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Spatial averaging for light reflection and transmission through cold-atom arrays
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We theoretically and computationally investigate the role that the spatial spread of atoms plays in the
transmission and reflection of weak light from atom arrays. In particular, we investigate whether coherent
wave functions for the atoms’ positions leads to different results from a thermal distribution with the same
spatial spread. We find that the coherence is not relevant when the light is weak and the electronic states
evolve on timescales shorter than the oscillation period of the atoms in their traps. Full numerical calculations
and derivations using the sudden approximation show that reflection and transmission agree with the simple
averaging over atom positions for these conditions. For parameters outside these restrictions, the simple spatial
averaging may lead to inaccurate results.
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I. INTRODUCTION

Inspired by theoretical and experimental advances, several
groups have investigated scenarios involving light interacting
with many atoms in regular arrangements [1–69]. Exciting
possibilities arise when the separation of atoms is less than a
wavelength of the light. Most of the theoretical investigations
assumed the atoms were on a perfect grid with zero spatial
deviation [1–55]. While this was useful for exploring basic
concepts, it was not possible in practice: the wave function
for the center-of-mass motion must at least have a spread
from the ground-state wave function. For atoms not cooled to
the motional ground state, the spread in positions was larger
and many treatments averaged over spatial distributions in
addition to treating the perfect lattice [56–69]. There was
a wide range of applications for arrays of atoms including
clocks [1–3], mirrors, light manipulation, and excitations on
a lattice [4–43,58–67], collective Lamb shift [56], and quan-
tum information applications [44–55,57]. Recent overviews
covered important aspects of atom arrays [68,69].

Some of the calculations treated spatial deviations by fixing
the atoms in space with random positions given by the spatial
distribution function and averaging over the possible posi-
tions. While this prescription was reasonable, there has not
been a clear derivation of how the spread of positions should
be treated, especially in the limit the atoms were cooled to the
motional ground state. Does the coherence of the vibrational
wave function require special treatment? At a technical level,
are the results the same for two cases where the spatial part
of the density matrix has diagonal ρ(x, x) the same but off-
diagonal ρ(x, x′) substantially different? The purpose of this
paper is to provide a clear derivation and numerical examples
of how to treat the spatial spread of atoms in arrays. The
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examples we give will be for when the light and atoms reach
steady state although this condition is not necessary.

For a general treatment, one of the conditions needs to
be that the atoms scatter or reflect few photons while they
evolve into the electronic steady state. If this condition is not
satisfied, the wave function or density matrix associated with
the atoms’ positions will evolve. This clearly leads to results
that do not solely depend on the positions of the atoms fixed
in space. Typically, the scattering or reflection leads to heating
the spatial degrees of freedom although special detuning and
geometry could lead to cooling. This condition can be satisfied
by decreasing the intensity of the incident light. Therefore,
except for very subradiant cases, the approximation will work
well when the one atom Rabi frequency is much less than the
one atom decay rate: � � �.

The treatment below will focus on the case where the trap
frequency ωt is much less than the decay rate of the system.
Except for very subradiant cases, this leads to ωt � �. In
typical atom traps, the trap frequency in the plane of the atom
array is different from that perpendicular to the plane of the
atom array. Often, the in-plane frequency is larger than that
perpendicular to the plane, leading to a direction dependence
to ωt . For the condition ωt � �, the largest of the frequencies
should be used. Most experimental arrangements will satisfy
this condition. We also make this restriction because smaller
ωt leads to larger spatial spreads which are more crucial to
treat correctly.

We show that within these conditions an accurate, approxi-
mate treatment of the light plus atom system is to calculate the
light properties for atoms fixed in space and then average the
light properties over the positions of the atoms weighted by
their position distribution. We use the sudden approximation
to derive this result, Sec. III, hence the condition that the
atoms do not move substantially for the duration of the light-
atom interaction. We also numerically compute the reflection
and transmission in simple cases using a full density matrix
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treatment, Sec. IV, to illustrate the accuracy of the fixed in
space approximation. The numerical treatment is the same
whether the spread in positions is from being in a thermal
state or being in one vibrational eigenstate. Restricting the
density matrix calculation to the ground vibrational state is
a different approximation that can lead to qualitatively wrong
changes in the properties of the light (transmission, reflection,
etc.). For example, we describe a case in Sec. IV where even
if the recoil energy is 3000 times smaller than the vibrational
energy spacing, performing a density matrix calculation with
all atoms restricted to the vibrational ground state leads to
qualitatively wrong changes in the light properties.

