
PHYSICAL REVIEW A 103, 022424 (2021)
Editors’ Suggestion

Photon-recoil and laser-focusing limits to Rydberg gate fidelity

F. Robicheaux,1,2,3,* T. M. Graham,3 and M. Saffman 3,4

1Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
2Purdue Quantum Center, Purdue University, West Lafayette, Indiana 47907, USA

3Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
4ColdQuanta, Inc., 111 N. Fairchild St., Madison, Wisconsin 53703, USA

(Received 18 November 2020; accepted 3 February 2021; published 24 February 2021; corrected 4 May 2021)

Limits to Rydberg gate fidelity that arise from the entanglement of internal states of neutral atoms with the
motional degrees of freedom due to the momentum kick from photon absorption and re-emission is quantified.
This occurs when the atom is in a superposition of internal states but only one of these states is manipulated
by visible or UV photons. The Schrödinger equation that describes this situation is presented and two cases are
explored. In the first case, the entanglement arises because the spatial wave function shifts due to the separation
in time between excitation and stimulated emission. For neutral atoms in a harmonic trap, the decoherence
can be expressed within a sudden approximation when the duration of the laser pulses are shorter than the
harmonic oscillator period. In this limit, the decoherence is given by simple analytic formulas that account for
the momentum of the photon, the temperature of the atoms, the harmonic oscillator frequency, and atomic mass.
In the second case, there is a reduction in gate fidelity because the photons causing absorption and stimulated
emission are in focused beam modes. This leads to a dependence of the optically induced changes in the internal
states on the center of mass atomic position. In the limit where the time between pulses is short, the decoherence
can be expressed as a simple analytic formula involving the laser waist, temperature of the atoms, the trap
frequency, and the atomic mass. These limits on gate fidelity are studied for the standard π -2π -π Rydberg gate
and a protocol based on a single adiabatic pulse with a Gaussian envelope.
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I. INTRODUCTION

Neutral atom qubits with Rydberg state mediated inter-
actions have emerged as a promising platform for scalable
quantum computation and simulation [1]. Trap arrays suit-
able for individual control of 100 and more atomic qubits
have been prepared [2–7] and high fidelity one-qubit [8–10]
and two-qubit [11–13] gates have been demonstrated. Many
protocols have been proposed and analyzed for implementing
two-qubit Rydberg gates [12,14–26]. Although detailed anal-
yses accounting for the multilevel atomic structure and finite
Rydberg lifetime have identified protocols with the potential
of reaching F > 0.9999 [20,27], the studies to date, with the
notable exception of Ref. [19], which included a detailed ex-
amination of motional errors, have either ignored the limits set
by photon recoil or treated it only approximately [14,28,29].

Momentum kicks due to the absorption and emission of
photons during a Rydberg pulse, as well as Rydberg-Rydberg
interactions, lead to undesired entanglement between qubits
encoded in hyperfine states and the atomic center of mass
motion. After tracing out the motional state, the remaining
entanglement in the qubit basis is reduced, which sets a limit
on the gate fidelity [30]. The degree of infidelity depends on
several parameters including the magnitude of the photon mo-
mentum, the temporal extent of the Rydberg pulse sequence,
the initial motional state of the atoms, the characteristic vibra-
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tional frequencies of the trap holding the atom, and whether
or not the trap is turned off or left on during the Rydberg gate.

In this paper, we present a rigorous analysis of the fidelity
limits set by these effects for two representative CZ gate
protocols: the standard π -2π -π pulse sequence [14] and a
simple implementation of a CZ gate that uses only a single
Gaussian shaped adiabatic pulse applied simultaneously to
both atoms. In both cases, the gate infidelity scales with the
change in atomic position x during the gate, relative to the
size of the initial center of mass wave function δx. For an
atom that is prepared in the motional ground state of the
trap, δx ∼ 1/ν1/2 with ν the trap frequency so the infidelity
grows proportional to ν. The scaling of the infidelity follows
from the observation that the change in atomic position during
the Rydberg gate is fractionally more significant for a well
localized spatial wave function, than for a less confined wave
function. This counterintuitive result shows that, in contrast to
many atomic implementations of quantum protocols, it is not
always advantageous to work deep in the Lamb-Dicke limit of
tight confinement.

While the analysis that follows is primarily concerned with
the infidelity of Rydberg gates we note that single qubit gates
between internal states are susceptible to errors analogous
to those analyzed here. A prime example of this is given
by qubits encoded in ground and metastable, electronically
excited states in alkaline earth atoms [31] or trapped ions [32].

