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Effects of finite trapping on the decay, recoil, and decoherence of dark states
of quantum emitter arrays
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The collective interaction of electronic excitations with the electromagnetic field in atomic arrays can lead
to reduced decay rates, forming subradiant states with applications in quantum information and memories. By
including quantized vibrational excitations, we examine the effects of finite trap strength and light-mediated
forces on highly subradiant singly excited states for two, three, and many atoms in a one-dimensional waveguide
or free space. For waveguide-coupled and tightly trapped atoms, the recoil energy from photon emission can
reach a vibrational quantum, even in the Lamb-Dicke regime. For weakly trapped atoms, the vibrational wave
packets are shifted or distorted due to induced forces and uneven decay. These effects lead to a time-dependent
decay rate, extra vibrational energy transfer, and mixing of different electronic and vibrational states. The
resulting entanglement entropy and infidelity can be mitigated by decreasing the induced forces or increasing
trap strength. For quantum information storage, these findings suggest optimal array configurations in geometry
and polarization. Our results provide insights for quantum memories and atom array experiments.
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I. INTRODUCTION

Achieving controlled coupling between light and matter is
essential for coherent quantum control and quantum informa-
tion processing. To enable this, one of the tools is to utilize the
collective interaction between atoms by placing them close
to each other [1-7]. Compared to individual decay rates,
collective emission rates can be significantly enhanced or sup-
pressed [8—14]. In circular atomic arrays with subwavelength
separations, for example, the decay rate of the excitation
eigenstates decreases exponentially with the number of atoms
[15], which is useful for the storage of photons [16].

Furthermore, the collective decay can be used to control
the radiation pattern or the direction of the emitted photons
[17-20]. For example, the radiation could be suppressed to
all but one selected channel where the atoms radiate ef-
ficiently [21]. Another example is that the geometry of a
two-dimensional (2D) array of atoms can be optimized such
that the array acts like a perfect mirror [22-24]. Additionally,
the smaller decay rate of the subradiant or dark states results in
the emitted light spectrum having a narrower linewidth. This
is utilized for collective cooling of atoms to their motional
ground state better than individual atom cooling [25].

Most of the theoretical studies of collective decay assume
that atoms are perfectly localized and fixed in space. While
this assumption captures many of the collective effects men-
tioned above, it does not directly deal with motional aspects
which are present in experiment. The effect of the motion is
most evident in highly subradiant configurations, which take
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a long time to decay, allowing motional distortion to build up
signficantly. While subradiant states exist for different num-
bers of electronic excitations, this paper only deals with singly
excited states.

Because the cooperative decay dynamics depends on the
separation between the atoms, several detrimental properties
could arise:

(1) Perfectly dark states are impossible; the excitation will
necessarily have a minimum decay rate that arises from the
spread in the position of the atoms [1,25-27].

(2) If the atoms are placed very close together, there could
be cooperative forces that impart momentum and move the
atoms from their initial positions [28].

(3) The induced dipole forces can also introduce entangle-
ment between the internal and motional degrees of freedom,
leading to unwanted decoherence for the internal degrees of
freedom [28-31]. This, for example, will affect the fidelity of
the long-time stored photons introduced in Refs. [15,16].

(4) A long lifetime of a dark state is usually accompanied
by large recoil after photon emission [28,32].

(5) The imparted momentum during decay (due to the
induced forces) leads to additional energy that can lead to
undesired heating of a cold atom array. This heating would
necessitate additional cooling steps each time the array is
manipulated [33].

In this work, we aim to address these issues. By including
the vibrational aspects of the atoms, we provide quantitative
results and scaling behavior of various effects of finite traps
that build on and extend previous lines of research:

(1) In addition to the r = 0 lower bound on decay rates
set by the spread of Gaussian motional states [1,1,25-27], we
examine a nontrivial later time (t > 0) dynamics of highly
subradiant singly excited states, where the motional wave
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function is shifted or distorted. This requires going beyond the
Lamb-Dicke limit or expansion in Refs. [25,31] and beyond
the sudden approximation used in Ref. [32]. In particular, for
the two-atom case in Sec. Il A, we consider regimes where
atomic motion is so significant that a second-order expansion
in the vibrational coupling is not convergent and keeping
higher-order terms is necessary.

(2) We extend the calculation in Refs. [28,32] of the vi-
brational energy gained by the atoms before and after the
emission of a photon in the case of spread-limited subradiant
states.

(3) We study the decoherence and infidelity of a dark
state arising due to the induced forces and explore ways to
minimize such undesriable effects.

II. METHODS

In this section, we describe the theoretical framework
used to study the collective decay of atoms. Only the single-
excitation scenario is considered here. Moreover, we note that
we do not have any driving fields such as a laser term. We
assume the initial state has been prepared by some mechanism
fort < 0in an electronically excited state at # = 0. To account
for the motion of the atoms and the internal states, we use a
density matrix formalism expanded in the vibrational states
for the atoms’ motion and the internal states, similar to the
formalism in Refs. [28,34]. We assume each atom is trapped
in a harmonic well that is identical for both the ground and
excited states. This removes possible undesirable effects dur-
ing the single-atom excitation and deexcitation processes (see
Refs. [24,35]) and lets us focus on motional effects due to the
collective interaction between the atoms.

A. System

We consider N atoms of equal mass m. Each atom i has two
internal states, |g;) and |e;), with a transition frequency w, and
a spontaneous decay rate yp. The operators o;" and o, are the
raising and lowering operators of the internal states of atom i:
o;" = le;)(gil and o, = |g)(eil.

Each atom is trapped in a harmonic well. The location of
the center of the trap of atom i is denoted by R;, while the lo-
cation of atom i relative to its trap center is r;. For the relative
position of two traps, we use the notation R;; = R; — R; and
the relative displacement as r;; = r; — r;. We also use the ab-
solute position of an atom, which is denoted by ¥; = R; + r;,
with corresponding difference of two atoms, F;; = F; — F;. A
schematic of the system is shown in Fig. 1. For simplicity, the
traps are of equal angular frequency w, and evenly separated
by a distance d = |R;1; — R;|. The eigenstates of the trap for
atom i in each direction are denoted by |n;) with energy n;fiw;
(where the conventional 1/2 is dropped for convenience).

The density matrix of the system, p, can be expanded in
the tensor product basis of the vibrational and internal states
for each atom. We denote such a generic basis state by |A, V),
where A and V are the collection of the internal and vibra-
tional quantum numbers of the system, respectively: |A) =
log, ez, ... ), and |V) = |ny, na, ... ), where at most one «;
can be ¢;. In this way, there are N + 1 allowed internal states.
Each nj can be 0, 1, 2, .... Hence, the density matrix can be

ylAo
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X/Ao

FIG. 1. Schematic of part of an atom array on a circle. Here, the
atoms are trapped regularly with separation d = 0.2A¢. The size of
the red circle (Ax) indicates the spread (standard deviation) of the
trap ground state. Position vectors to the center of the traps, R;, and
the absolute position of the atoms, ¥;, as well as the relative position,
r;, are shown.

written as
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For numerical feasibility, we can truncate the vibrational
states t0 0, 1, 2, . .., nymax, Where we choose a phonon cutoff,
Nmax, tO ensure convergence of the numerical simulation. This
way, we have Ny = nmax + 1 vibrational states per atom.
The vibrational Hilbert space will, therefore, contain (Ny;,)Y
states. The total number of states in the system is Ny =
(Nyip)V (N + 1).

