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Atom recoil in collectively interacting dipoles using quantized vibrational states
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The recoil of atoms in dense ensembles during light-matter interactions is studied using quantized vibrational
states for the atomic motion. The recoil resulting from the forces due to the near-field collective dipole
interactions and far-field laser and decay interactions are explored. The contributions to the recoil and the
dependence on the trap frequency of the different terms of the Hamiltonian and Lindbladian are studied. These
calculations are compared with previous results using the impulse model in the slow-oscillation approximation.
Calculations in highly subradiant systems show enhanced recoil indicating that recoil effects cannot be ignored
in such cases.
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I. INTRODUCTION

The study of collective dipole-dipole interactions has
progressed significantly since Dicke pioneered the idea in
1954 [1–12]. There have been many recent innovations us-
ing collective interactions in coherent quantum control and
quantum information [13–20]. As an example, atom arrays
which are densely packed have been shown to have high
reflectivity [21–23]. But as the atoms get closer and denser,
the forces due to the collective interactions become larger,
causing the internal states to become entangled with the vibra-
tional motion of the atom. This causes unwanted decoherences
to arise in the system. There is a need to better understand the
forces involved with the collective dipole interactions and the
role that recoil plays in the coherence of the system.

These questions motivated us in Refs. [24,25], in which we
studied the recoil in the atoms in light-matter interactions in
densely packed ensembles and atom arrays. More specifically,
in Ref. [25], we described a model to calculate the recoil in
atoms in which the photon recoil is considered an impulsive
force. This model will be referred to as the impulse model
in this paper. It was constructed under slow oscillation, or,
equivalently, sudden approximation, where the timescales of
the atomic oscillations are much longer than the timescales
of the internal-state dynamics. This implies that the trap fre-
quencies should be much smaller than the decay rate of the
system.

Typically, the trap frequencies used are 10 to 100 kHz,
while the decay rates of electronic excitations are often around
tens of megahertz. While these trap-frequency ranges would
normally be within the sudden approximation, problems arise
when the system becomes subradiant and the collective de-
cay rates approach the trap frequencies. The results from
the impulse model also indicated that the recoil is typi-
cally proportional to the lifetime of the excitation in certain
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cases, leading to enormous recoils in highly subradiant sys-
tems. While the sudden approximation gives an intuitive
understanding of how energy is added to the center-of-mass
motion and how decoherence arises, the assumptions in the
approximation are dubious for some of the more interesting
atomic arrangements. The goal of this paper is to clarify
such ambiguous results and to extend the analysis beyond the
approximations used in Ref. [25].

The quantum harmonic-oscillator model described in this
paper calculates the recoil in collectively interacting systems
but removes the assumptions in the sudden approximation.
N atoms are assumed to be trapped in harmonic potentials
having quantized vibrational energy states. Using the density-
matrix formalism, we time evolve the combined vibrational
and internal-state density matrix to calculate the momentum
and energy deposited in the system at a later time. This model
does not have the limitation of the sudden approximation and
can be used to simulate a wide range of trap frequencies and
thus can serve as an important test of the sudden approxima-
tion. It will also provide insight into how the different terms
of the Hamiltonian and the Lindblad operator contribute to the
recoil of the atoms. We focus on the transfer of energy in the
system rather than the vibrational population as the popula-
tion in the excited states trivially decreases as the frequency
increases for the same energy transfer.

To simplify the calculations, we will work in the low-
intensity limit where there is only a single excitation in the
system; that is, only one atom can be electronically excited at
a time. This will reduce the number of internal states from 2N

to (N + 1). We also investigate only cases where the spread
of the atomic wave function is smaller than the distances of
atom separation to reduce the overlap of wave functions. This
is expected in reasonable experimental arrangements because
otherwise, the atom grid is not well defined.

This paper proceeds as follows. Section II discusses the
model and equations used. Section III A discusses the decay
and laser interaction for a single atom to illustrate the role
of recoil, and Sec. III B extends the analysis to N atoms. We
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discuss approximations to simulate a large number of atoms
in Sec. III C to calculate the recoil in arrays of atoms and
subradiant cavities. Section IV presents the conclusions and
summarizes the results and future outlook.