The rest of the paper is structured as follows. In Sec. II.
we describe the unwanted entanglement that arises between
internal and external degrees of freedom due to photon kicks
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or Rydberg forces. This is followed in Sec. III with a de-
scription of the two gate protocols to be analyzed in detail
and a brief recap of the definition of Bell fidelity which we
will use to characterize the gate performance. Section IV
presents analytical approximations for the infidelity using a
Schrödinger equation treatment. Section V presents numerical
infidelity results for realistic experimental parameters. The
numerical results are based on a full density matrix treatment
and are compared with the analytical approximations. The
main results are then summarized in a concluding Sec. VI.
Additional analysis including different cases of keeping the
trapping potential on or off during the gate is provided in
appendices.

II. QUBIT DECOHERENCE FROM MOTIONAL
STATE ENTANGLEMENT

The quantum state of a trapped atom is described by its
motional degrees of freedom as well as quantum numbers
characterizing the nuclear and electronic states. Qubits are
typically encoded in the electronic degrees of freedom. The
most commonly used approach is encoding in hyperfine states
of the ground electronic configuration [33], although also
metastable electronically excited states may be used. The total
state, including all degrees of freedom, can be written as
|�〉 = |ψ〉ext ⊗ |ψ〉int where |ψ〉int is the internal state of the
atom which is used to encode a qubit and |ψ〉ext is the motional
state.

Momentum transfer due to photon recoil from absorption
and emission induced by the laser pulses that implement gate
operations, as well as forces between Rydberg excited atoms,
may change the motional state. When changes in the motion
are correlated with the internal state the internal and external
degrees of freedom can become entangled which, in the con-
text of Rydberg gates, leads to decoherence of the qubit state
[33,34]. It is perhaps worth mentioning that in other settings,
notably trapped ion quantum computing, controlled entangle-
ment between internal and external degrees of freedom is in
fact crucial for gate operation [35].

To see this explicitly consider an initial product of the
center of mass motional state and the qubit

|�i〉 = |ψext〉 ⊗ (c0|0〉 + c1|1〉), (1)

where |c0|2 + |c1|2 = 1. After a gate operation this changes to

|�f〉 = c0 |ψext,0〉 ⊗ |0〉 + c1 |ψext,1〉 ⊗ |1〉 . (2)

The reduced density operator for the qubit after the gate is

ρ =
( |c0|2 c0c∗

1χ
∗

c∗
0c1χ |c1|2

)
,

where χ = 〈ψext,0| ψext,1〉. Changes in the motional state that
are correlated with the qubit state reduce the magnitude of
the coherence |c0c∗

1χ |. When |χ | = 1 but there is a phase
shift it is possible to apply a correcting rotation on the qubit.
When |χ | < 1 the error generally cannot be repaired. In the
following sections, we will explicitly calculate χ for several
possible gate protocols and establish realistic experimental
limits on coherence and gate fidelity.

A. Momentum kick for 1 atom

This section discusses how momentum kicks to atoms dur-
ing gate pulses affect the fidelity of the gate. The most basic
example of this situation is a three-state atom in a one dimen-
sional harmonic trap with the absorbed and emitted photons
parallel to the allowed motion. In a typical implementation
a laser may cause a transition from the qubit state |1〉 but
leave state |0〉 untouched. We will limit the treatment to the
case where the atom is excited from state |1〉 to Rydberg state
|R〉 and then de-excited as part of the gate. For simplicity, the
discussion below is in the wave function picture but all of the
results in Sec. V are obtained using density matrices.

A reduction in gate fidelity occurs because the laser pulses
create entanglement between the internal states of the atom
and its center of mass degrees of freedom, which has been
pointed out in several previous works [14,19,28,36]. Consider
the case where the atom starts in a separable wave function
of the form of Eq. (1). A short laser pulse of duration δt
excites state |1〉 to state |R〉 and in the process gives the atom
a momentum kick h̄K . After a delay τ much shorter than the
vibrational period of the atom trap, a second laser pulse in
the same direction de-excites state |R〉 to state |1〉 giving the
atom a momentum kick −h̄K from the stimulated emission.
Although the second momentum kick undoes the change in
momentum from the first, the spatial wave function for state
|1〉 will not be the same as that for the state |0〉 because there
will be a change in position, δx = h̄Kτ/M, and an extra phase
accumulation due to the change in kinetic energy during τ .
The final wave function can be written as

|� f 〉 = ψ f ,0(x)c0|0〉 + c1[ψ f ,1(x)|1〉 + ψ f ,R(x)|R〉], (3)

where the c j are as before, the ψ f ,0 is normalized to one, and
the integral of the sum |ψ f ,1|2 + |ψ f ,R|2 is normalized to one.
Typically, the norm in state |1〉 is much larger than that in state
|R〉.