B. Master equation

The evolution of the system’s density matrix, p, is gov-
erned by a master equation:

dp(t)
dt

where H. is an effective Hamiltonian that contains a trap term
and a non-Hermitian interaction term, and R is a population
recycling superoperator [25] defined below. The trap term is
given by

- _%[Heffp(l‘) — POHG] +RIp®. ()

N
Hup = ) hinya]ai, (3)
i=1
where a; is the lowering operator of the vibrational states
of the trap of atom i. The interaction term comes from the
coupling with the electromagnetic field (which is traced out)
and is given by

Hin = =1y g(F)o 07, )

ij
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where g is a complex-valued Green’s function proportional to
the electric field propagator and is given in Egs. (7) and (8)
below. The imaginary part of this Green’s function gives a
non-Hermitian interaction responsible for the collective decay
of the excited state. However, the real part gives a Hermitian
interaction responsible for the collective Lamb shifts of the
energy of the states and also the induced forces which can
shift the positions of the atoms before the decay of the excited
state [11].

The final term in Eq. (2) is the recycling superoperator,
‘R, which accounts for the decayed population and the recoil
energy during the photon emission step. The recycling super-
operator acts on the density matrix in a relatively complicated
way. The simplest description is in the position representation
of the density matrix, where p is expanded as

p= 3 [ardrpsianw 6
AA

where r and ' are the collections of the positions of the atoms.
The recycling superoperator is given by

Ripl =23 Y [ drdr' oyt Imigi )

ij AA
X Gi_|Avr><A/v r/|0‘;>7 (6)

where Im[g] is the imaginary part of the Green’s function, and
F}; = F; — . The multiplication of the density matrix by the
position-dependent Green’s function in the above equation is
responsible for and explains the mechanism of the imparting
of momentum and energy to the atoms during the photon
emission step. We use a spectral method employing the eigen-
states of a truncated position operator (a + a') as the basis
to calculate this superoperator action. This results in a faster
convergence with the number of basis states as done in the

Appendix of Ref. [34].

C. Green’s function

The Green’s function in Eq. (4) depends on the un-
derlying geometry of the system. For atoms coupled to a
one-dimensional (1D) waveguide (assuming no other decay
channel), the Green’s function has a simple form and leads to
coupling given by [21]

g(r) = i% exp (iko|r), )

where ky = 27 /Ay = wp/c is the wave number of light, A
is the wavelength of light, and c is the speed of light. For a
waveguide along the x axis, r = xX and |r| = |x| denotes the
distance between two atoms in one dimension. This function
is simple because it is bounded and periodic.

On the other hand, the Green’s function for free space is
more complicated and given in Eq. (8):

(- @F-q°) —

. 3 7 1
g(r) = 1% |:h(()l)(kor) + 5 hé"(kor)}

®)

where ¢ is the dipole orientation, » = |r| is the norm of the
vector r, 7 = r/r is the unit vector along r, and h;l)(x) are the
outgoing spherical Hankel functions of angular momentum

I; BV (x) = € /[ix] and h$"(x) = (=3i/x> — 3/x% + i/x)e™.
Unlike the 1D case, this Green’s function is nonperiodic. Its
magnitude decays like 1/r at large r, and its real part diverges
like 1/ at small 7. In Eq. (4), this leads to infinities in the
self-interaction terms i = j, and we remove the real part of
the Green’s function at i = j to avoid the infinities.

The distinction between R; and r; (see Fig. 1) is important
for the description of the motional aspect of the system but
also has conceptual consequences for the following reason.
The atoms interact through the electromagnetic field. As de-
scribed in Eq. (4) and in Egs. (7) and (8), the interaction
strength depends on the phase difference of light due to the
difference of absolute positions: ko|F;;|, where kg is the wave
number of light. This has contribution from the relative po-
sitions of the traps, kgR;;, which is a fixed value. The other
contribution comes from kor;;, which is a quantum operator
that describes the spatial degree of freedom of an atom inside
its trap.

In the theoretical limit of infinitely trapped or infinitely
massive atoms, this operator can be taken to be fixed,
kor;; = 0. This approximation is often used in theoretical
studies of collective decay. For finite trapping strength, the
position operator

kori = n(a; +a)), )

where 71 is the Lamb-Dicke (LD) parameter given by n =
kov =—. This LD parameter serves two purposes. First, it

quanztrinf(‘;)és the coupling between the internal and vibrational
states. The coupling g(¥;;) in Eq. (4) can be Taylor expanded
in the LD parameter to give terms where the vibrational opera-
tors, a; and aj', are multiplied by the internal operators, oﬁ and
o; . Second, the LD parameter quantifies the spatial spread
of the vibrational state of an individual atom. For example,
the standard deviation of position for the ground vibrational
state divided by Ag is equal to /2. Typically, the LD regime
is characterized by a spread that is much smaller than the
wavelength, corresponding to n < 2.

D. Schrodinger equation

The master equation in Eq. (2) is computationally expen-
sive to solve, especially for subradiant states which require
substantial time to decay to the ground electronic state. In
the case of starting in a pure state of the single-excitation
subspace with no driving laser, the master equation can be
solved more efficiently in two parts: (1) a Schrodinger equa-
tion for the electronic excited state that does not depend on
the electronic ground-state dynamics and (2) a recycling su-
peroperator that accumulates the decayed population in the
electronic ground state.

In this paper, we always start the system from a pure state
¥ (r = 0)) = |DS, 0), where |DS) is an electronic eigenstate
and |0) is the vibrational ground state of all atoms. In this case,
the total density matrix can be expanded as

p(t) = pg(t) + pe(t) = pg(t) + [ (1)) (¥ ()], (10)

where p.(t) = | (¢))(¥(t)| is the pure excited state den-
sity matrix, and p,(t) is the decayed density matrix. The
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Schrodinger equation for the excited state is given by

diy(@)  —i
S = —Hly (). (11)

The magnitude of this state is equal to the probability of being
in the excited state, p(t):

p(t) =Tr(p(1)) = (Y O|Y (1)). (12)

This probability decays over time due to the non-Hermiticity
of the effective Hamiltonian. The rate of change of probability
is given by

) _ 2y (W ()| Hin| ¥ (1))] (13)
dl —hmﬁp | th )7
with a corresponding decay rate defined as
d
7= =20 ) (14)

The decayed population 1 — p(¢) goes into the electronic
ground state |g)(g|, where it evolves under the trap term.

E. Observables

To reconstruct the full density matrix, p(t), we also need
to solve for p,(t). However, keeping track of p,(¢) is cumber-
some, as it is usually a mixed state that evolves under the trap
Hamiltonian:

dpg(t) _
dt

Nevertheless, having the full p(¢) is rarely needed. We show
how various quantities of interest such as the accumulated
energy, infidelity, and entanglement entropy can be calculated
from the evolved electronic excited state |1/ (7)) alone.

