, photon
storage, and quantum information [13-16].

Great progress has been achieved in engineering nanopho-
tonic interfaces for versatile control over light-matter interac-
tion. The interaction between atoms has been experimentally
implemented using nanofibers [17-24], photonic crystals
[25,26], and slot waveguides [27,28]. Since the atoms are
usually trapped close to dielectric surfaces, the complex-
ities of modeling the interactions have been explored in
Refs. [29-32].

Recently, neutral atoms have been laser-cooled and trapped
adjacent to a nanophotonic microring resonator [33] to be
used as a versatile light-matter interaction platform. The ring-
resonator can act as a whispering gallery mode (WGM) cavity
and facilitate chiral atom-light interactions.

This platform has several unique properties. The atoms
can interact with each other through two different types of
interaction, through free space and through the resonator, each
with a different characteristic wave number The interaction
strength with the resonator can also be varied by adjusting the
position of the atoms.

One of the potentials of such an atom-nanophotonic inter-
face is the concept of “selective radiance” as was described
in Ref. [29]. These selectively radiant states can be simulta-
neously superradiant to a desired guided mode and subradiant
to undesired or error-inducing modes. Due to the nature of the
coupling with the ring resonator, the atoms will superradiantly
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couple with the resonator, and the decay rate will scale with
the atom number [33]. If the decay into free space can be
reduced due to the collective dipole-dipole interactions, the
interface becomes more robust against error from spontaneous
emission into the vacuum. Such high-wave-number subradi-
ant states are naturally supported and accessed via the high
refractive index ring resonator.

This light-matter platform could also have potential
applications involving quantum memories [34], quantum sim-
ulation [35-38], quantum networks [39], and applications in
quantum computing [40-42]. It holds the potential for inves-
tigating photon interactions [43-45], nonMarkovian effects
[46], and topological models [47].

In this paper, we theoretically and computationally model
the atom and ring resonator system described in Ref. [48] to
understand the physics underlying the interactions and explore
further possibilities. We give particular emphasis on how the
collective dipole-dipole interactions mediated by free space
modes can affect the interaction with the microring resonator.
We calculate and compare the decay dynamics of the photons
emitted into free space and into the microring resonator.

We describe the system and the numerical methods used in
Secs. II and III, respectively. We simulate the current exper-
iment, which involves a trapped atomic cloud above the ring
resonator in Sec. IV A. In Sec. IV B, we explore the potential
of an atom array near the ring resonator and consider the
effect of disorder that might arise in experiments. This work
serves as a companion paper to Ref. [48], which describes
the experimental aspects and discusses the measured photon
decay rates.

II. THE SYSTEM

The experiment consists of a microring resonator cou-
pled to a bus waveguide, as represented in Fig. 1. The
external coupling rate of the resonator to the bus waveg-
uide (k,) is comparable to the intrinsic loss rate of the
resonator («;), which makes the resonator close to the critical
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(a) (b) R,

FIG. 1. Schematic of the experimental system. (a) Cold atoms
are trapped above the microring resonator, interacting with a WGM.
The WGM is circularly polarized to drive the o™ cycling transi-
tion |g) — |e). The microring resonator has a total circumference
of around 120 um. (b), (c) Interacting atomic ensemble (with 2 um
r.m.s. along the y direction) and organized atom array collectively
emit photons into the WGM and the free space modes with photon
emission rates R. and Ry, respectively.

coupling condition [49]. The microring resonator acts as a
whispering gallery mode cavity that can sustain light circu-
lating in the two directions.

The experiment uses the fundamental Transverse
Magnetic-like WGM. The electric field of the WGM is
circularly polarized above the waveguide, and the polarization
is locked to the direction of circulation in the resonator. The
atoms are polarized to a stretched state and coupled to the
resonator mode via a cycling transition. As such, the atoms
are constrained to emit into the same mode with which
it is excited. This configuration results in the atom-light
interaction through the waveguide being chiral. We only
consider interaction with a fixed direction of circulation, as in
Fig. 1(a).

Cold atoms are cooled and trapped above the microring
resonator with a peak density of around 103 cm™ in an
almost cigar-shaped configuration. The number of atoms in
the cloud can be varied from a few to up to 60 atoms. These
atoms are coupled to the evanescent field of the circulating
WGM in the resonator. Since the evanescent field decreases
exponentially above the ring, each atom has a different inter-
action strength with the WGM. This interaction strength can
also be controlled by moving the atom cloud closer or farther
away from the resonator.

To model this system, we use the master equation to evolve
the density matrix of the system given by

dp

dt
where 7 is the reduced Planck constant, p is the density
matrix of the system with the Hilbert space only comprising
the atomic excitations. H.g is the effective Hamiltonian, and
L(p) is the Lindblad super-operator which describes the lossy
interaction. These have separate contributions from the two
types of interactions and are given by

- —%[Heff, P+ L(P), )

Ao = A, + S, + Hf, 2)
L(P) = L)+ Lc(P). 3)

The terms H, j 4 and L¢(p) describe the atom-atom interac-
tions mediated by the free-space modes. ﬂgd, 1-72, and L.(p)
represent the effective interactions mediated by the microring

cavity, derived via adiabatic elimination of the cavity photon
degree of freedom. These mechanisms are described in detail
in Secs. I A and I B.