II. METHODS

We shall consider N atoms, each trapped in a quantum har-
monic potential with each atom having two internal electronic
states. The center of each trap will form a spatial arrange-
ment required by the experiment, for example, a square array.
Since the atoms are in a harmonic trap potential, they will
each have an infinite Hilbert space of vibrational levels. We
can limit the number of vibrationally excited states for each
atom to states n < Nvib for calculation purposes. When the
spread of the atomic wave function is small, the effects on
the harmonic-oscillator wave functions are separable across
the different directions. Hence, we can run the calculations
by choosing one oscillation direction at a time. The N atoms
together will have a combined vibrational Hilbert space of
V = (Nvib)N states. Since we are working in the low-intensity
limit and only one atom can be electronically excited at any
time, the total number of internal states is N + 1. Hence, the
total number of states is (N + 1)(Nvib)N .

The internal states will be represented by | j〉, the collective
vibrational states will be represented by |m〉, and the total
state will be denoted by | j, m〉. The internal-state index goes
from zero to N , where j = 0 represents the electronic ground
state (alternatively, |g〉) with no atom excited and j = 1 to
N represent only the jth atom being excited. The collective
vibration state |m〉 is the tensor product of all possible vibra-
tional states, i.e., |m〉 = |n1〉 ⊗ |n2〉 ⊗ ⊗|nN 〉, where |ni〉 is the
vibrational state of the ith atom. The index m goes from m = 0
to (Nvib)N − 1.

Hence, the density matrix will be represented by

ρ =
∑
j, j′

∑
m,m′

ρm,m′
j, j′ | j, m〉〈 j′, m′|. (1)

The density matrix evolves according to the equation given
by

d ρ̂

dt
= − i

h̄
[Ĥ , ρ̂] + L(ρ̂ ), (2)

where ρ̂ is the density matrix of the system, Ĥ is the effective
Hamiltonian, and L(ρ̂) is the Lindblad superoperator. The
effective Hamiltonian consists of three parts: (1) the trap po-
tential of the atoms, which is a quantum harmonic-oscillator
Hamiltonian, (2) the laser Hamiltonian, and the (3) dipole-
dipole resonant interaction.

The Hamiltonian of the trap potential is given by

Ht =
∑

j

h̄ωt

(
a†

j a j + 1

2

)
, (3)

where ωt is the trap frequency of the harmonic oscillator and
a†

j and a j are the harmonic-oscillator ladder operators for the
jth atom in the chosen direction. The mean position of the
wave function or the fixed point positions of the atoms will
be given by R j , and the spread of the atom or the position
of the atom with respect to the mean will be given by r j .

The position operator along the chosen direction is given by

s j =
√

h̄
2Mωt

(a j + a†
j ). We define the quantity κ = k

√
h̄

2Mωt
,

where the length scale for the atoms’ motion and the spread
of the atomic wave function is described by κ/k. Here, k is
the wave number of the resonant light, and M is the mass of a
single atom.

When the laser interacts with the atoms, it imparts a mo-
mentum of h̄k which will manifest in the Hamiltonian through
the position operators s j . The Hamiltonian due to the laser is

ĤL = h̄
∑

j

[
−δσ̂+

j σ̂−
j +

(
�

2
σ̂+

j eik0·(R j+r̂ j ) + H.c.

)]
. (4)

where � is the Rabi frequency, δ is the detuning, and k0 = kẑ
is the initial wave vector of the incoming photons. σ̂+

j and
σ̂−

j are the raising and lowering operators of the electronic
excitation of the jth atom. If the laser is propagating in the
chosen direction of vibrational oscillation, the term k0 · r j

can be replaced by κ (â j + â†
j ). Otherwise, the k0 · r j term

will be dropped, and the laser will not cause any vibrational
transitions.