The entanglement between the spatial and internal degrees
of freedom results in decoherence in the internal states. A
measure of the decoherence is

ε = 1 − |χ |, (4)

where

χ =
∫ ∞

−∞
ψ∗

f ,0(x)ψ f ,1(x)dx, (5)

which has a magnitude 0 � |χ | � 1. When |χ | = 1, no entan-
glement occurred between the spatial and internal states and
there is only an overall phase difference between ψ f ,0(x) and
ψ f ,1(x). This is the desired outcome of the gate pulses. There
is decoherence for the case |χ | < 1 which can occur even
when the norm of ψ f ,1 is unity because the laser kicks can
cause this part of the wave function to evolve into a different
region of Hilbert space. From the process described in the
previous paragraph, there will be both a magnitude less than
one and a complex phase for χ . See the appendices, Sec. D for
a derivation of χ for four different excitation styles. We give
both the magnitude and phase for χ , but the projection having
a norm less than one is more problematic because the change
in phase can be compensated for.
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B. Momentum transfer for two atoms

Although not due to photon kicks from absorption or
emission, there is a source of decoherence due to transient
population with double Rydberg character [19]. This entan-
glement between the internal states of the atom and the atom
motion arises because the Rydberg-Rydberg interaction de-
pends on the separation of the atoms leading to an impulse
along the line connecting the atoms, but only when the atoms
start in the |11〉 state. We will only consider the case where the
duration of the gate pulses is much smaller than the trap period
and the atom displacements are small compared to nearest
neighbor separations. In this limit, the Rydberg-Rydberg in-
teraction leads to an impulse due to the force between the
atoms when they are both excited. This term only enters
the ψ f ,11 part of the wave function and consists of a phase
accumulation φ = −VRRτRR/h̄, where

τRR =
∫ ∞

−∞
PRR(t )dt (6)

is effectively the time spent in the double Rydberg state and
PRR is the probability both atoms are in the Rydberg state
when starting in the |11〉 state.

Defining the y-direction as pointing from atom 1 to 2,
the spatial dependence of the extra phase accumulation can
be approximated as φ = 6B(y2 − y1)τRR/r12 where the y j are
displacements from the respective trap centers, with r12 the
distance between the center of the traps, and h̄B = VRR(r12);
this assumes a 1/r6

12 dependence on the Rydberg-Rydberg
interaction and the displacements are small compared to the
trap separation. Outside of an overall, irrelevant phase factor,
the projection of the |00〉, |01〉, or |10〉 components on that of
|11〉 are the same and is

〈ψ f ,00|ψ f ,11〉 = 〈ψ f ,00|eiφ|ψ f ,00〉 �
〈
1 + iφ − 1

2
φ2

〉

= 1 − 36B2kBTeffτ
2
RR

Mω2
⊥r2

12

, (7)

where ψ f ,ii′ are the spatial components of the wave function
Eq. (21), ω⊥ is the trap frequency in the y direction, and Teff

is defined in Eq. (C7). We used the identity 〈Mω2
⊥y2〉 = kBTeff

to generalize Eq. (7) to a thermal distribution. For a resonant
dipole-dipole interaction VRR(r12) ∝ 1/r3

12, in which case the
6 in the expression for φ changes to 3 and the 36 in Eq. (7)
changes to 9.

III. FIDELITY ANALYSIS OF RYDBERG GATES

Our main objective is to understand the effect of photon
momentum kicks on the fidelity of Rydberg gate operations.
The magnitude of the effect depends on the gate protocol used
as well as atomic and laser parameters. By elucidating the
role of photon momentum kicks for prototypical examples the
trends for other cases may be apparent.

A diagonal phase gate has the general form, apart from an
irrelevant global phase, of

Cφ = diag(1, eıφ01 , eıφ10 , eıφ11 ). (8)

(t)
|R>

|1>

B

|d>
|0>

t

control target

|R>

|1> |d>
|0>

RR

q

FIG. 1. Energy level structure of neutral atom qubits with ground
states |0〉 , |1〉. Rydberg states |R〉 interact with strength B. Rydberg
states are excited with Rabi frequency 
(t ) at detuning �(t ). Level
|d〉 is an uncoupled state that accumulates spontaneous emission
from |R〉 which has lifetime τR = 1/γR.

The requirement which Cφ must satisfy for preparation of
fully entangled states is

φ01 + φ10 − φ11 = nπ (9)

with n an odd integer. The choice φ01 = φ10 = φ11 = π gives
a CZ gate in the standard form of [37]

CZ = diag(1,−1,−1,−1). (10)

Gate protocols that satisfy (9) can be converted into standard
form by applying single qubit rotations. We will assume that
these can be done perfectly so that any protocol which satisfies
(9) will be considered a perfect gate implementation.