Since we are restricted to the low-intensity limit, there can
be only one excitation in the system at any time. We consider
N atoms in the system, and the Hilbert space consists of the
collective ground state and the N states in the single excitation
manifold. The raising and lowering operators of the j® atom
are represented by 6/‘+ and 6~ respectively. The state in which
all atoms are in the ground state is represented by |g), and the
states where only the j® atom is excited will be represented
by |e;) = A;r |g). The single-atom decay rate of the atoms into
free space will be denoted by I'y and will serve to set the time
scale of the system.

We first describe the collective dipole-dipole interactions
mediated by the nonguided modes in free space, followed by
the effect of coupling the atomic ensemble to the cavity.

A. Free space collective dipole-dipole interaction

The separations between adjacent atoms are small and
comparable to the wavelength of light, leading to the emer-
gence of collective dipole-dipole interactions through free
space. This can be modeled using the free space dyadic
Green’s function G(r;, rj, wg), where wy is the resonant light
frequency and r;, r; are the position vectors of atom i and j.

The dispersive and dissipative interaction strengths J;; and
I';; are given by the Green’s function as

2
By = -H83 Re(Griry o) -d, @)

2 lLow?
Iy, = %d*

-Im{G(r;, 1}, 00)} - d, 5)
where 1 is the vacuum permeability and d is the dipole oper-

ator of the atoms. The dispersive part of the Green’s function
induces a resonant dipole-dipole exchange Hamiltonian,

H), =hY J67 67, (6)
i#]

and the dissipative part of the free space interaction is de-
scribed by the Lindblad super-operator,

. | ;i
Li(p)= Z J[Zaj P& — ofaj p— ,oal.Jroj 1. (D
i.j

The interaction matrix associated with the free space Green’s
function Gif;. can be written as

T
G/, =J,-j—17’. (8)

The effects of the atoms being in the vicinity of the dielectrics
are negligible in this case due to the distance from the surface
(z 2 Mo/2, where Aq is the resonant wavelength). More de-
tails can be found in the Supplemental Material of Ref. [48].
Therefore, it would suffice to take the simple vacuum Green’s
function to make effective calculations. The interaction matrix
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ij will become

3(s5; - d)(#yj - d*) — 1
2

r
s _ _;To
Gl =—i—

) |:h(()l)(k()}"ij) +

h;”(kori,-)]
9)

where 7;; = r;;/r;; is the unit vector along r;; =r; —rj, r;j =

Ir;;| is the norm, and hl(l) are the outgoing spherical Han-
kel function of angular momentum /. hgl)(x) = ¢"/(ix) and
B (x) = e (—3i/x> — 3/x> 4 i/x). The coefficient in front
of h;l) depends on the orientation of the dipoles and the driven
transitions, which will be (1 — 3 cos?6)/4 for o* circularly
polarized light quantized in the x direction.

B. Interaction with the cavity

When the atomic ensemble is brought to the vicinity of the
microring resonator, the atoms can couple with the evanescent
field of the cavity and interact. We consider a single mode
cavity supporting the ot circularly polarized mode. This cav-
ity interaction can be modeled as a harmonic oscillator with
raising (lowering) operators, @'(&). The Hamiltonian of the
atom-cavity interaction can be represented as

Zg,(e ’¢’aa + g’ 6;)
j

—ZAAO' O' +n@+a)— Aca'a, (10)
J

where g; depends on the evanescent electric field at the po-
sition of atom j, Ay = w —ws and A¢c = w — w¢ are the
detuning of the atomic resonance and the cavity resonance
from the input light frequency, respectively. 7 is the classi-
cal driving rate due to the external driving through the bus
waveguide. ¢; = Kk - r;, where Kk is the wave vector of the ring
resonator mode at position r;. Here, |K| = ky, is the wave
number of the waveguide mode; ky, > ko, the wave number
associated with the resonant wavelength of light.

In the experiment, single-atom cooperativity plays a more
relevant role in describing the strength of the atom-cavity
interaction. The single atom cooperativity of atom j is given
by

C/ = i) (1

(ki + Ke)To”

which depends on g; and in turn depends on the position of
each atom. It decays exponentially as the distance between
the atom and the resonator surface increases. Given an atomic
density distribution, the average single-atom cooperativity
will be denoted as C;. In general, the total cooperativity of
the waveguide interaction scales as NC;.

The microring resonator is in the bad-cavity limit, where
the cavity dynamics happen at a much faster rate than the
dynamics of the atomic internal states (k., k; = 100I¢). The
cavity field can be adiabatically eliminated to more intuitively
capture the dynamics of the internal excitations of the atoms.
This will also drastically decrease the computational require-
ments. By enforcing that the cavity reaches a steady state at
every time step of the internal dynamic evolution, we can
trace out the cavity modes and obtain a simplified model to

study the interactions between the atoms. Further details on
the adiabatic eliminations are explained in Appendix A.