II. METHOD

In this section, we describe the method used for the nu-
merical calculation. In addition, there are descriptions of the
interaction of many atoms with light in a three-dimensional
vacuum and in a one-dimensional waveguide.

A. Full density matrix

To account for the motion of the atoms as well as the
evolution of their internal states, we will use a density matrix
formalism which expands the density matrix in a basis of
vibrational states for the atoms’ motion and internal states.
We will use the formalism described in Ref. [70] with one
exception described in the Appendix. Also, we will slightly
change some of the notation to avoid confusion of the role of
indices.

The calculations will be for N atoms that are trapped in
harmonic wells. To simplify the role of the electronic states,
we will only consider two electronic states for each atom,
j: |g j〉 and |e j〉. These lead to the definition of electronic
operators for atom j,

ê j ≡ |e j〉〈e j |, σ̂−
j ≡ |g j〉〈e j |, σ̂+

j ≡ |e j〉〈g j |. (1)

The position for the center of the atom trap for atom j will
be denoted R j and the operator for the atom position relative
to the trap center will be denoted r j . We will assume that
the trap frequency could be different for different directions,
but we will denote the angular frequency generically by ωt .
The harmonic oscillator eigenstate for atom j will be denoted
|n j〉; where necessary, the eigenstate for each of the x, y, z
directions will be noted. The light has a wave number k0;
when the atoms interact with a plane light wave the wave
vector will be k0. Because the atoms interact through the
electromagnetic field an important position operator is k0r j

which, for each direction, has the form η(â j + â†
j ) with â j the

vibrational lowering operator for the jth atom. The constant
η = k0

√
h̄/(2Mωt ) with M the atom’s mass; we are interested

in the Lamb-Dicke regime η � 1 so the spread in positions
can be less than the wavelength.

We numerically solve the density matrix equation

d ρ̂

dt
= 1

ih̄
[Ĥ , ρ̂] + L(ρ̂), (2)

with ρ̂ the density matrix of the system, Ĥ is the Hamiltonian,
and L(ρ̂ ) is the Lindblad superoperator. The Hamiltonian

consists of three terms

Ĥ = Ĥ0 + ĤL + Ĥdd , (3)

where the Ĥ0 is for the atom traps plus the energy of the
electronic states, the ĤL is for the laser-atom interaction in the
rotating wave approximation for an incident plane wave with
wave vector k0, and Ĥdd is for the dipole-dipole interaction.
These terms have the following form:

Ĥ0 = h̄
∑

j

[ωt (â
†
j â j + 1/2) − �ê j], (4)

ĤL = h̄
∑

j

�

2

(
eik0(R j+r j )σ̂+

j + e−ik0(R j+r j )σ̂−
j

)
, (5)

Ĥdd = h̄
∑
j �= j′

�̂ j j′ σ̂
+
j σ̂−

j′ , (6)

where ωt is the trap frequency, � is the detuning of the laser
from the transition � = k0c − (Ee − Eg)/h̄, � is the Rabi
frequency, and �̂ j j′ is the position operator-dependent part of
the dipole-dipole interaction, Eq. (8). If the incident light is
different from a plane wave (for example, a focused beam),
then the spatial terms in Eq. (5) are modified. The Lindblad
superoperator term is

L(ρ̂) =
∑

j j′

(
σ̂−

j �̂ j j′ (ρ̂)σ̂+
j′ − 1

2
{σ̂+

j′ σ̂
−
j �̂ j j′ , ρ̂}

)
, (7)

where {Ô1, Ô2} = Ô1Ô2 + Ô2Ô1 for any two operators and
�̂ j j′ is the position operator-dependent part of the dipole-
dipole interaction, Eq. (9).