The accumulated vibrational energy at time ¢, Er(t) =
(Hap) (1), can be calculated by adding the energy of the elec-
tronic excited state and the electronic ground state, E,(f) +
E(t). E () is equal to (¥ (¢)|Hyapl¥ (1)), and E, () is accu-
mulated over time from the recycling superoperator:

—%[Hmppgm — po()Huap] + RIpe(®)]. (15

ER(I)=Ee(t)+/ Tr{Hiap RV (O) (W ()[1}dr. (16)
0

For highly subradiant configurations, storing a photon for
a long time is of interest [21]. In particular, we wish to store
the photon in a state of type |DS, 0), where the electronic part
is in a highly subradiant mode, |DS), and all atoms are in the
vibrational ground state, |0). In the early dynamics of such a
state (t < 1/y4), the decayed population, Tr(p,(?)), is small
and the system is mostly in the excited state.

However, due to the coupling between the electronic and
vibrational states, the pure electronic eigenmode, |DS, 0),
generally turns into a superposition that includes other excited
states that have different electronic or vibrational excitations.
This leads to decoherence and infidelity in the stored excita-
tion. The infidelity due to the mixing of the internally excited
states is a measure of the closeness between the excited state
at time ¢ and at time O and is given by [36]

1(t) = 1 — \/(DS, 0] pPi(1)| DS, 0), (17)

where ,0'9“’j (t) = pe(t)/Tr(p.(t)). The reason we project the
density matrix is to isolate the infidelity due to the mixing of

the excited states from the infidelity due to the decay of the
excited state. When the decayed population is small, the infi-
delity due to decay is lgecay (t) = Tr(pog(t))/2. It is of interest
to consider which infidelity dominates in early dynamics. In
the context of conditional measurements, if there is no photon
detected before time ¢, the state of the system is PPei(t) and
only the infidelity due to the mixing of the excited states is
relevant.

In general, the electronic and vibrational parts of the state
0. (t) become entangled before the state decays. The entangle-
ment entropy is calculated from the reduced density matrix of
the internal states of the atoms, p4(z) = Try [p™(¢)], where
Try is the trace over the vibrational states of the atoms. The
entanglement entropy is given by [36]

S(1) = =Tr[pa(t)In (pa(1))]. (18)

One goal of this paper is to identify the conditions un-
der which the entanglement entropy and the infidelity are
minimized.

III. RESULTS

In this section, we show the effects of finite traps on the
decay, recoil, and decoherence of dark states in quantum
emitter arrays. We begin by studying two atoms in a 1D
waveguide, where the atoms can be put in a highly subradiant
configuration at d = A( separation. We demonstrate that the
decay rate can be significantly affected by the induced forces
between the atoms. We calculate the energy imparted to the
atoms during the decay and show that this energy could be
much larger than the trap energy spacing, /iw,, when the forces
are significant.

We then extend our study to three atoms in a waveguide,
where the initially separable system of electronic and vibra-
tional states becomes entangled through the collective decay.
We give numerical results and analytic approximations for the
amount of infidelity and entropy generated with time. Finally,
we extend this discussion to many-atom ring arrays in free
space proposed in Ref. [15]. We study the lower bound on the
decay rate and explore qualitative relations for the dependence
of the storage fidelity on the spread, trap frequency, distance
between atoms, polarization of the electronic transition, and
number of atoms.

A. Two atoms in a one-dimensional waveguide

We begin with the simplest example of highly subradiant
states: two atoms in a 1D waveguide. In the single-excitation
subspace, the symmetrized combination can lead to subradiant
or superradiant states when they are separated by a wave-
length. The symmetrized electronic states are

_ |ge) & |eg)
V2

The effective Hamiltonian for this system is

ihyo o _
Het = Ny Zd;rai - Z > o;'o;
i

i

== . (19)

— hgRyz +r2)(0) 05, 4+ 07 050). (20)
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In the single-excitation symmetrized states, the effective
Hamiltonian acting on |+) becomes [31]

in
HE = ho Y ala; - 1%{1 + exp (i + ikorn)},  (21)

where ¢ = kod is the phase difference due to the separation of
the traps.

A highly subradiant configuration is achieved when the
atoms are separated by a wavelength, X, in the state |[—)|00).
As shown in Ref. [27], the initial decay rate of such a config-
uration is given by

ya(t = 0) =1 —exp(—n*) ~ yon°, (22)

where 7 is the spread of the wave function, which is assumed
to be small (n < 1) to give the quadratic scaling. In addition
to this # = 0 bound on the decay rate coming from nonzero
spread, the later-time # > 0 decay dynamics of such a config-
uration can be significantly affected, as studied further in this
section.

For identically trapped atoms in the |—) configuration, the
effective Hamiltonian, H, in Eq. (21) can be decomposed
into two components: (1) a center-of-mass Hamiltonian,
H.n = haoy, aIAm.ac,m‘, representing a pure harmonic oscillator
with no perturbation, and (2) a relative motion Hamiltonian,
H,.;, which is a harmonic oscillator perturbed by dipole-dipole
interactions. At d = )¢ separation, the relative Hamiltonian
reads

. ih
H = hwa'a — %{1 —exp(ikorn)),  (23)

where the nonindexed lowering operator, a, defined as a =
(a1 — ap)/ \/E, acts on the relative displacement states. Here,
kori> can be expressed as \/zr/(a +ah.

The relative Hamiltonian in Eq. (23) can be further ex-
panded, assuming small 1 and neglecting terms of order n°
and higher, as

+ fiyo ihyo
Hy ~ howa'a + Tkol'u - T(kol'lz)2

&y o iliyon® -

hwya'a + \/E(a—i—a) > (a+a'). (24)
The terms in this expansion represent the trap of strength w;
(first term), a linear potential of strength yyn (second term),
which pushes the wave packet away from the trap center,
and nonuniform decay of strength yon? (third term), which
deforms the wave packet because the wave function’s tails
decay faster than its center. Throughout this work, we demon-
strate that the relative strength of these terms determines the
behavior of decay, recoil, and decoherence in the dark states.
It is useful to consider three trap regimes: a strong-trap regime
where the trap dominates the induced forces, w; > yyn; a
weak-trap regime where the induced forces dominate, w, <
yon; and an intermediate-trap regime where the trap is only
slightly stronger than the induced forces, w; £ yon.

The effects of the induced forces and the nonuniform decay
become manifest in weak traps. To isolate the effects of the
different terms in Eq. (24), we simulate two cases: (1) the full
Hamiltonian as in Eq. (23) with the induced forces present
and (2) the Hamiltonian with the trap’s center shifted to cancel

1 T TT LU | T ‘ T | T T T
2
0.8 E eXp(-nzj/of) ................. E
~ 08N\ =
AN ]
04 \\ —]
r e ]
02 |- =
0 Eo ey ‘\.TT‘.-r-r— .
0 50 100 150 200 250
Yot

FIG. 2. Decay of the excited population across cases discussed
in the text. In both cases, the decay starts out in a similar way. An
exponential decay at rate y,n? is also plotted for reference.

the linear potential term: Hyy — Hye) — hiyon(a + a)/ V2. In
other words, we cancel the linear part of the induced potential
by adding a linear potential to the Hamiltonian. This removal
of the linear potential gives results very similar to simulating
Eq. (23) after deleting the full coherent potential.