In the following equations, the primed and unprimed coor-
dinates are used to signify right and left multiplication of the
density operator, respectively. To signify differences, we will
use the following convention:

ri j ≡ ri − r j, r′
i j ≡ ri − r′

j, r′′
i j ≡ r′

i − r′
j . (5)

The resonant dipole-dipole interactions are given by the imag-
inary part of the Lindblad term and are given by

Ĥdd = h̄
∑
i �= j

Im{g(Ri j + ri j )}σ̂+
i σ̂−

j . (6)

The real part of the Lindblad term describes the dynamics of
the decay and is given by

L(ρ̂ ) =
∑
i, j

[2Re{g(Ri j + r′
i j )}σ̂−

i ρ̂σ̂+
j

− Re{g(Ri j + ri j )}σ̂+
i σ̂−

j ρ̂

− ρ̂σ̂+
i σ̂−

j Re{g∗(Ri j + r′′
i j )}], (7)

where the Green’s function g(R) is given by

g(R) = �

2

[
h(1)

0 (kR) + 3(R̂ · q̂)(R̂ · q̂∗) − 1

2
h(1)

2 (kR)

]
, (8)

where q̂ is the dipole orientation, R = |R| is the norm of
R, R̂ = R/R is the unit vector along R, � is the decay rate
of a single atom, and h(1)

l (x) is the outgoing spherical Han-
kel function of angular momentum l; h(1)

0 (x) = eix/[ix], and
h(1)

2 (x) = (−3i/x3 − 3/x2 + i/x)eix.
When we calculate the Green’s function, we take a Taylor

expansion up to second order which is valid under the condi-
tion that the spread of the wave function (κ/k) is much less
than the separation of atoms:

g(Ri j + ε) = g(Ri j ) +
(

g′(Ri j )

k

)
kε

+
(

g′′(Ri j )

k2

)
k2ε2

2
+ · · · , (9)
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where the derivatives are taken in the chosen oscillation di-
rection. Since the Hankel functions in g(R) are functions of
kR, the k’s in the denominators make the expansion term kε

more explicit. ε = si − s j is expanded into the corresponding
vibrational ladder operators. The zeroth-order term does not
depend on the spread of the atoms and does not cause any
transitions in the vibrational state. The first- and second-order
terms depend on the spread of the wave function and will
induce single-level and two-level transitions in the vibrational
states, respectively.

Since the Green’s function depends on both r j and r′
j ,

which correspond to the left and right operations on the
density matrix, we have s j and s′

j , respectively. While the
last two terms of the Lindblad expression have only left or
right multiplication, the first term behaves differently. Upon
expanding the Harmonic vibrational wave functions, we see
that the first term acts on the combined density matrix as

Re{g(Ri j + r′
i j )}σ̂−

i ρ̂σ̂+
j

= Re{g(Ri j )}σ̂−
i ρ̂σ̂+

j

+ Re

{
g′(Ri j )

k

}
k(siσ̂

−
i ρ̂σ̂+

j − σ̂−
i ρ̂σ̂+

j s′
j )

+ Re

{
g′′(Ri j )

k2

}
k2

2

(
s2

i σ̂
−
i ρ̂σ̂+

j + σ̂−
i ρ̂σ̂+

j s′2
j

− 2siσ̂
−
i ρ̂σ̂+

j s′
j

)
, (10)

where the ksi’s will be replaced by κ (ai + a†
i ) notation when

solving the equations. The expectation values of the momen-
tum and energy in the vibrational state of atom j can then be
calculated from the density matrix,

p j = i

2κ
Tr[(a†

j − a j )ρ]h̄k, (11)

Ej = 1

2κ2
Tr[(2a†

j a j + 1)ρ]Er, (12)

where h̄k and Er = h̄2k2/(2M ) are the recoil momentum and
energy deposited when one photon is absorbed or emitted by
an atom. Since the expression for the energy is divided by κ2,
only the terms of the order of κ2 in the diagonal of the density
matrix will primarily contribute to a change in energy. The
contribution from the κ4 terms and beyond will be negligible
for small wave-function spreads. The energy difference in the
vibrational levels will be given by 1/κ2. That is, if κ = 0.01,
the energy difference of consecutive vibrational levels will
be 104Er .

III. RESULTS

The impulse model used in Ref. [25] calculates the kinetic
energy and momentum kick imparted in a collective dipole
interaction system interacting with a laser. Since the quantum
oscillator model discussed in this paper has a fundamental
difference in the way the kinetic energy is imparted to the sys-
tem, the two models can be compared and tested for validity.
To account for the spread of the wave function, the impulse
model can be spatially integrated over the wave-function
probability density using Gaussian quadrature integration for
a small number of atoms. At low frequencies, the sudden

approximation is valid, and the models agree. The results
match exactly at low wave-function spreads and with a small
difference for higher spreads. This difference can be shown
to be due to stopping at the second order when expanding
g(R) in the Taylor series; that is, the error is mainly in the
harmonic-oscillator model for low trap frequencies.