For atoms interacting in three dimensions far from
any surfaces, the Hamiltonian part of the dipole-dipole
operator is

�̂ j j′ = �

2

[
n0(s j j′ ) + 3(ŝ j j′q)(ŝ j j′q∗) − 1

2
n2(ŝ j j′ )

]
, (8)

where the n	(x) are the Neumann functions, q is the unit vector
for the dipole orientation, s j j′ = k0|R j + r j − R j′ − r j′ | and
ŝ j j′ is the unit vector for the atom difference. Because of the
presence of the r j and r j′ , the �̂ j j′ is an operator that can
change the vibrational quantum numbers of atoms j and j′.
The Lindbladian part of the dipole-dipole operator is

�̂ j j′ = �

[
j0(s j j′ ) + 3(ŝ j j′q)(ŝ j j′q∗) − 1

2
j2(ŝ j j′ )

]
, (9)

with the j	(x) the spherical Bessel functions. Using h(1)
0 (s) =

eis/[is] and h(1)
2 (s) = (−3i/s3 − 3/s2 + i/s)eis j	(s) =

Re[h(1)
	 (s)] and n	(s) = Im[h(1)

	 (s)]. Similar to the �̂ j j′ ,
the �̂ j j′ is an operator due to the presence of the r j and r j′ and
can change vibrational quantum numbers. The trickiest part is
the first term of Eq. (7) where the r j acts from the left on the
density matrix while the r j′ acts from the right on the density
matrix. See the more detailed discussion in Refs. [70–72].

For atoms that can only emit light into or absorb from a one
dimensional wave guide, we will take the Hamiltonian part of
the dipole-dipole operator as

�̂ j j′ = �

2
sin(k0|Xj + x j − Xj′ − x j′ |), (10)
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and

�̂ j j′ = � cos(k0[Xj + x j − Xj′ − x j′ ]). (11)

While these equations are simpler than those for light in three
dimensions, they lead to the same basic physical processes:
transmission and reflection of light, vibrational excitation or
deexcitation, and so on.

We solve for the time-dependent density matrix using the
eigenstates of the Ĥ0 operator, Eq. (4). We will define the state
|α〉 to be the tensor product of individual atom eigenstates.
For atom j, we use i j to be 0 or 1 for |g j〉 or |e j〉 and |n j〉 the
vibrational state of atom j which will be limited to the range
0 to nmax = Nvib − 1. This gives

|α〉 ≡ |i1〉 ⊗ |n1〉 ⊗ |i2〉 ⊗ |n2〉 ⊗ · · · , (12)

where there are (2Nvib)N states altogether. We define the den-
sity matrix as

ρ̂ =
∑
αα′

|α〉ραα′ 〈α′|. (13)

To evaluate an operator Ô acting on ρ, we use the
representation

〈α|Ôρ̂|α′〉 =
∑
α′′

〈α|Ô|α′′〉〈α′′|ρ̂|α′〉, (14)

which is relatively efficient because the operators in Eq. (2)
are extremely sparse.

B. Transmitted and reflected light

Since we are interested in the effect of atoms’ positions
on the interaction of light, we also need to have a form for
the operators that can be evaluated to compute the intensity
of light at a position away from the atoms. The transmitted
and reflected light in the steady state is somewhat undefined
because, for most cases, the interaction with the light will lead
to the atoms’ motion heating with time. Strictly speaking,
there is no steady state. However, in most experiments, it is
assumed that the light is weak enough that the internal states
of the atom reach steady state before vibrations appreciable
change. Thus, we will investigate the reflection and transmis-
sion on this timescale by choosing the Rabi frequency to be
much smaller than � in most of our examples.