The results of the simulations are in Figs. 2—4. In these
simulations, we choose parameters that correspond to a
cesium atom transition 625, R 62Ps ,2 with an experi-
mentally relevant trap strength. The mass of the atom is
m = 2.21 x 107> kg, and the individual atom decay rate is

2 - .
T 1 — ]
Qo 2 e 1
S ]
i i ]

a0
= 0 1
® o ]
ot I ]
«-1b)||1—
2 os | 2 E
s U - ! ]
~a 0.6 | "1 A A E
vy - 05 F A 4 4
b; 04 0 F e e,
& 02 F 3210123 "
O e b ]
0 50 100 150 200 250
Nt

FIG. 3. (a) The time-dependent expectation of the scaled rela-
tive position operator kox;,/ (v/21) and (b) its standard deviation
kooy,,/ (+/2n). The inset of (b) shows the time-varying wave-packet
probability for case 2 as a function of the scaled relative position,
kox12/(~/2n). The curves (dash-dotted orange, dash-dot-dotted dark
red, and dash-dot-dot-dotted purple) correspond to three time instants
(yot = 0, 35, 140), respectively, as indicated by the arrows. The
solid red curves (case 1) terminate at t & 62/y,, where the excited
populations falls under 1%.
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FIG. 4. Energy gained by the atoms. In case 2 with shifted
traps, the final energy is approximately 1.27w,. In case 1 with
forces present, the final energy substantially exceeds /iw, and is
about 16/iw;.

¥o = 2w x 5.2 MHz. The internal transition has Ao = 852
nm, and the trap frequency is w;, = 0.01yy = 2w x 52 kHz
resulting in n &~ 0.2. The system is initialized in the dark-state
configuration |—)|00) with Ay separation.

In Fig. 2, we plot the time-dependent excited-state pop-
ulation for the two cases. Initially, both cases exhibit an
exponential decay with a rate of approximately y,7?, but then
deviate due to the change of the vibrational wave function.
For the case where the induced force is balanced by shifted
traps (case 2), the decay rate decreases. However, in the
presence of forces (case 1), the decay rate greatly increases
fort > 35/yp.

The time dependence of the decay rate can be explained
by the evolution of the spatial wave function. Figure 3 plots
the mean position and width of the wave function over time.
With shifted traps (case 2), the wave-packet width decreases
slightly due to faster decay of the wings away from the trap
center (see the inset), while the position of the center of the
wave packet remains nearly unchanged. This leads to a de-
crease in the standard deviation of position, oy,,, and thereby
a decrease in the decay rate of Fig. 2. With forces present (case
1), the relative wave function shifts rightward, which is due to
the repulsive interaction between the atoms’ individual wave
packets. The shift of the position of the wave function changes
the relative phase ¢ from the initial value 2, resulting in a
faster decay. The slowing and speeding of the decay discussed
here are due to the motion or distortion of the atomic wave
packet, but similar behavior can arise due to static disorder of
pointlike atoms as in Ref. [37].

The motion of the wave packet in Fig. 3 not only affects
the decay rate but also results in the atoms gaining kinetic
and potential energy before they decay. This contributes to
the excited-state energy term, E,, discussed in Sec. II E. This
term builds up as the atoms are accelerated away from the
trap center. This excited-state energy is then transferred to
the ground-state energy term, E,, as the atoms decay. When
the atoms decay, they acquire additional recoil energy due
to the emission of the photon. These two effects add up to
the total energy of the atoms, Eg. As a consequence of these
two contributions, the energy gained by the atoms exhibits
qualitatively different behavior based on the trap strength.

In the strong-trap regime, @, >> Y1, the vibrational state
experiences no motion, gaining minimal energy: E,(¢) ~ 0 for
all ¢. In this case, the decay is exponential and the final energy
is mostly from the recoil due to the emission of the photon. In
this limit of a strong trap, the final vibrational energy of the
atoms, ER, is inversely proportional to the decay rate, as noted
in Ref. [32], leading to

Er(c0) ~ 2E,, (25)
Ya

where E; = % is the one-atom recoil energy coming from
momentum conservation during a photon emission from the
state |e). The recoil energy in Eq. (25) after photon emission
is derived from the recycling term, assuming a stationary
initial excited state. For the dark state of two atoms in a 1D
waveguide, the decay rate is approximately yon?, giving a

recoil energy of

E;
ER(00)  — = hay. (26)

n
On average, a vibrational quantum is generated in this subra-
diant case in the strong-trap regime, even in the LD regime. It
is important to note that the effect of this recoil energy scales
with the trap frequency and cannot be suppressed by using a
stronger trap. In contrast, the recoil energy from a single atom
or subradiant states with decay coming mostly from geometric
factors (such as two atoms with separation different from
multiples of Aq/2, or the 2D array configurations in Ref. [32])
is independent of the trap frequency (does not scale with wy)
and can be made insignificant by using a strong trap.

The motional energy gained by the atoms is shown for the
two cases in Fig. 4. When the traps are shifted to compensate
for the induced force (case 2), the final energy is close to Zwy,
with difference (Eg(c0) — fiw,) coming from the narrowing of
the wave packet due to the nonuniform decay. However, with
forces present (case 1), the final energy significantly exceeds
hw,, mostly coming from the wave-packet displacement.

The energy gained by the atoms may be deposited either in
the center-of-mass motion, H. , , of the two atoms or in their
relative motion, H,). For symmetric traps, a small fraction of
the recoil energy, E;/2 = nhiw, /2, is deposited in the center-
of-mass mode.

The energy gained by the atoms and their decay behavior
are manifest in the spectrum of the emitted photon [38]. The
spectrum can be reconstructed following the "input-output"”
formalism as in Refs. [39—41]. We calculated the spectrum
of the emitted photon for the two atoms in a 1D waveguide
in cases 1 and 2. In both cases the spectrum is redshifted on
average by the final energy deposited in the atoms, Er (00)/7,
and its width corresponds to the average decay rate of the
subradiant state. The redshift accompanying the recoil might
cause the output light to be off resonance with the atomic
transition. This could affect applications where the output
light is later used for manipulation of atomic states.

B. Three atoms in a one-dimensional waveguide

For a system of two atoms, the dark state |—) is an
eigenstate of the effective Hamiltonian. Consequently, this
state remains decoupled from the bright state |+) during the
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decay process, irrespective of atomic motion. This leads to the
entanglement entropy S(¢), as defined in Eq. (18), remaining
identically zero. However, at least two states are needed for a
qubit. Therefore, we study a system of three atoms which can
support two dark states.

In the single-excitation subspace, three atoms in a 1D
waveguide, separated by X, form two dark states and one
bright state [21,42,43]. The dark states can be defined as

DS)) = %(|egg> ~ lgge). @7)
IDS,) = %(Iegg) Dlgeg) + Igge)).  (28)

and the bright state is
|BS) = %(Iegg) + [geg) + |gge)). (29

If the atoms are fixed at integer wavelength separation, the
dark states remain nondecaying while the bright state decays
at a rate of 3y [21]. When the atoms have a nonzero spread
in a vibrational ground state, the dark states initially decay at
rate of ~ 5%y [27], and the bright state decays at a rate of
~ (3 — 2n?)yp in the Lamb-Dicke regime. Using the two dark
states as qubit states allows high fidelity for a duration less
than the lifetime (<1/ (772)/0)). The lifetime is long because
these subradiant states are almost exact eigenstates of the
system and decay at the same, slow rate [42].