The quantum oscillator model does not have any restric-
tions with respect to the trap frequency, and hence, we can
investigate the validity of the sudden approximation, beyond
the low-frequency regime. We can also study the separate con-
tributions from the different terms of the Hamiltonian and the
Lindblad equations. We are more interested in the cases with
higher trap frequencies where the vibrational energy spacing
is much larger than Er . Hence, we do not need to include many
vibrational levels. This also implies that the spread of the
wave function will be small and we can limit the Taylor-series
expansion, Eq. (9), to second-order terms.

A. Single-atom decay

To begin, we analyze the simple decay process of a single
atom trapped in a harmonic potential. The atom is initially
excited, and no laser interaction is present. The effective
Hamiltonian becomes

Ht = h̄ωt (a
†
1a1 + 1/2). (13)

Since Ht is purely diagonal with respect to the vibrational
states, its contribution to the change in the density matrix,

ρ̇ = −i

h̄
[Ht , ρ], (14)

has zero diagonal elements and interacts with only the off-
diagonal coherence terms of the density matrix. The Lindblad
term for a single atom is

L(1)(ρ) = 2Re{g(r′
11)}σ−

1 ρσ+
1

− Re{g(r11)}σ−
1 σ+

1 ρ − ρσ−
1 σ+

1 Re{g(r′′
11)}. (15)

Since r11 = r′′
11 = 0, Re{g(r11)} = Re{g(r′′

11)} = �/2. The last
two terms do not contribute to change in the vibrational states.
Expanding the first term using r′

11 = 0 + s1 − s′
1 up to second

order gives

Re{g(r′
11)} = g(0) + g′′(0)

2
κ2(s1 − s′

1)2 (16)

κ is defined below Eq. (3), since the first derivative g′(0) = 0.
The next nonzero leading-order term will be fourth order
since the third derivative is again zero, but they will be of
the order of κ4 and will not cause significant contributions
when calculating the energy. If we assume the atom is initially
excited and in the vibrational ground state, the first term in
Eq. (15) becomes

L1(ρ) = |g〉〈g∣∣ρ0,0
1,1 {[� + 2κ2g′′(0)]

∣∣0〉〈0|
− 2κ2g′′(0) |1〉〈1| + κ2g′′(0)

√
2(|2〉〈0| + |0〉〈2|)}.

(17)

We can analytically solve the above equation to obtain the
change in the vibrational energy at infinite time when the
decay is complete. The change in vibrational energy is given
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by


E = −2
g′′(0)

�
Er . (18)

This result remains valid when the initial density matrix is
any incoherent combination of vibrational states. For an atom
initially excited and polarized in the e+ = −(x̂ + iŷ)/

√
2 di-

rection, 
Ez = 0.4Er , and 
Ex = 
Ey = 0.3Er . The energy
deposited due to the recoil from the emission of a single pho-
ton is independent of the frequency of the harmonic oscillator.
This result is correct even if we go beyond the second-order
approximation in Eq. (16).

1. Laser interaction

When the atom absorbs a single photon from the laser,
there is a momentum of h̄k added to the atom. The contribu-
tion to the change in vibrational state comes as eiks1 in Eq. (4).
Since κ is small, a Taylor expansion gives

eiks1 = 1 + iks1 − k2s2
1

2
+ · · ·

= 1 + iκ (a†
1 + a1) − κ2

2
(a†

1 + a1)2 + · · · . (19)

Since the laser interacts with the density matrix through the
coherence terms, the orders of the transitions to the population
from the first-order and second-order terms are κ2 and κ4,
respectively. Hence, the energy deposited is primarily con-
tributed by the first-order term.