For light in three dimensions, the calculation of the elec-
tromagnetic flux in the direction μ at position R involves an
electric-field-type operator with a form

Ê(R) = Ecl (R) +
∑

j

σ̂−
j gE (R − Rj − r j ), (15)

where gE (R) ∝ [q − R̂(R̂ · q)]h(1)(kR) in the far-field- and a
magnetic-field-type operator with a form

B̂(R) = Bcl (R) +
∑

j

σ̂−
j gB(R − Rj − r j ), (16)

where gB(R) = R̂ × gE (R) in the far field. The E cl(R) and
Bcl (R) are proportional to the classical electric and magnetic
fields from the laser. The flux in the direction μ then has the
form

F ∝ μ · Tr[Ê
†
(R) × B̂(R)ρ̂ − B̂

†
(R) × Ê(R)ρ̂]. (17)

There are simpler equations for the far field involving the sum
over the dipoles with appropriate phase factors. Because there
are position operators in this expression, there are density ma-
trix terms off diagonal in vibrational quantum numbers which
contribute. The transmission and reflection probabilities can
be calculated from the flux.

For light in one dimension, the equations simplify so that
the operator

τ̂ (x1, x2, . . .) = 1 − i
�

�

∑
j

σ̂−
j e−ik0 (Xj+x j ), (18)

leads to the transmission probability

T = Tr[τ̂ †τ̂ ρ̂] = Tr[τ̂ ρ̂τ̂ †], (19)

and the operator

θ̂ (x1, x2, . . .) = −i
�

�

∑
j

σ̂−
j eik0(Xj+x j ), (20)

leads to the reflection probability

R = Tr[θ̂†θ̂ ρ̂] = Tr[θ̂ ρ̂θ̂†]. (21)

Note that there are the position operators x j in both the
transmission and reflection probability which can lead to con-
nections with off-diagonal vibrational states in the density
matrix.

III. SUDDEN APPROXIMATION

The sudden approximation can be quite accurate when the
electronic states evolve on timescales much faster than the
oscillation period of the atoms. Also, the atoms need to scatter
or reflect few enough photons that they are not appreciably
accelerated from the recoil. The sudden approximation was
used in Refs. [71,72] and verified in Ref. [70] for photons
interacting collectively with many atoms.

To explore the sudden approximation, we first transform
the density matrix from the vibrational basis into the position
basis using the vibrational wave functions

〈r1, r2, . . . , |ρ̂|r′
1, r′

2, . . . , 〉
=

∑
n1,n2...

∑
n′

1,n
′
2...

ψn1 (r1)ψn2 (r2) . . . 〈n1|〈n2| . . . 〈nN |ρ̂|n′
1〉|n′

2〉

. . . |n′
N 〉ψn′

1
(r′

1)ψn′
2
(r′

2) . . . , (22)

with ψn j (r j ) the vibrational wave function for atom j. At
this point, there are no approximations. This form is much
more difficult to use in a fully numerical treatment because
many more points in real space, r1, r2, . . ., are required for
converged calculations compared to the vibrational states of
Eq. (13). The trapping Hamiltonian in Eq. (4) leads to co-
herences between r j and r′

j and the transfer of amplitude
between different points in the 3N space. To be clear, from
completeness arguments, this formulation must give the same
result when converged as using the vibrational basis functions,
Eq. (13).

The basic idea for the sudden approximation is to disre-
gard the trapping potential and atom kinetic energy in the
Hamiltonian. This still leads to a density matrix with off diag-
onal coherence for the positions r j and r′

j in the left and right
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sides. Also, the amplitudes at different positions evolve differ-
ently due to the position dependence of the photon-atom and
dipole-dipole interactions. However, it does not involve am-
plitudes moving to different positions, and thus, calculations
for separate values of r1, r2, . . . , r′

1, r′
2 . . . can be performed

independently. This method can be used to approximately
calculate the recoil delivered to the atoms, giving accurate
values when ωt � �. In fact, it is precisely these types of
terms investigated in Refs. [71,72] that lead to changes in
the average kinetic energy of the atoms which was verified
in Ref. [70].