While the previous discussion focused on decay dynamics,
practical traps introduce coupling between the two dark states
due to atomic motion. For example, starting from |DS|, 0), we
observe population transfer to the electronic states |DS,) and
|BS), as shown in Fig. 5. We use the same cesium parameters
in Sec. III A, except with a relatively stronger trap frequency,
w; = 0.34yy, resulting in  ~ 0.034. This choice ensures in-
termediate trapping conditions where the effects of the forces
are small but still important to consider. When we simulate
the weak trap in Sec. III A, the strong induced forces quickly
entangle the system, reaching maximum entropy. This is an
unfavorable situation in information processing.

Unlike the complete decay dynamics in Fig. 2 for two
atoms, Fig. 5 only shows the early dynamics where the de-
cayed population, 1 — p(¢), is under 3%. For reference, if
the atoms are confined to the ground state of the trap, the
lifetime 1/y, is approximately 1/(n?yo) = 865/yo, while we
only simulate for f; = 21/yp. In this time window, the state
|DS,) (summed over all vibrational states) populates up to
approximately 2% and oscillates with a period close to the trap
period 27 /w, =~ 18.5/yy. The bright state |BS) also populates
to a small fraction ~1 x 10~*. The simple sinusoidal behavior
results because the dipole-dipole interaction couples |DSj, 0)
with |DS,) in the n = 1 subspace, and these states have an
energy splitting >~ hw, (see Appendix A).

This mixing between the states is only possible owing to
the coupling between the internal and the vibrational states.
In the process of the population transfer from the initial state,
there is entanglement entropy [S(¢) as defined in Eq. (18)]
generated. The entropy is approximately proportional to the
population in |DS;). For example, there is a peak in the
entropy at t &~ 9.2/y, which corresponds to the time when
the population in |DS,) is at its maximum. This peak is at
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FIG. 5. Early dynamics of three atoms in a 1D waveguide.
(a) Populations of all four internal states: the decayed population
(]ggg)), the population in | DS;), the population in |BS) (multiplied by
102 for clarity), as well as the initial-state population |DS,) (plotted
as 1 — DS to fit in the same range). (b) The infidelity /(z) and the
entropy S(¢) build up and oscillate as a proportional amount of |DS))
is transferred back and forth to |DS,). An analytical approximation,
2(*y¢/w?) sin*(awyt /2), for I(t) is derived in Appendix A. Chosen
parameters correspond to w, = 0.34y, and n = 0.034.

S(t) ~ 0.1, which is small but could affect applications. Like
the entropy, populating |DS,) causes infidelity, I(¢), that is
also proportional to the population in |DS,) and peaks at
a value ~ 0.02. Note that the I(¢) is correlated with S(t),
as they both depend on the population in |DS,). This peak
mixing infidelity is of the same order of magnitude as the
decay infidelity, which signifies the importance of including
the effects of motion for studying the quality of subradiant
states in early time.

The oscillation amplitude for the entropy or the infidelity
curves can serve as a figure of merit to compare the effects
of the trap strength and the induced forces across different
system parameters, 1 and ;. In the intermediate- or strong-
trap regime, we found that the amplitude of the oscillations
depends on the ratio of the force term to the trap term, sim-
ilar to the condition for exponential decay for two atoms.
Specifically, the infidelity amplitude scales as ~(yon/w;)>.
This scaling, derived in Appendix A, arises because the force
term, o1, functions as a coupling in an effective two-level
system, while the trap term, w;, serves as a detuning.

C. Circular array of atoms in free space

In this section, we present results for atoms interacting in
free space, without a waveguide. To achieve highly subradiant
configurations in free space, we arrange multiple atoms in
a regular array with separation d < 0.5 [15]. For a large
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number, N, of pointlike atoms arranged in a circular array, the
decay rate of the most subradiant eigenstate can be made very
small by increasing N. In the infinite limit N — oo, the decay
rates of many eigenstates approach zero. These eigenstates
are electronic (spin) waves with different wave numbers k.
When k exceeds the free-space wave number ky, the radiation
must be evanescent perpendicular to the array, resulting in
guided modes around the ring that are completely dark. For
finite even N, the most subradiant eigenmode is the one with
the largest k, which is equal to m/d. This state, which we
call |DSnin), is an equal superposition of all single-excitation
states with alternating signs. The decay rate of this state,
Vmin = 2 IM{{DSin|Hett|DSmin)} /i, decreases exponentially
as exp(—N/Ny)yo, where N is a constant that depends on the
interatom distance d. The resulting highly subradiant states of
the ring are promising for the storage of photons and quantum
information [16].

If the atoms start in a Gaussian profile of nonzero spread
in a finite trapping potential, as shown in Fig. 1, the initial
decay rate of the most subradiant state, ymin (t = 0), is equal to
2Im{(DSmin, O| Het| DSmin, 0)}/ k. At later time, the dynamics
might shift or deform the vibrational wave function, resulting
in a modified decay rate. yni, has two primary contributions:
(1) the finite size of the array with aforementioned exponential
improvement with N, and (2) the finite spread of the atoms’
wave function, which contributes a factor of ~n%yy [1,27].
At sufficiently large N and in the LD regime, ypmi, reaches an
asymptotic value dominated by the atomic spread, Vpread =
Cn’yy, where C is a proportionality constant. The value of
this proportionality constant has an interesting behavior. First,
it depends on the istoropy of the atomic spread and the po-
larization of the transition but is independent of the interatom
distance d for all d < 0.5). Second, for atoms with isotropic
spread, C = 1 is independent of polarization (see Appendix G
of Ref. [44]). For an atom ring laid in the x-y plane with
uniform x-y spread but no spread in the z direction, the value
of C depends on the polarization direction. For linear polariza-
tion perpendicular to the plane of the atoms (§ = 2), C =~ 0.8,
while for polarization in the x-y plane (¢ L 2), C =~ 0.6. On
the other hand, for spread in z twice that in the x-y plane,
C =~ 1.6 for g =12. For g 1z, C =~ 2.2. More discussion on
the asymptotic decay rate and the proportionality constant can
be found in Appendix B.