After eliminating the cavity, the interaction of the atoms
through the cavity will have a form similar to the collec-
tive dipole interactions described in Sec. Il A. There will be
a dipole-dipole exchange Hamiltonian and a loss-inducing
Lindblad operator

Ay =1y —Re{ % }e—"@f—d’ﬂ&;&;, (12)
ij

p 8i8j | ~ipi—¢))
L = —Im{ === pe 9%
(P Z m{ - }e
i
X [26/‘,?)6;’ - 6;‘6;,6 — f)&f’c}j_], (13)
where & = Ac +i(k; + k.)/2. Similar to the free space
Green’s function Eq. (9), we define the interaction matrix
through the cavity as

GC 8i8j e i@i=9)) (14)
K

Excluding the phase dependence ¢;;y in the ring cavity, the
Hamiltonian in Eq. (12) and the dissipation terms in Eq. (13)
are dictated by the real and imaginary parts of the interaction

matrix in Eq. (14), following the same form as Eqs. (6)—(8).
The driving of the system through the bus waveguide will
appear in a form similar to a rotating wave laser Hamiltonian

N Q; Qo
£=EZ[ Ar6F6 +710j++710j}, (15)
where 2; is the coupling with which each atom is excited due

to the evanescent mode of the microring. It can be connected
with the classical driving rate n as

oib)
Q; = 8% (16)
K
Evanescent coupling

The atoms couple with the resonator mode through an
evanescent coupling. The coupling decreases exponentially
with distance from the resonator. The atoms’ average position
along the z axis depends on the trapping potential, allowing
control of the average single atom cooperativity C;. This
provides an opportunity to study the behavior of collective
photon emissions as a function of the atom-cavity interaction
strength.

The experiment controls the average position of the atoms
to be ~400 nm away from the surface, which corresponds to
C; < 0.05. In the proposed plan to implement an atom array,
the trapping methodology can afford the atoms to be much
closer to the resonator waveguide, leading to much higher
average cooperativities (C; ~ 10).

Although the position-dependent coupling can provide an
opportunity for controlling the atom-WGM photon interaction
strength, it can also cause issues when it comes to the random-
ized position of atoms in the cloud. The spread of the atoms
in the z direction due to the trapping potential will cause a
stochastic nonuniformity in the single-atom cooperativity of
the atoms. This causes a considerable amount of broadening
and decoherence in the system.
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C. Comparison of the two interactions

The two types of interactions discussed so far have distinct
characteristics that make the system dynamics more interest-
ing and complicated. The eigenmodes and eigenvalues of the
corresponding Green’s function matrices can provide an in-
sight into the nature of the interactions. The real part describes
the dispersive behavior, and the imaginary part describes the
dissipative behavior.

The vacuum mode-mediated interaction between two
atoms is symmetric. As a result, the Green’s function of the
free space interaction, Gy, is a complex symmetric matrix
(G? = Gy). It typically has nonzero real and imaginary eigen-
values and is hence both dissipative and dispersive. However,
the interaction through free-space has a characteristic wave
number of ky = 27 /A¢. This means that excitations which
match this wave number can couple well with the free space
radiation modes. Particularly in ordered arrays, excitations
with wave number k > kg are beyond the light-cone (ck > wy)
and have suppressed dissipative emission into the vacuum
light field.

The resonator-mediated interaction between two atoms is
not symmetric, due to the fact that cavity photons circulate
around the resonator like running waves. At resonance (A¢ =
0), the atom-cavity interaction matrix G, is a skew-Hermitian
matrix (G = —G,), with purely imaginary eigenvalues, mak-
ing this interaction purely dissipative. There is a single
superradiant mode and N — 1 completely dark subradiant
modes. Exciting the atoms through the resonator will always
couple to the superradiant mode with decay rate NC,I'y [33].
The characteristic wave number of the atom-cavity interaction
will be set by the effective refractive index (nes > 1) of the
resonator waveguide, kyg = negrko. This mismatch in wave
number with the free space interaction causes the superradiant
state of the atom-cavity interaction to be subradiant to free
space in ordered systems.

III. MODEL FOR EMISSION DYNAMICS

To understand the dynamics of the system, the density ma-
trix can be time-evolved using the master equation shown in
Eq. (1) with Runge-Kutta methods. The full cavity model and
the adiabatically eliminated Lindblad model have both been
numerically compared and verified in the single excitation
limit. The limitation of adiabatic elimination is that the cavity
cannot be in the strong-coupling regime.

An important approximation is that the atoms are station-
ary within the time scale of the internal excitation decay. This
is reasonable since the atoms in the cloud have a mean velocity
of 3 cm/s, which corresponds to a couple of nanometers of
movement in one excitation lifetime. Hence, to capture the
dynamics of the ensemble, we can use a Monte Carlo method
to take the average of many different possible positions for
the atoms. In each iteration, the positions of the atoms are
randomly assigned according to the configuration of the atom
cloud. This gives rise to a distribution of measured values,
as depicted in Figs. 2(c) and 2(d). In all other parts of the
manuscript, we focus on the ensemble-averaged values of the
relevant observables.
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FIG. 2. (a), (b) Ensemble averaged decay rate into free space
when an atom cloud is excited to (a) the steady state (SS) or (b) the
timed-Dicke state (TDS) with a WGM of wave number k.. The
color scale depicts the number of atoms in the atom cloud. (c),
(d) Histograms of the distribution of the excitation decay rate into
(c) free space and (d) into the cavity when taking individual random
realizations of the atomic cloud with N = 60 atoms and C; = 0.05.
The average value of the histogram has been plotted as vertical
dashed lines of the corresponding color. The results are averages over
5000 random configurations.