The position representation of the density matrix leads
to simple forms of the flux, transmission probability, and
reflection probability. To see this, examine the expression
for the transmission probability, Eq. (19), in the position
representation

T =
∫

dx1dx2 . . . Tr[τ̂ †(x1, x2, . . . , )τ̂ (x1, x2, . . . , )

× 〈x1, x2, . . . , |ρ̂|x1, x2, . . . , 〉]. (23)

There are no approximations in this expression.
Suppose the system starts in the ground electronic state

with any type of positions coherence in the density matrix

〈x1, x2 . . . |ρ̂|x′
1, x′

2, . . .〉 = ρ0(x1, x2, . . . , x′
1, x′

2 . . .)|G〉〈G|,
(24)

with |G〉 is all electronic states in the ground state and the
ρ0 function encapsulating any positional coherences. Within
the sudden approximation, the ρ0 does not change and the
electronic part of the density matrix evolves depending on the
positions. Once the system reaches steady state, the electronic
part goes to

|G〉〈G| → ρ̂SA(x1, x2, . . . , x′
1, x′

2, . . .), (25)

with the sudden approximation density matrix the same as
that calculated in Refs. [71,72]. Using this in the expressions
for the flux, transmission probability, or reflection probability
leads to a conceptually simple reduction. For example, the
transmission probability can be written as

T =
∫

dx1dx2 . . . Tr[τ̂ †(x1, x2, . . .)τ̂ (x1, x2, . . .)

× ρ0(x1, x2, . . . , x1, x2, . . .)ρ̂SA(x1, x2, . . . , x1, x2, . . .)]

=
∫

dx1dx2 . . . P(x1, x2, . . .)TSA(x1, x2 . . .), (26)

where P(x1, x2, . . .) = ρ0(x1, x2, . . . , x1, x2, . . .) is the initial
probability density for finding atom 1 at position x1 and atom
2 atom position x2 . . . and the sudden approximation transmis-
sion probability

TSA(x1, x2 . . .) = Tr[τ̂ †(x1, x2, . . .)τ̂ (x1, x2, . . .)

× ρ̂SA(x1, x2, . . . , x1, x2, . . .)] (27)

is the probability for photon transmission if atom 1 is at
position x1 and atom 2 is at position x2 and so on. A sim-
ilar treatment of the flux and reflection probability leads to
the same form: compute the relevant quantity (flux, trans-
mission probability, reflection probability, etc.) for atoms

fixed in space and average over their possible positions from
P(x1, x2, . . .).

Although this result is simple, it does lead to some-
what surprising conclusions. For example, suppose all atoms
start in the vibrational ground state and the parameter η =
k0

√
h̄/(2Mωt ) is tiny. Since the recoil energy over the vibra-

tional spacing is η2, one might expect that one could use the
approximation that the atoms are in the ground state through-
out the evolution. As will be seen in the Sec. IV, this can
qualitatively miss the changes due to the spread in positions.

Evolution timescale

The discussion of the sudden approximation depends on
the duration of the light-atom interaction. Sometimes the situ-
ation involves the properties of the light once the atoms reach
steady state in which case the duration is until the electronic
states stop evolving. Sometimes the properties are required
before the steady state is reached, which would shorten the
duration. The accuracy of the sudden approximation requires
the atoms to be fixed in space for this duration. By this we
mean, the atom positions would not be expected to change in
an important way on the timescale of the measurement of the
light properties.

Weak light, � � �, leads to the simplest case. For steady-
state properties, the electronic states will require several
lifetimes. The relevant lifetime for light coupling to superra-
diant states is less than 1/� while light coupling to subradiant
states leads to relevant lifetimes larger than 1/�. For this case,
the condition will often be (10–100)/� � 1/ωt depending on
the extent of subradiance.

If the light is intense and/or the η becomes large, the recoil
of the atoms or dipole-dipole forces can also become impor-
tant. The recoil or the dipole-dipole interactions could cause
the atoms to accelerate so that the atom velocity increases
substantially. The atom separation divided by the increased
speed then becomes the comparison timescale, not 1/ωt .

Lastly, we restrict the atoms to be cold. If the atoms could
be initially moving quickly, i.e., higher temperature, then the
electronic states need to evolve on timescales fast compared
the atom separation divided by the speed of the atoms. For this
case, Doppler effects could lead to the collective light-atom
interaction being relatively uninteresting.