When there is a continuous laser incident on the atoms,
the electronic internal states of the atoms reach a steady state.
Instead of the total recoil energy and momentum deposited,
we calculate the rate of recoil deposited in the atoms by time
evolving the density matrix using Eq. (2). Figure 1 shows the
energy deposited per incident photon in the direction of the
incident laser on a single atom as we vary the trap frequency.
It also shows the contribution of the kick due to the coherent
laser interaction and the decoherent single-atom decay term.
To ignore long-term effects like shifts in position due to radi-
ation pressure, the expectation values are taken immediately
after reaching electronic steady state. It is important to note
that we are discussing the transfer of energy across different
trap frequencies and not the population in the excited states.
As the frequency goes up, the energy difference between the
vibrational states will increase. If the energy transfer remains
the same but the frequency goes up, there will necessarily be
a lower population in excited vibrational states.

The atom absorbs a photon and randomly emits it in an
arbitrary direction. At low trap frequencies, the absorption of
the photon results in Er recoil, and the emission gives 0.4Er

in the laser direction. The recoil due to the emission agrees
with the result in Eq. (18) and is independent of the trap fre-
quency. But as we increase the frequency, the contribution for
vibrational excitation from the laser becomes negligible. At
low trap frequencies (ωt 
 �), the vibrational energy states
are close enough that the linewidth spread of the excited state
can allow vibrational transitions. On the other hand, at high
trap frequencies (ωt � �), the vibrational energy states are
far enough apart that there are no vibrational transitions due
to the laser. Hence, the kick from the laser reduces when the

0.0
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1.4

1.6
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ΔE
z/

E
r

log10(ωt/Γ)

FIG. 1. The vibrational energy deposited, per incoming photon,
at steady state for a laser incident on a single atom. The red solid line
shows the total energy deposited, while the blue long-dashed and
orange short-dashed lines show the contributions from the coherent
laser transfer and the decoherent decay. The calculations were run
using Nvib = 5.

trap frequency is higher than the decay rate of the system.
Effects such as sideband cooling can also be seen when the
trap frequencies are higher than the decay rate.

2. Coherent and decoherent transfers

There are two types of vibrational population transfers oc-
curring in the system. When the population transfers through
the coherence terms (off-diagonal terms) of the density ma-
trix, it is called coherent transfer. This is a two-step process in
which the initial population terms couple to coherence terms
which then couple to population terms in different vibrational
states, ultimately leading to a change in vibrational energy.
Hence, any coherent transfers of the order of κ2 will lead to a
population change of the order of κ4. The transfers due to the
laser Hamiltonian are an example.

Decoherent transfers occur when the population directly
transfers between the diagonal terms, without going through
the coherence terms. This can be seen in the second line of
Eq. (17), where there is a direct single-level transition from the
|0〉〈0| to |1〉〈1| vibrational state. Since the trap Hamiltonian
acts on only the coherence terms, it does not affect the dynam-
ics of the decoherent transfers. Hence, the decoherent energy
transfers, such as the single-atom decay term, are unaffected
by the trap frequency.

B. Multiatom decay

When there is more than one atom interacting, the Hdd

Hamiltonian [Eq. (6)] and the two atom Lindblad terms [i.e.,
i �= j terms in Eq. (7)] come into effect. Since the vibrational
raising and lowering operators in these terms act on different
atoms, they cannot directly transfer the vibrational population.
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FIG. 2. The excitation is exchanged between two atoms which
are very close to each other (d = 0.02λ) when one atom is initially
excited. The orange short-dashed and blue long-dashed lines indicate
the excitation probability of the two atoms. The red solid line shows
the increase in the vibrational energy of the first atom. The calcula-
tion was done using κ = 0.00001 and Nvib = 2 using the full density
matrix.

They go through the coherence terms and are coherent popu-
lation transfers (see Sec. III A 2).

For simplicity, we can look at the case of two atoms. When
two atoms are very close to each other (d ≈ 0.02λ) and one
of the atoms is excited, the excitation rapidly hops between
the two atoms while decaying, as seen from Fig. 2. This is the
resonant dipole-dipole interaction arising from the Hamilto-
nian term in Eq. (6). Even though the excitation probability of
the atom alternates, the recoil energy deposited on the atom
increases continuously. All the recoil in this timescale comes
from the near-field dipole-dipole interactions, i.e., from the
two-atom dipole-dipole Hamiltonian [Eq. (6)].