Time evolving the master equation in this particular sce-
nario can lead to a few complications in the calculations.
Since the atom cloud is considerably dense, the atoms in
the random positions could end up being relatively close to
another atom. This will cause the free space Green’s function
to increase significantly, beyond the energy scale of the calcu-
lation, requiring prohibitively small time steps. Additionally,
since these systems tend to have some states with subradiant
character, the time to reach the steady state is much longer
than the time scale of typical excitation decay. These issues
make it challenging to reach convergence when using more
than a few atoms. Hence, we utilize the weak field limit and
can derive a procedure to directly calculate the final state
expectation values using eigenmode decomposition.

The equation of motion of the expectation values at low
intensities can be written as

o) _ a6

c f —
i + i€ —zZ (G5 +GL)6;7). (D)

By rewriting the (6;7) as a vector,

& = {(6]_>7‘~-9 <6[\7>}1 (18)
Eq. (17) can be simplified as
5 = iMé& + i<, (19)

where € = {Qy, ..., Qy}, and M = A1 — G, — Gy is the
combined coupling matrix of the two types of interactions.

This matrix M can be diagonalized with N eigenvectors v,
of complex eigenvalues

Iy

MUy = haly, o = Ju = i5" (20)
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Here, the U, will be the right eigenvectors of the complex
matrix M. An atomic state can be decomposed using the
eigenvectors as

= w,i. 1)

where w, is the weight associated with eigenmode «. The
final state after the evolution can be directly solved by sep-
arately solving the time evolution of each eigenmode.

A. Steady state vs timed-Dicke state

In the experiment in Ref. [48], the system is excited using
either a short duration or a long duration pulse, creating a
single excitation in the system. The collective excited states
associated with these situations are considerably different.

In the case of the short pulse, the pulse time (typically
around a few nanoseconds) is much shorter than the lifetime
of the atomic excitation (30ns). Hence, the pulse can be mod-
elled to be infinitesimally short compared to the time scale of
atomic excitation dynamics. The atoms are excited into a state
similar to a spin-wave excitation known as the timed-Dicke
state (TDS), which is a collective state with a well-defined
wave vector [50]. Due to the higher refractive index of the
resonator waveguide, the excited TDS will have a wave-vector
corresponding to that of the resonator mode (ky,) denoted by

1 .
ITDS) = —= Y " c;e™="le)), (22)
VN 5

where the coefficient c; is dependent on the individual atom
cooperativities C/. This will be a superradiant state of the
atom-cavity interaction. For decay into free space, the TDS
has a higher wave number ky, than ko, and is typically
associated with subradiance in ordered arrays. For the calcu-
lation, the final state can be directly initialized into a TDS
with a small excitation population since the pulse time will
be too short to cause mixing into any other states, Grps =
S wIPST, o 2.

The system can also be driven into the steady state (SS)
by using a significantly longer pulse duration (~200ns in the
experiment). Since there is constant driving, the system is
usually pumped into excited states exhibiting slower decay.
The long excitation facilitates a mixing between different
modes, resulting in a range of different wave vectors, instead
of a single dominant wave vector in the case of the TDS.
The detuning also plays an important role in determining
which modes are excited in this case. The final state dss =
Do w3ST, can be calculated by assuming an infinitely long
excitation until reaching 5 =0.

The method to calculate w3S and wIPS and the nonstandard
orthogonality relations used are described in Appendix B.

Using these methods to directly calculate the final state
of the system instead of time propagating the density matrix
greatly decreases the computation time. The convergence of
the results from the mean field, adiabatic elimination, and the
full density matrix has been numerically verified in the weak
field limit.

B. Photon emission into the cavity and free space

We study the evolution of the system right after the excita-
tion pulse is switched off. The system will then evolve under
the equation ¢ = /Mg&. For an initial state 6p = ), We Uy
at t = 0, the evolution will be G (1) = ", wge™'T,. Atomic
excitation will decay to the ground state and emit photons into
different modes. The rate of photon emission can be calculated
from the total de-excitation rate in the system.,

. d'e
R(t) = —(é) = —% ="M — iM)G
=2i67G.¢ — 2i5"Im{G}5, (23)

where (€) is the total excitation probability in the system, and
we have used G/ = —G, and G]Z = Gy. The time dependence
of (¢) and & is not explicitly written for the sake of simplicity.
The rate of photons emitted into the cavity mode and the free
space modes can be separately calculated as

R.(t) = 2i5'G.&, (24)

Rs(t) = =23 Im{G}5. (25)

The experimentally measured transmission rate at the output
of the bus waveguide is directly proportional to the photon
emission rate R.. Photon emission into free space is typically
collected by optics spanning over a finite solid angle. If the
angular pattern of photon emission is fixed in time, this mea-
sured photon rate is proportional to R;.