IV. RESULTS

While the derivation of the previous section clearly shows
that for the sudden approximation case, the proper procedure
is to compute the flux, reflection probability, or transmission
probability by fixing the atoms in space and then averaging
over their positions, it is interesting to numerically examine a
case that can show this result. In particular, we want to show
that using the approximation that all atoms are in the ground
vibrational state throughout the calculation is a qualitatively
different, and sometimes inaccurate, approximation.

For atoms in free space, N  1 to clearly distinguish be-
tween large-scale transmission and reflection. This leads to
very large calculations because there will need to be at least a
few vibrations for every atom. For N atoms with two internal
states and nmax = Nvib − 1 the maximum vibrational quantum,
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Δ/Γ

FIG. 1. The transmission T and reflection R probabilities for the
one-dimensional case discussed in the text. For the case where the
separation d of the atoms is exactly 0.9λ, the red solid (blue long
dash) line is the R (T ) probability. When the average separation 〈d〉
is 0.9λ, but the positions are averaged over the vibrational ground
state, the black dotted (green dash) is the R (T ) probability.

there are [2Nvib]2N terms in the density matrix. Fortunately, the
one-dimensional example can have transmission and reflec-
tion probabilities that strongly depend on the atom separations
for two atoms when the average separation is near an integer
number of wavelengths. This allows a fully numerical simula-
tion with modest computational resources.

The one-dimensional case with two atoms near an integer
wavelength separation has a subradiant interference feature
leading to a relatively sharp transmission peak. The position
and width of the transmission peak depend strongly on the
actual separation so a spread in atom positions can lead to a
clear change.

The results in Figs. 1 and 2 are for two atoms interact-
ing through a one-dimensional wave guide, Eqs. (10) and
(11). To ensure that we satisfied the conditions for the sud-
den approximation, we chose somewhat extreme parameters:
� = 2π10 MHz, � = 10−4�, λ = 3.1 mm, d = 0.9λ, M =
1.6605 × 10−28 kg, ωt = 103 s−1. This leads to η � 0.036
and a recoil energy over vibrational spacing of η2 � 0.0013.
Because there are two atoms in their ground vibrational state,
the standard deviation of the separation is σ = √

h̄/(Mωt )
leading to σ/λ = η/(π

√
2) � 0.0081. Figure 1 compares the

transmission T and reflection R probabilities versus detun-
ing for the perfect separation and from averaging over the
positions of the atoms in their vibrational ground state. For

0.0

0.2

0.4

0.6

0.8

1.0

0.20 0.25 0.30 0.35 0.40 0.45 0.50

P

Δ/Γ

FIG. 2. Same as Fig. 1 but also showing the results of the re-
stricted quantum calculation with nmax = 0 (purple solid square for
T , empty pink square for R) and the converged quantum calculation
restricted with nmax = 4 for both atoms (orange solid circle for T ,
maroon empty circle for R).

most of the range of detuning � averaging over the atoms’
positions has little effect. The largest effect from averaging is
near � = 0.36� where the interference leads to a sharp peak
in the transmission probability. The effect is large for that
detuning because the position and width of the transmission
peak strongly depends on the value of the separation when the
separation d ∼ λ.

Figure 2 is the same plot over a smaller range of detuning
with the results from two full quantum calculations, Eqs. (19)
and (21), with a different number of vibrational states. The
quantum calculation that restricted all vibrations to be in the
ground state, nmax = 0, has the purple solid square for T
and the empty pink square for R. These values are in decent
agreement with the calculation that does not average over the
atoms’ positions. However, the transmission plus reflection
probabilities for this approximation only adds up to 0.990
at � = 0.36� indicating there is a lack of convergence. By
increasing nmax, we can demonstrate convergence of the quan-
tum calculation. In Fig. 2, the nmax = 4 results are orange
solid circle for T and maroon empty circle for R which are
in excellent agreement with the simple spatial averaging. The
largest difference is near � = 0.36�. At this value of de-
tuning, the sum of reflection and transmission probabilities
give 1 − R − T � 4.6 × 10−7, and the difference between the
simple spatial averaging and the quantum calculation of the
transmission probability was ∼3 × 10−6. This demonstrates
that, even though the ratio of recoil energy to vibrational
energy spacing is tiny, η2 ∼ 0.0013, one cannot restrict the
calculation to the vibrational ground state.