When two atoms interact, the direction along the line
connecting the atoms and the directions perpendicular have
considerably different physics. Let the atoms be separated in
the x direction by a distance d < λ. In the direction along the
separation, i.e., in the x direction, interatom forces arise due to
the collective interactions. These forces act only along the line
joining the two atoms. In the directions perpendicular to the
separation, i.e., the y and z directions, there are no interatom
forces, and only the kick from the photon emitted contributes
to the recoil.

In Figs. 3 and 4, κ is held constant while the trap frequency
is altered. Since κ depends on M and ωt , we assume that the
mass also varies accordingly to compensate. While this is not
a physical assumption, it is made in order to study and isolate
the effects of the change in trap frequency while ignoring the
more trivial effects of altering the spread of the wave function.

1. Transverse oscillation

For two atoms, when the chosen direction of vibrational
quantization is perpendicular to the separation of the atoms,
there are no interatom forces. While taking the Taylor ex-
pansion, the first derivative of the Green’s function g′(Ri j )
in the direction perpendicular to the separation is zero. This

0.10

0.11

0.12

0.13

0.14

0.15

0.16

−2 −1  0  1  2

ΔE
/E

r

log10(ωt/Γ)

FIG. 3. The energy deposited during the decay of two atoms
uniformly excited, separated by d = 0.4λ in the x direction, versus
the trap frequency. The blue circles and orange squares indicate the
quantum harmonic-oscillator model results in the z and x directions,
respectively. The thin solid lines indicate the respective impulse
model result. The black vertical line denotes the collective decay rate
of the system. The calculations are done using the full density matrix
with κ = 0.001. To isolate the effects of the trap frequency, κ is kept
constant, and the mass M is varied to compensate for changing ωt .

results in the equations being similar to the equations for the
single-atom case, where only zero- and second-order terms
remain. But since the two-atom Lindblad terms are coherent
transfers, the second-order term of κ2 will contribute to only
a κ4 order of vibrational population transfer. Hence, we see
that in the perpendicular direction, only the contribution from
the single-atom Lindblad terms contribute to the change in
vibrational energy to the lowest order in κ . The single-atom
terms being decoherent transfers also implies that the energy
deposited in the perpendicular direction is independent of the
trap frequency. Thus, the impulse model is valid even beyond
the sudden approximation in the directions where there are no
interatom interactions i.e., perpendicular to the atom array.

Figure 3 shows that the recoil in the perpendicular direction
is independent of the frequency and agrees with the impulse
model calculations. In Figs. 3 and 4, the atoms are initially
excited to a singly excited state with the amplitude of the
electronic excitation distributed uniformly or to an eigenstate
of the complex Green’s-function matrix of the system. There
is no laser interaction, and the recoil is measured after the
system is allowed to decay into the electronic ground state.
Further details are included in Sec. III A of Ref. [25].

Another inference is that the rate of energy deposited into
the system is dependent on only the single-atom terms and is
not directly dependent on the collective decay dynamics. The
single-atom term results in the rate of increase of the elec-
tronic ground state and, indirectly, the rate of accumulation
of vibrational excitation being proportional to the excitation
in the system. However, the collective decay dynamics is
what determines the lifetime of the excitation. If we integrate
the vibrational excitation accumulation over the entire decay
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FIG. 4. The vibrational energy deposited during the decay of the
excitation. We look at the energy deposited in the x direction on the
center atom when there are three atoms in a line in the x direction
separated by d = 0.4λ. The red solid line shows the total energy
deposited, while the blue circles and orange squares show the con-
tributions from the coherent and decoherent transfers, respectively.
The initial excitation is different for the four cases. (a) has uniform
excitation, and (b)–(d) have the three eigenstates as excitation. The
increase or decrease in energy is dependent on the excitation pattern
in the higher-ωt region. (c) has zero decoherent transfers because
the center atom has zero excitation probability in this particular
eigenstate. The calculations are done using the full density matrix
with κ = 0.001. To isolate the effects of the trap frequency, κ is kept
constant, and the mass M is varied to compensate for changing ωt .

process, the energy deposited in such a collective decay will
be proportional to the lifetime of the collective excitation. This
was also discussed in Sec. III A of Ref. [25].