Although the amplitude associated with each eigenstate
decays exponentially in time, the emission rates contain the
interference between all the eigenmodes, leading to more
complicated time evolution dynamics. Hence, the total ex-
citation probability does not decay purely exponentially.
Correspondingly, the photon emission rates, as well as the
decay rates, become time dependent. In this paper, the focus
will be on the instantaneous decay rate immediately after the
drive is turned off in order to study the initial time behaviors
(t < 1/T)) of the system. The decay rates of the excitation
into the free space and cavity modes have been defined as

L, _ Rr© _ R(0)
77 18)0) @)(0)°

The former is approximately independent of the atom-cavity
interaction strength, i.e., the average single atom cooperativity
C;. This is because, at low intensities, the decay rate into
free space is solely dependent on the relative phase and the
relative amplitude of the excitation between the atoms. While
shifting the mean atomic position in the z axis and changing
the atom-cavity interaction strength could change the absolute
excitation probability, it does not change the relative ampli-
tude and phase between the atoms.

(26)

Ve

Decay rates of photon emission

The tools available in the experimental setup limits the
reliable measurement of the photon decay rate to the cavity
(R./R.). The photon emission rate into free space was not
measured [33]. In systems with exponential decay, this mea-
surement is equivalent to the decay rate of the excitation in
the system. However, this measurement and the decay rates
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defined in Eq. (26) are not equivalent for nonexponential
decay dynamics. Reliably measuring the excitation decay rate,
such as y, or yr, remains a challenge in most experiments. In
this particular platform, where the interaction strength can be
varied and nonexponential decay is present, the discrepancy
can be larger. Hence, the experimental paper in Ref. [48]
operationally defines the decay of the photon emission rate
into the free space and cavity modes as

mz_&m)am n=_&m{ Q7)
R(0) R(0)

where R = Ry + R, is the total photon emission rate. The
measurement of the decay rate of R. can be related to these
decay rates as

_ RO
P RA0)

=T+, (28)

where 6 = [R:(0)/R(0)]/[R;(0)/R(0)].

It is important to note that the difference between y., yy
and I';, 'y vanishes in the case of single exponential decay.
This is generally true for photon emission from an ordered
atom array, where the excitation is largely confined to a single
eigenmode.

IV. RESULTS

We consider two main configurations: atoms in a randomly
distributed cloud and an ordered array of atoms. We explore
the potential of both these configurations in utilizing collective
states to suppress emission into free space while promoting
stronger coupling to the cavity mode. The primary focus will
be on comparing the decay characteristics due to emission into
free space and the cavity.

In the experiment, the most relevant observable is the time
evolution of the photon emission rate into the cavity mode,
which can be measured as a change in transmission rate from
the output waveguide. These measurements can be utilized
to verify the theoretical calculations. Further calculations can
be performed to expand the scope and understanding of the
experiment.

A. Atom cloud

In the current state of the experiment, a cloud of atoms
is trapped and cooled near the microring resonator in a trap
with a cigar-shape with an r.m.s. of around 2 um along the
waveguide. In the transverse direction, the cloud is tightly
trapped to an r.m.s. of around 100nm. In the z direction,
the cloud has an approximate r.m.s. of 430 nm, but has an
asymmetric density profile due to the shape of the trap, as
detailed in Ref. [33].

The system can be resonantly driven (w = w,4) with a large
wave number (k > ko). Unlike in free space, where systems
are conventionally only driven by the free space modes with
wave number kg, the effective refractive index of the res-
onator waveguide determines the wave number of the drive.
By increasing the excitation wave number, the rapid spatial
variation in phase allows the system to access different col-
lective excited states with varied decay rates.

Figures 2(a) and 2(b) explore how driving an atomic cloud
with a different wave number can affect the free space decay
rate. The system is being excited using either short or long
pulses, which can exhibit contrasting subradiant (SS) or su-
perradiant (TDS) emission dynamics.

When driven using a short pulse, the system is excited into
the TDS with the wave number k ~ 1.7ky, where neg ~ 1.7
is numerically obtained based on the waveguide geometry
presented in Ref. [33,48]. Although this state will be subra-
diant to free space in ordered arrays, Ref. [51] has shown that
for an atom cloud, the smallest decay rate for such high-k
states is I'g. This can be seen in Fig. 2(b), where the free
space decay rate yy for all atom numbers converge to I'g as
the wave number increases beyond k. This happens because
the dephasing from atoms being very close to each other in
a random cloud acts against the longer-range coherence that
is built up to cause subradiance. The TDS will be perfectly
superradiant to the cavity with an average decay rate of NC '
while having a decay rate of I' into free space. Therefore, the
TDS will have a total decay rate of (1 + NC;)I'y.

When the atom cloud reaches the SS, the system displays
slower photon emission dynamics. As shown in Fig. 2(a),
the free-space decay rate exhibits subradiance and the rate
decreases with an increasing number of atoms. While sub-
radiance can occur even when the system is excited with a
free-space wave number ky, the subradiant effect is enhanced
when driven with higher wave numbers k > k.

These effects can also be seen in Figs. 2(c) and 2(d), which
show the distribution of the decay rates into the free space
and cavity modes without ensemble averaging. The free space
decay rate (yr) is suppressed in the case of the SS, while
clustered around Iy for the TDS. For the decay rate into the
cavity (y.), the TDS has a large spread of decay rates, but
the average is close to NC I'g, where N is the atom number
in the system. On the other hand, for the SS, y, averages to
around 20C| 'y, which is still superradiant but not as good as
in the case with the TDS. This shows that the TDS is better
for utilizing superradiant effects.