We perform calculations for d = 0.95λ and ωt = 4 ×
103 s−1 with everything else kept the same. This decreases
the change from integer lambda spacing by a factor of 2
from 0.1 to 0.05 which makes the subradiant state lifetime
approximately four times longer. By increasing ωt by a factor
of 4, the η decreases by a factor of 2. This keeps the σ/�λ

the same. We find the same trends as in Fig. 2 with the
nmax = 0 in good agreement with the d = 0.95λ curve and the
nmax = 4 in excellent agreement with the spatially averaged
results. This case has a larger change in probabilities due to
averaging: the maximum for T after averaging is � 0.842.
The nmax = 0 calculation has a maximum for T of 0.98.
Note that decreasing η means the ratio of recoil energy to
vibrational energy spacing decreased by a factor of 4 to η2 �
3.3 × 10−4 which might make it even more surprising that
the nmax = 0 calculation gets the change in probabilities so
wrong.

Changing the wavelength to λ = 2 mm, leads to η � 0.056
and σ/λ � 0.0126. This gives a spread of positions that is
1.55 times larger than the calculations in Figs. 1 and 2 which
will lead to a larger effect from averaging. The results are
shown in Fig. 3 where it is clear that spatial averaging has
a larger effect. In the plot are shown the points for calcu-
lations with nmax = 0, 1, and 2 where it is clear that most
of the change occurs when going from 0 to 1. In fact, for
both the λ = 3.1 and 2 mm calculations, the nmax = 1 results
are good enough to reach better than 1% accuracy. For the
2-mm calculation at � = 0.36�, going from nmax = 0 to 1
to 2 gives 1 − R − T going from 2.4 × 10−2 to 2.3 × 10−3

to 3.7 × 10−4 and an error in T going from 8.0 × 10−2 to
−6.4 × 10−3 to 5.4 × 10−4.
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FIG. 3. Similar to Fig. 2 but for λ = 2 mm which increases the
relative size of the averaging region. The red solid (blue long dash)
line is the R (T ) probability for perfect separation while the black
dotted (green dash) spatially average the positions. The results of
the nmax = 0 (purple solid square for T , empty pink square for R),
nmax = 1 (orange solid circle for T , maroon empty circle for R), and
nmax = 2 (turquoise solid triangle for T , empty green triangle for R).

We repeat the calculations that use λ = 2 mm but with
three atoms to ensure there was nothing special about the
two-atom case. Because there are more atoms, the separation
does not need to be as close to an integer wavelength to
get sensitivity to the atom positions. In Fig. 4, we show the
transmission and reflection probability versus detuning for
three atoms with average separation of d = 0.85λ. The line
and point types are the same as Fig. 3. As with the previous
plot, these show the very strong error for the calculation with
nmax = 0 and progressive convergence toward the spatial aver-
aging result with increasing nmax. At � = 0.36�, going from
nmax = 0 to 1 to 2 to 3 gives 1 − R − T going from 6.3 × 10−2

to 3.1 × 10−3 to 7.7 × 10−4 to 1.3 × 10−4 and an error in
T going from 5.4 × 10−2 to −5.3 × 10−3 to 2.0 × 10−4 to
−6.6 × 10−5.