Similar to the case of three atoms, forces between atoms
in the ring induce entanglement between their internal and
vibrational degrees of freedom. Figure 6 shows the mixing
dynamics starting from |DSpin, 0). The frequency used here
is the same as in Sec. IIIB, @, = 0.34yy, corresponding to
intermidiate trapping, with d = 0.3A9, N = 30, and linear
polarization, § = % (circular polarization, § = (& + i§)/+/2).
In the time shown, approximately 0.6% (1%) of the pop-
ulation has decayed to the ground state |gg---g). A small
fraction, about 0.1% (1%), transfers from the initial internal
state to other internal states in the first vibrational mode,
n = 1 (summed over the all the internal states). This process
generates entanglement entropy S(¢) and produces infidelity
I(t) as shown in Fig. 6. Because the infidelity and entropy
are both mainly caused by mixing with n = 1 manifold,
they are correlated; i.e, S(¢) increases as I(¢) increases and
vice versa.
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FIG. 6. Similar to Fig. 5(b), the evolution of the most subradiant
internal eigenstate for N atoms in a ring configuration, with motion
initialized in the ground state of the trap, |DSy,, n = 0). Population
transfers from the initial internal state to other internal states in
the first vibrational mode n = 1 (not shown), leading to increasing
infidelity and entropy between the evolved state and the initial state,
1(t). Parameters: w, = 0.34yy, n = 0.034, d = 0.3%y, N = 30; lin-
ear, § = 2, or circular polarization, § = (£ + i§)/+/2. Note that the
curves for circular polarization are divided by 10 for clarity. All
curves, except where indicated, use one vibration-restricted Hilbert
space.

Compared to the three-atom case in Fig. 5 which has the
same 1 and w;, the infidelity here is much smaller, of order
10~* (10~3), compared to 10~ for the waveguide atoms. This
can be explained by the magnitude of the induced forces be-
tween the atoms. For a waveguide at Ao separation, the force is
hyoky. For free space at d = 0.3y and when the polarization
is perpendicular to the plane of the atoms, the force is much
smaller, approximately 0.03%yyko. This is a particularly useful
arrangement for storing quantum information, as the decay
rate is small and the induced forces are weak. The force stays
small for d /A in the range from approximately 0.25 to 0.5 but
increases rapidly for smaller d, as later indicated in Fig. 7. For
free space at d = 0.3)¢ and circular polarization, the force is
larger than the linear case and is approximately 0.647yko.
This results in the population leaking to the other excited
states (1%) being comparable to the decayed population (1%),
suggesting that the mixing effects on the overall fidelity due
to vibrations are as significant as the spontanteous decay pro-
cess.Unlike the periodic mixing seen for three atoms in Fig. 5,
the mixing here is not periodic and is generally more complex
at early times. The lack of periodicity can be explained by
the change of energy splitting between the interacting states.
For atoms in a waveguide, the splitting is w,, which causes
oscillations with frequency close to w,. While being absent in
a waveguide at d = A¢, another contribution to the splitting
comes from the Lamb shift due the collective coupling in free
space at d = 0.3.

To provide qualitative explanation for the observed dy-
namics, we move to the Bloch basis for both internal and
vibrational states labeled by wave numbers k and k., respec-
tively. Because of the symmetry of the ring configuration, the
sum of these quasimomenta is conserved to yield a nonzero
interaction with the initial state |DSp,, 0). We label the
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FIG. 7. Maximum infidelity, I, versus interatom separation,
d, for linear polarization, § = Z, and circular polarization, § = (¥ +
iy)/ﬁ. Parameters: w, = 0.34y,, n = 0.034, N = 30. These infi-
delities from the mixing of the excited states are compared to the
decay infidelity indicated by the horizontal line. To the right of the
vertical orange line, the configuration is not in the spread-dominated
decay. We use the one-vibration restriction and validate it with a
two-vibration restriction as described in the text.

interaction matrix element as G; which is usually nonzero
after kyip, is chosen to satisfy the conservation. In the
intermediate-trap regime (Yo < w; < ), at most one
phonon can be considered. The initial state, which lies in
the zero-phonon (n = 0) band, interacts weakly with the
one-phonon bands with strength G, that varies with k& and
scales as 71yy. The initial state has an energy shift and
decay rate captured by a complex matrix element &y, =
(DSmins O|Hett| DSmins 0) = A(Amin — i¥min/2). Similarly, the
one-phonon states have complex energy & + ficw,. The shape
of such bands depends on the interatom distance as well
as the polarization direction and can be found in Ref.
[15]. By inspecting the effective interaction strength S(k) =
|G/ (Ek + hw, — Emin)|?, we found that a group of only six
states interact strongly with the initial state. These states come
in two pairs that are separated in k, but nevertheless have sim-
ilar energy (&). The analysis was done for the cases in Fig. 6,
and for an increasing number of atoms, N = 60 and 120. The
narrow bandwidth of the interacting (n = 1) states motivates
modeling the system as an effective two-level system which
captures the qualitative features of the infidelity dyanmics.
For example, the global maximum of the mixing infidelity
in Fig. 6 is proportional to the largest S(k). Additionally, the
frequency of the oscillation and the revival time of the fidelity
are determined by the energy splitting (real part of the de-
nominator). In Fig. 6, the Lamb shift in the linear polarization
case is approximately Ay, = —0.25yy for the initial state
and —0.55y, for the strongest interacting state. This uneven
Lamb shift causes the energy splitting between the interacting
states to diminish from w, = 0.34y, (the trap splitting) to
~0.04yy. This results in a slower oscillation and a revival time
longer than ~1/w; and the time window of interest. While the
two-level model can capture the timescales for the infidelity
revival or saturation, it tends to underestimate the peak of the
infidelity. For example, in both cases in Fig. 6, the peak is
underestimated by a factor of ~2. This is because other less
strongly interacting states were ignored. Nevertheless, this

qualitative picture provides a way to considerably minimize
the mixing the infidelity. This is achievable by increasing the
trap frequency to be larger than the width of the energy band,
which is usually of order of a few yy.

Due to the increasing size of the Hilbert space with N,
the simulation in Fig. 6 uses a restricted vibrational Hilbert
space, allowing at most one atom to vibrate in one direction
at a time. This restriction was validated by comparison to
another restriction with at most two vibrations. The errors
in populations and infidelity in the time window shown in
Fig. 6 between one and two vibrations were less than 1%.
The errors were even smaller for cases with larger w, or
smaller n. For times longer than shown in Fig. 6, the infi-
delity for the circular polarization case increases to the 1%
level and the vibrational restriction is no longer convergent
(relative error between one- and two-vibration restrictions is
>1%). This suggests that such restriction results in a good
approximation only when the system is in the intermediate-
trap regime, or when the evolution time is early enough that
the n = 1 population has not increased significantly. Further
details of the equations and approximations used are given in
Appendix B.

Trends with different parameters

In this section, we find the optimal parameters for the
ring configuration that minimize the vibrational effects. To
achieve that, we analyze how infidelity depends on various
parameters (N, d, n, w;, §). First, we time-evolve the excited
state |DSyin, 0) till a significant fraction of it (which we take to
be 2%) decays to the electronic ground state. This threshold
is chosen to ensure that the electronic excitation is still pre-
served with high probability. We later discuss other choices
for the threshold (1%, 4%, and 8%). In this time window, we
calculate the mixing infidelity, /(¢), in Eq. (17) and record its
maximum value, which we denote as I,x. This maximum
infidelity is then compared across various parameters. Ad-
ditionally, we compare these infidelity values coming from
the mixing in the excited states to the infidelity coming from
decay (Jyecay = Tr(pg)/2 = 0.01).

Consistent with previous findings in waveguide-coupled
atoms, the infidelity exhibits a quadratic dependence on 7 for
sufficiently small  and decreases as (e, /o)~ for sufficiently
large w,. However, as N varies, the infidelity remains within
the same order of magnitude for sufficiently large N, display-
ing only minor fluctuations.