The large spread in y, is primarily due to the stochastic
nonuniformity of the single atom cooperativity C, as men-
tioned in the subsection “Evanescent coupling” of Sec. II B.
Instead, in the hypothetical situation where the atoms have no
z spread and the C is uniform for all the atoms, the distri-
bution of y. will be a delta function at NCI'y for the TDS,
and will have a considerably smaller spread for the SS. This
direct connection between the broadening of the spectrum and
the spread in z position emphasizes the importance of tight
confinement for systems that have evanescent coupling.

On the other hand, the steady state transmission spectrum
through the output bus waveguide can be calculated and com-
pared with experimental measurements. The linewidth can
provide some indication of the decay properties of the system.
Figure 3 compares the experimentally measured and calcu-
lated linewidths of the spectrum, which are both determined
using simple Lorentzian fits. The mean atom number N in the
experiment is extracted by fitting the steady-state transmission
spectrum assuming a Gamma distribution of NC with mean
value Cy and N = Cy/C; (see Ref. [33]).

Without the free space interaction, the system will be
excited to only the superradiant mode of the atom-cavity
interaction, and the linewidth will scale as NC;. This is
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FIG. 3. The measured and calculated linewidth of the steady
state transmission spectrum as a function of the number of atoms
for C; = 0.05. Blue squares with error bars denote experimental
data. Red circles with lines show theoretical calculations. The black
triangles and orange diamonds with dashed lines show the theoretical
calculation of hypothetical situations where there is no free space
collective dipole-dipole interaction or when there are no stochastic
effects.

depicted by the black dashed line. In the presence of a free
space collective interaction, it facilitates the mixing between
the superradiant and the completely dark subradiant states
of the atom-cavity interaction. This pulls down the total
linewidth as N increases. This can be seen more clearly from
the theoretical data points.

However, in practical implementations, the expected
linewidth suppression is significantly weakened due to mul-
tiple stochastic effects. The primary contributor is the
nonuniformity in single-atom cooperativity C (see subsec-
tion “Evanescent coupling” of Sec. IIB), which broadens
the linewidth. Additionally, the AC Stark shift from trapping
fields varies with atomic position, introducing a slight spectral
asymmetry and further broadening the linewidth. Moreover,
the number of trapped atoms follows a Poissonian distri-
bution, which introduces further broadening, especially for
small N. The orange diamonds in Fig. 3 depict the hypothet-
ical, where these stochastic effects are absent. This linewidth
shows a greater degree of suppression for larger N and ap-
proaches I'y when N — 1.

Another aspect of the spectrum is the average line shift.
The atom-cavity Green’s function is purely dissipative and
will not contribute to line-shifts. On the other hand, the inter-
action through free space will contribute to a shift depending
on the density of the atoms. Therefore, a shift in the spectrum
due to the free-space interaction can be expected. Contrary to
expectations, the shifts observed experimentally were an order
of magnitude higher than the calculations. Several effects, like
the AC Stark shift, vicinity to a dielectric surface, and motion
of the atoms were explored but were unable to explain the
discrepancy. Much larger shifts are expected in the case of
atom arrays, and clearer answers are expected once they are
implemented in the next stage of the experiment.

The ratio of decay rates into the desired versus the unde-
sired modes describes the effectiveness in mitigating photon
emission into the undesired channels. Figure 4 shows the ratio
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FIG. 4. The ratio of decay rates for a cloud of atoms with uniform
C for the TDS and the SS. In both cases, the excitation decay ratio
ve/Yy tends to be close to NC,. The photon rate decay ratio I'./T'f
increases or decreases depending on the type of excitation. The
results are averaged over 2000 random configurations.

of decay rates for the excitation (y./yy) and the photon decay
rate (I';/T"¢). In this plot, we assume a uniform cooperativity
C to simplify numerical convergence. Incorporating nonuni-
formity in C does not lead to qualitative differences.

In the case of the TDS, y./ys ~ NC Ty, showing the same
scaling when the atoms are far apart and collective dipole
interactions through free space are absent. This behavior is
already seen in Figs. 2(c) and 2(d), where the average y,. /Ty =~
NCp and y; ~ I'y. Surprisingly, in the case of the SS, although
vr is suppressed to be subradiant, y,. is also reduced to still
give a scaling of NC) for the excitation decay ratio.

The photon rate decay ratio I'. /" can exceed or fall below
the expected NC; scaling depending on the excitation con-
ditions. This happens because, although I'; scales as NC; in
both cases, I'y increases or decreases with N depending on
the type of excitation. This can be seen in Fig. 4(c) in Ref.
[48] where I' increases beyond I'g with N for the TDS and
decreases below I'y for the SS.

In the associated experimental paper [48], the ratio 6 in
Eq. (28) serves as an important factor to correlate experimen-
tally measured decay rates to the actual decay rates of the
system. To get an intuition behind this 6, we can express it as
0 = (I'¢/T'f)/(ve/vs)- In the case of the TDS, I'. /Ty < NC,
resulting in the 6 < 1, while for the SS, I'./T"y > NC; result-
ing in the 6 > 1. Further analysis on the implications of 6 is
explored in the Supplemental Material of Ref. [48].