The sudden approximation can be made to fail by having
the trap frequency ωt increase. However, changing the trap
frequency alone causes other basic parameters to change.
Importantly, increasing ωt decreases the spread of the wave
function. One could keep the spread fixed by inversely chang-
ing the mass, M. For example, increasing ωt by a factor of 10
and decreasing M by a factor of 10. Another method would
be to change � and � keeping their ratio fixed. Both meth-
ods lead to the same reflection and transmission probabilities
when ωt/� is the same in each method. Figure 5 shows the
result for λ = 2 mm and η � 0.056. The ωt = 105 and 106 s−1

give nearly the same result as the previous case where ωt =
103 s−1 which closely matches the spatial average. However,
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FIG. 4. Same as Fig. 3 but for three atoms with a separation of
d = 0.85λ.
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FIG. 5. Similar to Fig. 3 but for different ωt with the M in-
versely changed to keep σ = √

h̄/(Mωt ) unchanged. The results of
the nmax = 4 for ωt = 105 s−1 (orange solid circle for T , maroon
empty circle for R), 106 s−1 (purple solid square for T , empty pink
square for R), and 107 s−1 (turquoise solid triangle for T , empty green
triangle for R).

the ωt = 107 s−1 result is substantially different. For this trap
frequency, the decay time, 1/� is still a small fraction of
the trap period 2π/ωt . However, the proper comparison is
between the trap period and the lifetime of the subradiant
excitation which are comparable.

The sudden approximation also can be made to fail for
larger values of the Rabi frequency, �. We repeat the calcula-
tions for the parameters of Fig. 3 but with � = 10−3, 0.01, and
0.1�. All of these cases have �  ωt , and, for the fixed atom
calculations, lead to steady-state results for times much less
than 1/ωt . Except for the � = �/10 case, the simple spatial
averaging gives an excellent approximation to the converged
vibrational calculation. However, the � = �/10 case gives
qualitatively different results between the simple spatial av-
eraging and the converged vibrational calculation because the
atoms substantially shift positions under the radiation pressure
from the reflected and scattered photons.

V. SUMMARY

We explore the role that spatial averaging plays in the
reflection or transmission of photons through atom arrays. In
experiments, the atoms will be held in space using trapping
lasers leading to a spread in atom positions which affects the
transmission and reflection properties. We envision situations
where the light intensity is low enough that the trap energy of
the atoms hardly changes.

Using the sudden approximation and fully numerical cal-
culations, we show that simply averaging the reflection and
transmission over the atom positions is accurate when the
trap period is much larger than the evolution timescale
of the electronic states. This approximation breaks down when
the trap period is comparable to or shorter than the electronic
state evolution timescale or for high intensity where the atom
velocity and position change due to radiation pressure or
dipole-dipole forces.
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APPENDIX: EVALUATION OF VIBRATIONAL
MATRIX ELEMENTS

The differential equations for the density matrix requires
the evaluation of matrix elements of complicated functions
involving different vibrational levels. In the limit that η is
small, these matrix elements are often evaluated using a power
series technique. For example, evaluating a matrix element of
a function of the operator x̂ could use an approximation like

〈n|F (X + x̂)|n′〉 = F (X )〈n|n′〉 + F ′(X )〈n|x̂|n′〉, (A1)

which stops at first order in the expansion. A better approx-
imation would continue to second (or higher) order in x̂.
However, when F is a complicated function, the evaluation of
higher derivatives can be complicated and are often discarded
for third and higher order.

We use a discrete variable method for evaluation of matrix
elements of complicated functions [74]. The idea is to find the
eigenvalues and eigenvectors of the matrix of the x̂ operator
and use those to evaluate the matrix elements. For a finite basis
set from 0 to nfin, find

nfin∑
n′=0

〈n|x̂|n′〉Un′β = Unβxβ, (A2)

where U is the unitary matrix of eigenvectors and xβ are the
eigenvalues. The matrix elements are approximately given by

〈n|F (X + x̂)|n′〉 �
∑

β

UnβF (X + xβ )U †
βn′ , (A3)

where the accuracy increases for larger nfin.
There are many advantages of this method of which we

will give three: (1) the computation of the derivatives of F
is unnecessary; (2) if F is a unitary operator, the resulting
matrix will be exactly unitary if nfin matches the nmax in the
calculation; and (3) for harmonic oscillator basis functions
and the x̂ operator, the 〈n|x̂|n′〉 is tridiagonal leading to the
equivalent of high-order Taylor series expansion of F for the
small n, n′ matrix elements.
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