2. Longitudinal oscillation

In the case of the oscillations in the direction of the sep-
aration, the first derivative g′(Ri j ) in Eq. (9) is no longer
nonzero. These first-order coherent transfers contribute to a
κ2 order of population transfer. Hence, there are two sources
of vibrational excitation: single-atom decoherent transfers and
first-order two-atom Lindblad coherent transfers. While the
former is unaffected by the trap Hamiltonian, the latter in-
teracts and develops a complicated dependence on the trap
Hamiltonian. Figure 3 shows that the recoil in the direction of
separation is dependent on the trap frequency and the impulse
model is not valid beyond the sudden approximation.

Figure 4 shows an example of the energy deposited in the
direction of separation varying with ωt when the atoms are ini-
tially excited in different distributions. The contributions from
the coherent and decoherent transfers are also shown. The
decoherent transfers are independent of the trap frequency
and depend on only the excitation probability of that atom
and the decay rate of the system. The coherent transfers, on
the other hand, change with the trap frequency and are highly
dependent on the way the excitation is distributed among the
atoms and can be either negative or positive. The threshold of
what determines high trap frequency is set by the collective

decay rate of the system and not the individual decay rate of
the atom �.

Another distinguishing feature of the coherent and deco-
herent transfers is the directionality. The coherent transfers are
facilitated by the near-field dipole-dipole interaction between
the two atoms, and the recoil in this process is strictly in the
direction of separation. The laser interaction is also coherent
and has a strict directionality with respect to the direction of
the incident light. On the other hand, the decoherent transfer
is from spontaneous decay, where the direction of photon
emission is random and the probability distribution of the
direction is governed by the dipole orientation.

C. Large ensemble of atoms

From Sec. II, the number of states required for calculations
increases exponentially with increasing the number of atoms.
All the atoms having Nvib vibrational states would result in all
the possible permutations of vibrational-state ensembles, i.e.,
(Nvib)N states.

While the internal-state dynamics of absorption, decay, and
exchange in excitation are the driving factors of the dynamics
of the vibrational states, in the approximation in which the
spread of the wave function is much smaller than the distance
separating the atoms, we see that the vibrational-state dy-
namics have little to no effect on the internal-state dynamics.
Hence, we can approximate the calculation so that only one
atom is allowed to have quantized vibrational states while the
rest are fixed in space. This reduces the total available vibra-
tional states to just Nvib. We calculated the vibrational energy
acquired when four atoms in a square are initially excited
and decay into the ground state. The error when using this
approximation is only 0.2% when the wave-function spread is
as high as 25% of the separation.

We also see from Sec. III B that the second-order transfers
in the vibrational state are of the order of κ4. When taking
the expectation of the energy, they hardly contribute when κ

is small. The same reasoning applies to the lasers (as seen
in Sec. III A). Hence, we can limit Nvib to 2 without losing
generality in this case. For small enough κ = 0.01, the max-
imum vibrational energy in the atom can reach up to 104Er ,
which is within the expected recoil limits. To verify this, the
results were tested for convergence using different Nvib in a
small number of atoms.

With these two approximations, we can limit the number
of states to Nvib × (N + 1), that is, 2(N + 1), which brings it
within the realm of computation for up to 250 atoms.

1. Arrays of atoms

If there is a constant laser incident perpendicular to an array
of closely packed atoms, the recoils in the two different di-
rections have different behaviors. Since the laser Hamiltonian
does not have two-atom interactions, the recoil of the atoms
in the direction perpendicular to the array is similar to the
single-atom laser interaction seen in Sec. III A 1. The recoil
within the plane of the array is due to the in-plane collective
decay effects, as seen in Sec. III B, and is dependent on the
distribution of the excitation. Figure 5 shows the trend of
the recoil in the different directions as a function of the trap
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FIG. 5. The vibrational energy deposited in the center atom of
an 11 × 11 atom array with d = 0.8λ separation when in steady
state with an incident laser in the z direction. The orange squares
represent the recoil energy in the z direction, while the blue circles
denote the recoil energy in the x direction, per photon incident on the
center atom. The upper orange and lower blue thin lines denote the
comparison with the impulse model. These data are calculated using
the approximations discussed in Sec. III C.

frequency. The calculations from the impulse model are also
included as a solid line.