B. Atom arrays

Although a disordered atomic ensemble can exhibit subra-
diance to free space under steady-state excitation, the effect
is limited. In contrast, ordered arrays can mitigate random-
ness and promote the coherence necessary for pronounced
subradiance. In this section, we explore the potential of such
atom arrays in reaching subradiance in free space through the
simple TDS excitation.

The next stage of the experiment involves the implemen-
tation of an array of atoms trapped above the ring resonator
as depicted in Fig. 1(c). According to Ref. [52], the atoms
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FIG. 5. The decay rate into free space when a perfect atom array
with 20 atoms is excited to the TDS through the resonator, as the
separation d and the WGM wave number &, are varied. The white
point denotes the proposed parameters of the experiment, giving

can be trapped using two-color evanescent fields, resulting in
the atoms being separated by about 0.3y, where A is the
resonant wavelength of the light in free space. This separation
is approximately half the wavelength of the high-wave number
guided mode in the ring resonator.

When the atoms are excited through the resonator, it can
facilitate almost perfectly subradiant states into free space due
to the alternating phases in adjacent atoms.

The higher wave number of the waveguide excitation kg
plays a major role in contributing to accessing highly subra-
diant states in the case of atom arrays. Experimentally, this is
only dependent on the effective refractive index nerr = kywg/ko
of the WGM. The decay rate into free space as a function
of kg and the separation of the atom d has been depicted in
Fig. 5 for a perfect atom array with no disorder. Although very
good subradiance (y; < 0.1g) can only be achieved with
neg > 1 and separations d < 0.5, there are still other re-
gions where nominal subradiance (yy < I'g) can be achieved.
As mentioned at the end of Sec. III B, in the low-intensity
limit, y¢ is only dependent on the relative phase between the
atomic excitation and is therefore independent of the average
single atom cooperativity C;.

The white dot in Fig. 5 marks the proposed parameters of
the upcoming experiment. For a perfect array with N = 20,
separation of d = 0.3A¢, and effective refractive index neg =
1.69, the free space decay rate yy = 0.035I'g. The atoms are
assumed to be trapped around 330 nm from the resonator to
give an average C; = 0.05. If the atoms are trapped much
closer, as is proposed to be possible by Ref. [52], much larger
cooperativities can be achieved. Modeling this would require
modification to the free space Green’s function due to the
vicinity of the dielectric, as well as going beyond the adiabatic
elimination approximation.

1. Effects of disorder

Although atom arrays show great promise in achieving
subradiance in free space, inevitable defects due to experi-
mental implementations can be limiting. We study how two

Uniform G —&—
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FIG. 6. Effects of disorder in atom arrays with the TDS. The
decay rate into free space has been plotted versus (a) the spread §z
along the z axis and (b) the filling fraction.

common sources of imperfection can disturb the delicate co-
herences built in an ideal subradiant state.

The coupling of the cavity mode with the atoms has an ex-
ponential dependence on the z position due to the nature of the
evanescent coupling. Thus, the randomness in the z position
due to trapping will cause a stochastic nonuniformity in C of
each atom. This randomness in the single atom cooperativity
can be treated as a source of decoherence.

In Fig. 6(a), the decay rate into free space is plotted as a
function of the r.m.s. size 4z of the atomic wave packet along
the z axis. In this case, the spread in the other two directions
is assumed to be negligible to isolate the impact of §z. The
red squares denote the case when all the atoms have a uniform
C, and the blue circles denote the situation where the C is
z position dependent. Just the spread in position alone can
cause decoherence and reduce the degree of subradiance, but
the stochastic nonuniformity in C causes a much larger effect.
At 8z = 50 nm spread, the reduction in subradiance due to
the nonuniformity in C is around eight times larger than the
reduction in the case with uniform C. This emphasizes the
importance of confining the atoms tightly in the z direction in
the case of a system with evanescent coupling.

In Fig. 6(b), the effect of the filling fraction of the array is
depicted. We grow the system size by probabilistically placing
one atom in each added site based on the filling fraction until
the system contains 20 or 40 atoms. Although the number of
array sites will vary with the filling fraction, this is adopted
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FIG. 7. Decay rate of the TDS from an ordered atom array versus
the number of atoms in the array. Red squares denote a linear array,
and blue circles denote a ring-shaped array.

to maintain the scaling of the waveguide interaction with the
number of atoms. The trend is almost linear, connecting the
points from Iy asymptotically at 0% filling fraction to the
minimum possible decay rate at 100% filling fraction. This
emphasizes the importance of implementing arrays with a
high filling fraction to achieve good subradiance in free space.
Even if the state is completely dark for a perfect array, a 50%
filling fraction can only allow a minimum of y; = 0.5T.

2. Circular array

For the linear array that we have been discussing so far,
most of the emission into free space occurs at the ends of the
array. Reference [29] has shown an exponential improvement
in subradiance when using a circular array configuration. The
structure of the microring resonator naturally lends itself to the
potential of having a ring of atoms trapped along the resonator.