As the interatomic distance d decreases, there are stronger
induced forces, leading to increased infidelity, as illustrated
in Fig. 7. Notably, the magnitude of induced forces depends
on the polarization direction. For instance, in the case of
linear polarization along Z, the induced forces are weaker
than those observed for circular polarization along § = (% +
i$)/+/2. Consequently, the infidelity is significantly higher for
the circular polarization case. At d = 0.3, for example, the
infidelity is on the order of 10™* for perpendicular polariza-
tion, whereas it increases to 1072 for circular polarization.
Compared to the decay infidelity, the mixing infidelity is much
smaller for perpendicular polarization and only becomes im-
portant at small distances d < 0.13. On the other hand, for
circular polarization the mixing infidelity is much larger than
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that of the decay and only becomes insignificant at bigger
values of d.

At larger values of interatom separation, the mixing in-
fidelity, I.x, generally decreases with increasing d, as the
induced forces become weaker. For ciruclar polarization, there
is a sharp drop for the infidelity with larger d. The reason is
that the used number of atoms, N = 30, is not large enough
to reach the asymptotic limit of the decay rate, yspread, for d >
0.26A, indicated by the vertical line. For d > 0.26), the sys-
tem decays faster with larger d. Consequently, the infidelity
does not have enough time to grow to the same level as for
smaller d. This is especially observed if the chosen threshold
is increased or decreased from 2%. For linear polarization, the
infidelity at small d reaches its maximum and saturates even
before the 1% decay time. Atd > 0.24X,, the infidelity is still
growing and only reaches saturation at a later time. For linear
polarization, all convergent points (with respect to number of
vibrations allowed) saturate at the 2% threshold except for the
largest d, which saturates at 4%. For circular polarization, the
infidelity saturates at the 4% or 8% threshold for convergent
points. Nevertheless, the infidelity only grows within the same
order of magnitude shown in Fig. 7, and thus the 2% threshold
suffices to capture the qualitative features.

The above analysis suggests optimal operating parameters
for the ring configuration. First, perpendicular polarization
is preferable to circular polarization because the vibrational
effects are insignificant compared to the decay for a bigger
range of d. If circular polarization is to be used, larger values
of d are needed to minimize the vibrational effects. Subse-
quently, more atoms (>30 in the above case) are needed to
reach the asymptotic spread decay.

The analysis in this section is performed under the same
restriction in Fig. 6: at most one direction of one atom is in the
n = 1 state at a time, which we validate using a two-vibration
restriction. At large values of d, the forces are small, resulting
in the n = 1 population being relatively small. In this case, the
one-vibration restriction agrees well with the two-vibration
restrictions as seen in Fig. 7. At smaller d where the in-
duced forces are large, there is a mismatch between the one-
and two-vibration restrictions. Consequently, more vibrations
need to be included in the simulations to get accurate results.
Nevertheless, high-infidelity situations are not expected to be
relevant for practical applications.

IV. CONCLUSION

In this work we expanded on the calculations of the decay
mechanism and the recoil energy introduced in Refs. [28,32]
in the limit of highly subradiant states. In the strong-trap
regime, the recoil energy is equal to one harmonic energy level
separation, 7w, which is concentrated mostly in the relative
vibrational mode of the two atoms. This recoil might cause
severe heating of the atoms that would require additional
cooling steps each time a photon is emitted from a dark state
of an atomic array [25].

We also showed that weakly trapped atoms can suffer
from the induced forces during the decay. The forces can
have detrimental effects by either deforming or moving the
motional wave function from the dark-state configuration,
leading to accelerated decay at later time ¢ > 0. In this case,

the atoms receive significant amounts of vibrational energy
from the induced forces during the decay. In a 1D waveguide,
these could be orders of magnitude bigger than the harmonic
level separation. To quantify when the induced forces become
important, we showed that for a 1D waveguide a large ratio of
the trap to the force, w; /1o, is required to maintain the expo-
nential decay and alleviate the effects of the forces. This can
be achieved by either having stronger traps or more massive
emitters.

Finally, we analyzed the effect of motion on the quality of
the subradiant states in free space. We explored the limiting
spread decay for atoms in a ring configuration, which is pro-
portional to 1y, for initial Gaussian wave functions at = 0
[1,27], and analyzed its possible dependence on interatom
separation, polarization of the transition, and isotropy of the
spread. Furthermore, we explored the infidelity and entangle-
ment entropy due to the induced forces. These quantities can
be suppressed by a stronger trap or choice of certain polariza-
tions and interatom distances that minimize the forces. These
results have implications for the design of quantum memories
that store photons in subradiant states [16] and the design of
atom array experiments.
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APPENDIX A: THREE-ATOM STATE INTERACTIONS

In this appendix, we derive a scaling relation for the de-
coherence of the atoms in the 1D waveguide assuming an
intermediate-trapping regime, where the trap is strong enough
to limit the vibrational excitations to ny,,x = 1. For atoms
with equal masses and trap frequency and separation of Ao,
the system possesses a parity symmetry that simplifies the
dynamics of the Hamiltonian in Eq. (4). This parity symmetry
is realized by reflecting the atoms (both electronic and vi-
brational) around the center of the array. For N atoms, this
is realized by swapping the electronic operators o; <> oy—;
and the vibrational operators r; <> —ry_;. This symmetry
leaves the Hamiltonian invariant, and, as a result, the Hilbert
space can be divided into two sectors that do not interact: the
sectors with odd and even parity of the combined internal and
vibrational degrees of freedom.

For three atoms in the ny,x = | approximation, there
are four allowed vibrational states: |njnyn3) € {|000),
[100), |010), |001)}. The other higher vibrational states can
be ignored because their coupling to the initial state is of
order O(n?), which is much smaller than the coupling to the
one-vibration states (of order O(n)). The one-vibration states
can be symmetrized just like for the electronic states.
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The symmetrized states are given by

|0) = 1000},

Vi) = %(HOO) +1010) + [001)),

Vo) = %0100) —2(010) + 001)),

V3) = %(IIOO) — 1001)). (A1)

With respect to the spatial parity transformation, r; <> —ry_;,
the states |0) and |V3) have even parity while the states
[Vi) and |V;) have odd parity. This can be achieved by
applying this transformation on the product states. For ex-
ample, the state |001) is sent to —|100). In this way, the
full Hilbert space breaks into two subspaces. Because we
start in the |DS;)|0) state, the relevant sector is spanned
by {IDS$1)10), |DS1)[V3), IDS2) V1), |DS2)V2), IBS) V1), |BS)
[V2)}, which have an odd parity of the full system symmetry.
The other states have even parity and do not couple to the
initial state.

In our case, there is another simplifying symmetry. Since
the forces are pairwise equal in magnitude and opposite in
direction, the net force on all atoms is zero, resulting in the
center-of-mass vibrational mode (|V})) separating from the
relative modes (|V») and |V3)). In this way, the dynamics of
the odd sector could be reduced to a Hamiltonian which in the
{IDS$1)10), [DS1)|V3), |DS2)|V2), |BS)|V2)} basis is (to n order)

0 m m =
Ub 2 {)E 6

Hoaa WA

o ﬁ ot o, 0 (A2)
2
P00 e

Note that the terms responsible for the decay of the subradiant
states are omitted because they are of order (n%). Because
we are interested in the early time dynamics, the decayed
population is small and can be ignored.