Typically, the trap frequencies in the in-plane (x and y)
directions are higher and are about 100 kHz, while the perpen-
dicular trap frequencies are often an order of magnitude lower
at about 10 kHz. These trap frequencies will give a spread of
κ/k = 0.08λ and 0.025λ, respectively, for a Cs atom. When in
a steady state, such frequency ranges will be within the slow-
oscillation approximation, and the results from the impulse
model can be reproduced with the current model.

When there is a perfect reflection of a photon from an
atom array, there is a momentum of 2h̄k imparted on the
atoms. Hence, the momentum change of the atoms describes
the reflectivity of the atom array. This can also be used to
study the effects of higher vibrational excited states on the
reflectivity. At 10-kHz frequency in the z direction, the mo-
mentum imparted on the central atom of an array reduces by
approximately 8% when the atom is in the first vibrational ex-
cited state instead of in the ground state. However, at 100-kHz
frequency in the z direction, there is only a decrease of 0.6%.
This reinforces that atomic mirror experiments would need
to have high trap frequencies to have a reflection probability
close to 1.

2. Cavity

In Ref. [25], we calculated the kinetic-energy kick on a
cavity when it decays from a highly subradiant eigenmode.
This follows the design of the cavity used in Ref. [13] to
perform quantum information processing. Under the slow-
oscillation approximation, the central atom experienced a kick
of up to 926Er in the duration of the decay in the direction

perpendicular to the plane. The results were thought to be
purely qualitative because of the large lifetimes violating the
slow-oscillation approximation.

The results from the Sec. III B imply that those calcu-
lations were more accurate than suggested in Ref. [25] for
the direction perpendicular to the array. In the perpendicular
direction, since there are no or negligible interatom forces, the
trap frequency does not play a significant role in determining
the vibrational energy deposited. The recoil due to the deco-
herent transfers accumulates over an extended duration due to
the subradiant decay resulting in large recoil energies being
deposited. Another way to interpret this is the large quality
factor causing there to be multiple reflections of the photon
on the array faces.

Calculations for the same cavity as that in Ref. [25], using
the harmonic-oscillator model, resulted in the center atom
experiencing similar vibrational energy being deposited, ap-
proximately 922Er in the direction perpendicular to the array.
This recoil was unaffected when the trap frequencies were
increased beyond the decay rate of the system. On the other
hand, the energy deposited in the in-plane direction at high
frequencies decreased to 15.0Er , compared to 16.6Er at low
frequencies. These results show that the recoil of the atoms
due to collective decay, especially in highly subradiant sys-
tems, should not be ignored.

IV. CONCLUSION

We presented a model to describe and calculate the recoil
in light-matter collective interaction using quantum harmonic-
oscillator trap potentials. We compared our results with the
results of the impulse model used in Ref. [25] under the
slow-oscillation approximation and explored the regime be-
yond. We studied the contribution to recoil from the different
terms of the Hamiltonian and Lindblad equation. In essence,
the single-atom Lindblad term causes a recoil in a random
direction, and the energy deposited is independent of the
trap frequency used. The laser Hamiltonian causes a recoil
in the direction of the laser propagation, and recoil energy
deposited falls off to zero when the trap frequency goes be-
yond the collective decay rate of the system. The two-atom
Lindblad terms induce a recoil in the direction of the sep-
aration between the atoms, and it is dependent on both the
trap frequency and the distribution of the excitation in the
system.

In atom arrays, in the directions where there are no in-
teratom forces or lasers, the recoil is independent of trap
frequency, and the impulse model can be used even beyond
the slow-oscillation approximation. If the atoms are excited
by a laser or for those directions in the plane of the atom array,
the impulse model is no longer valid when the trap frequency
approaches or is higher than the decay rate of the system.

This model was used to verify the extremely high recoil
calculated in a cavity with high subradiance. This shows that
recoil effects have to be considered seriously when working
with highly subradiant systems. The effects of vibrational
excitation in the reflectivity of arrays were also studied.

References [26,27] worked on the opposite regime of the
sudden approximation, where the focus is on the slow center-
of-mass motion rather than the fast internal-state dynamics.
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Studying this regime, especially the collective modes of vi-
bration of the atoms using the quantum harmonic-oscillator
model, could lead to better understanding and control of atom
arrays.

Data for the figures used in this publication are available
from the Purdue University Research Repository [28].
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