Figure 7 shows the comparison between a linear array and
a ring-shaped array trapped along the microring resonator. It
depicts the decay rate into free space that is achievable using
the TDS excitation through the waveguide as a function of
the number of atoms in the array. The comparison considers
atoms trapped in arrays with 0.3Ag spacing, arranged in either
a line or a ring above a hypothetical microring resonator
that follows the array geometry, with uniform coupling at
C; = 0.05. This comparison allows us to explore how the
system scales with increasing atom number. In a practical
setting, such a microring resonator could support a ring of
about 400 atoms at the given spacing. This is similar to Fig. 7
in Ref. [29]. We can almost reach a perfect subradiant state
with the ring resonator setup and evanescent field traps.

A ring of atoms can form its own WGM, resulting in mini-
mal loss of photons into free space. The interactions between
this mode and the WGM of the resonator hold great potential
for applications in quantum control and photon storage.

Although there is great promise with a ring-shaped array
due to the exponential scaling, the effects of disorder de-
scribed in Sec. IVB 1 will still limit the effectiveness of the
system.

V. CONCLUSION

We have studied the effects of collective dipole-dipole
interactions in a system of atoms trapped in the vicinity of
a nanophotonic microring resonator. We modeled and simu-
lated the experimental setup in Ref. [48] to understand the
dynamics and inform potential future research directions. The
atoms can interact with each other in two ways: the free space
dipole-dipole interaction and the microring cavity interaction.
Different properties and the mismatched wave number of the
two lead to interesting dynamics.

We studied the spectrum and decay rates of a cloud of
atoms trapped near the resonator. We explored how the two
different types of excitation, using a short pulse (for the timed-
Dicke state) or a long pulse (for the steady state), affect the
decay dynamics of the system. Although a suppression of
the decay rate can be seen with the steady state, achieving
selective radiance would be difficult in randomized atomic
clouds.

Hence, we explored the implications of the proposed
plan of trapping atoms in sub-wavelength arrays along the
resonator. We show that this could afford the coherence nec-
essary to achieve selective radiance. We studied the effects
of the high-wave number excitation through the microring
and explored potential impacts of disorder on subradiance in
experimental implementations.

This versatile light-matter interaction platform holds great
promise with its many degrees of control and tunable parame-
ters. Implementing atom arrays will open up the possibility
of “selective radiance.” Expanding the study to three-level
atoms opens possibilities to study applications such as photon
storage.
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APPENDIX A: ADIABATIC ELIMINATION
OF THE CAVITY

This Appendix briefly describes the process of adiabati-
cally eliminating the cavity photons from the Hilbert space
due to the separation of time scales.

Beyond the cavity interaction Hamiltonian given in
Eq. (10), the cavity has two sources of loss. It can intrinsically
lose a photon with the rate «;. Cavity photons can also hop to
the bus waveguide with coupling rate «,. This cavity decay is
defined by the Lindblad operator,

Lr(p) = (ki + «.)[apa’ — La'ap — Lpa’al. (A1)
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Since the cavity decay time scales are two orders of mag-
nitude faster than the relevant atomic excitation time scales,
they can be adiabatically eliminated. By enforcing that the
cavity reaches a steady state at every time-step of the internal
dynamic evolution ({(a) = 0), we arrive at an expression for
(a) depending on the atomic excitations.

1 )
(a) = E(Zg,-e“’f (67) + n).
J

By replacing @ in Eq. (10) and Eq. (A1), the cavity can
be adiabatically eliminated, and the master equation can be
rewritten to arrive at Eqs. (12), (13), and (15).

(A2)

APPENDIX B: ORTHOGONALITY OF THE EIGENMODES
AND FINAL STATES

This Appendix Discusses the orthogonality relations in
the combined Green’s function matrix and demonstrates how
they can be used to directly compute the final states. These
unfamiliar orthogonality relations arise due to the different
non-Hermitian properties of the relevant matrices.

The atom-cavity interaction matrix G, is skew-symmetric
because of the running-wave nature of the resonator. This
results in purely imaginary eigenvalues, meaning none of the
eigenmodes of the atom-cavity interaction has any energy
shift. Any two eigenmodes V,, \7,3 follows the familiar or-
thogonality relation: V'V = 8,4, where 8,4 is the Kronecker
delta.

On the other hand, the interaction matrix of the free
space modes Gy is complex symmetric. This means that

G{; = G{l This results in the eigenmodes having a different

orthogonality relation: V!V = 8,4, where T denotes a trans-
pose without conjugation.

The combined matrix will be neither Hermitian nor
complex-symmetric, resulting in different left (L) and right
eigenvectors (R) and a different orthogonality relation:

Mﬁa = )Vaﬁa ,
LI'M =, LT, (B1)

where A, denotes the eigenvalue of eigenmode « of the full
interaction matrix. The left and right eigenvectors L, and R,
can then be normalized to follow

LRy = 84p. (B2)

Using this orthogonality relation, we can decompose the
driving laser term in Eq. (19) into components that each drive
a particular eigenmode «

Q. =LI'G. (B3)

Since each eigenmode evolves individually with its charac-
teristic decay rate, the equation of motion of each eigenmode
can be solved separately. The contribution from each eigen-
mode w, can be calculated for the SS in the low intensity,

SS _ $2

f T 0, = A b

and for the TDS

wI®S o Q, (B3)
with the proportionality depending on the pulse area. These
can be used with Eq. (21) to calculate the final state and the
composition with respect to the eigenmodes.
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