A simpler model can be obtained from ignoring the bright
state that only populates in a tiny fraction and decays at a fast
rate as in Fig. 5. The other states |[DS})|V3), [DS,)|V,) behave
symmetrically with respect to the |DS;)|0) state and can be
further symmetrized to obtain the two-level Hamiltonian in
the {|DS;)|0), |S)} basis where |S) is the symmetric superpo-
sition of |DS1)|V3) and |DS5)|V,):

Hyee (0 30
h Yo w )’

This simple Hamiltonian captures the essential entanglement
dynamics in early time. It resembles the Rabi oscillation
model where w;, is the detuning, and nyy is the driving Rabi
frequency. When the driving Rabi frequency is small the
population of the exited state in early time can be found
analytically to be

2.2 Q

Yo o254
Ps(t)~ 4 sin” [ — ),
5() ? ! (2)

(A3)

(A4)

where Q = vn?y} + w? is the beating frequency. € can
be approximated as w; for small 7, in the intermediate- or

strong-trap regime. Since the state |S) has equal amounts of
DSy and DS, that are in different vibration modes, the system
becomes entangled. The amount of population in |DS,) is
given by Pps, (1) = Ps(t)/2.

The resulting fidelity is approximately equal to the clas-
sical population fidelity ), /pig; for two distributions p;
and ¢;. In our case we have two states starting from p; =
1, p» =0, and at time ¢ the populations become g; = 1 —
g2, q» = Ps(t). The resulting fidelity is thus /1 — Ps(¢) in
early time. For a small excited population, the infidelity
becomes approximately Ps(¢)/2, which is the case for the sim-
ulation in Fig. 5, where the infidelity is close to 2% at its peak.
The resulting entanglement entropy is also approximately pro-
portional to Ps(t), although with a different proportionality
factor.

APPENDIX B: EQUATIONS AND APPROXIMATIONS
FOR A CIRCULAR ARRAY OF ATOMS

In this appendix, we analyze the atoms on the ring. The ring
is assumed to be in the x-y plane with atoms polarized linearly
or circularly in the z direction. The locations of the centers of
the traps are at R; = (X;,Y;) = (r cos(j@), rsin(j6)), where
0 = 27 /N and the radius r is equal to d /(2 sin(6/2)).

Under intermediate-trapping conditions, the forces are
strong enough to populate the first vibrationally excited state,
n = 1, but not strong enough to populate higher vibrationally
excited states. Therefore, we obtain a computationally feasible
Hilbert space by restricting the vibrations to at most one atom
vibrating in one direction at a time. In this case, a vibrationally
excited |V) € {a;i|0)}, where i is an index for the atoms and [
is either x, y, or z. Because the induced force is collinear with
the atom-atom separation line, the out-of-plane z component
will be suppressed by a n/(kod) factor compared to the in-
plane x-y component, and is simply ignored in the following
analysis. The one-vibration restriction breaks down when the
induced force is large, but helps to qualitatively estimate its
effect. For the following analysis, the atoms have infinite trap
and zero spread in the z direction, but we then analyze the
effect of inclusion of the z spread.

With either polarization described above, the Green’s func-
tion in Eq. (8) simplifies to a function of the phase: g(r) =
f(¢), where ¢ = kor = kov/x> + y*. The decay rate and ef-
fect of the induced force can be estimated by analyzing the
relevant matrix elements of the interaction Hamiltonian in the
LD regime. The initial decay rate (and the Lamb shift) can be
computed from the matrix elements:

(g, 0lo; Hinio [ |8, 0)

- —h{f(qﬁi,-) + nz[f”wi,-) + fff-")“, B1)
ij
for the ground vibrational states. Here, ¢;; =

koy/(X; —X;)? + (Y; — Y;)%. Note there is an exception to
the above rule for i = j, in which case the matrix element is
equal to —ifyy/2. There is a contribution from the pointlike
atoms (the first term) and the spread of the atoms of order 5>
(the second term). The force on the atoms is related to the
matrix elements connecting the ground and first vibrational
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states, which are given by
. koXi; f'(¢ij)

(8. 010} @k Hino 18, 0) = —Ti
¢ij

(Sik — ),
(B2)

and similarly for the y direction. The form of the function
f is relatively complicated, so we calculate the derivatives
numerically using finite differences.

The system of the atoms on the ring exhibits a high degree
of symmetry (dihedral group of order N). As a result, it can be
shown that the eigenstates of the system are spin waves when
restricting to the n = 0 subspace [46]. For example, for even
N the most subradiant state |DSy,) is a spin wave with wave
number kpi, = 7 /d:

L
JN

The eigenvalue associated with this state results in the mini-
mum decay rate of the system:

N
> exp(ikminjd)o; g, 0).  (B3)
j=1

|DSmin> =

2
- Im(DSmin |Hint |DSmin>

Ymin =

N y ‘
= 22(_1)j1m{f(¢1j) + nz[f”(cﬁnj) + f;qfl")] }
J=1 J

(B4)
As found out in Ref. [15], the contribution of the pointlike
atoms (first term) decreases exponentially with the number

of atoms. The contribution from the spread of the atoms is
given by

N , .
Vs = 21 Z(“)jlm[f”wu) +1 (dm)]
=2 &1
N—oo 2
~ Cyn’, (BS)

which is independent of d at large N. C is a proportionality
constant that depends on the polarization. For a transition

dipole moment that is perpendicular to the plane of the ar-
ray, § = 2, C = 0.8. For a circularly polarized transition, § =
(X 4 1)/+/2, C = 0.6. For other polarization directions in the
x-y plane, it was numerically checked that C = 0.6, although
the spin waves are no longer the true eigenstates because the
circular symmetry is violated. The constancy of the decay rate
at large N and its independence of d is due to the form of the
Green’s function and its derivatives. These functions have a
dominant term at large atom separation, R;;, which is a sinc
function, sin(¢;;)/¢;;. The alternating sum in Eq. (B5) of this
function has a flat behavior at large N for all d < 0.5X.

The above analysis assumes no z spread. However, in real-
istic scenarios, the atoms have a finite spread in the z direction,
which can also happen to be different from the spread in the
x-y plane. This z spread has a negligible effect on the forces,
but affects the limiting decay rate. We denote the LD param-
eter in the z direction as 1., while the LD parameter in the
x-y plane is n = ny,. The limiting decay becomes relatively
complicated. To illustrate, for § = Z the limiting decay rate
can be expanded as

Voread =2 Y _ (=1 [nhm(¢n)) + (1)), (B6)
j=2

where if we denote ¢ = cos(x), s = sin(x), the functions m
and n are given by

—1.5x% — 3.0x%c + 7.5x%s + 13.5x¢ — 13.5s
e

1.5x3¢ — 6.0x%s — 13.5xc + 13.5s

x> ’

m(x) =

)

n(x) = (B7)

In this case, the function m contributes a factor of 0.8, while
the function n contributes a factor of 0.2 to the decay rate.
Thus, for isotropic spread, the proportionality constant C be-
comes 1, while for n, = 2n,,, C = 1.6.
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