A. Rydberg gate protocols

The atomic level structure is shown in Fig. 1. Atoms, each
with stable ground states |0〉 , |1〉, are individually trapped in
harmonic potentials. State |1〉 is optically coupled to Ryd-
berg state |R〉 while off-resonant excitation of |0〉 is assumed
negligible. The small contribution to gate infidelity from this
off-resonant coupling has been considered in Refs. [15,20].
Rydberg excitation is typically implemented as a one- or
two-photon process. In the latter case the photons can be suffi-
ciently detuned from an intermediate level that the additional
photon scattering is negligible. The two-photon excitation has
the advantage that using a counterpropagating geometry the
momentum transfer is substantially smaller than for a one-
photon implementation.

(a) (b) 
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FIG. 2. Rydberg gate protocols. (a) π -2π -π gate [14] with the
pulses marked c(t ) applied to the control (target) qubits. (b) Adia-
batic gate with the same pulse applied to both qubits simultaneously
with constant detuning.
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The two protocols we analyze in detail are shown in Fig. 2.
The first is the π -2π -π protocol, the fidelity of which us-
ing constant amplitude pulses has been analyzed in detail
in [15]. Neglecting the motional effects considered here, the
gate fidelity is limited by atomic structure parameters to less
than F ∼ 0.998. Higher fidelity reaching F > 0.9999 can
be achieved using shaped pulses [20]. The gap between the
control atom π pulses plays a dominant role in the sensitivity
of this protocol to motional decoherence [29].

The second protocol we consider consists of a single adi-
abatic pulse applied simultaneously to both atoms with a
Gaussian amplitude profile and constant detuning as shown
in Fig. 2(b). This gate is similar in concept to the Rydberg
dressing gate [19], and other adiabatic gate protocols [25,26],
but has a simplified implementation requiring only a single
pulse with a constant laser detuning.

The entanglement mechanism of a single adiabatic pulse
can be understood from analysis of the coherent part of the
atomic dynamics depicted in Fig. 1. Consider first the simpli-
fied one-atom problem described by

Ĥ1 = h̄

(
0 
∗/2


/2 −�

)

in the basis (|1〉 , |R〉). Here we have ignored the far detuned
coupling of |0〉 to the Rydberg state. Ĥ1 has eigenvalues
h̄λ1,2 = h̄(−� ±

√
�2 + |
|2)/2 and eigenvectors u1,2. At

the beginning of the Gaussian pulse 
(0) = 0 and the state

is |ψ〉 = |1〉 = (1
0

) = u1. As long as the evolution is adiabatic

|ψ (t )〉 = u1 at all times so the atom returns to the ground state
independent of the length of the pulse. This imparts robustness
with respect to the amplitude of 
(t ).

The adiabatic condition is | dθ
dt |�|λ2−λ1|=

√
�2 + |
|2

with θ the mixing angle. The dynamical phase
acquired by the state during an adiabatic pulse of
duration T is φ01 = φ10 = ∫ T

0 dt λ1(t ) = ∫ T
0 dt (�(t ) +√

�2(t ) + |
(t )|2)/2. Setting � constant and 
(t ) =

max(e−(t−T/2)2/σ 2 − e−T 2/4σ 2

)/(1 − e−T 2/4σ 2
) the phase

can be found numerically as a function of �, 
max, and σ.

When the qubits are symmetrically excited the Hamilto-
nian in the two-atom symmetric basis (|11〉 ,

|1R〉+|R1〉√
2

, |RR〉)
is

Ĥ2 = h̄

⎛
⎝ 0 
∗/

√
2 0


/
√

2 −� 
∗/
√

2
0 
/

√
2 −2� + B

⎞
⎠.

Here 
 is the one atom Rabi frequency coupling states |1〉
and |R〉. Diagonalizing Ĥ2 we obtain eigenvalues h̄λ1,2,3 and
eigenvectors u1,2,3. Explicit expressions for the eigenvalues
are given in [1]. As for the case of a single Rydberg coupled
atom the dynamical phase φ11 is found from integrating the
relevant eigenvalue over the duration of the pulse. The result
depends on �,
max, σ , and B. For any value of B, which
is fixed by the choice of Rydberg states and the interatomic
spacing r12, we have two free parameters �/
max and σ ,
which can be chosen to satisfy the condition on the phases
for an entangling CZ gate.

Examples of valid gate parameters for different interaction
strengths are given in Sec. V B. As we will show the adiabatic

gate can achieve high fidelity for a wide range of interaction
strengths including the limit of strong blockade when |B| �

max as well as the opposite limit of |B| � 
max. In the latter
case the doubly excited state |RR〉 is populated which leads to
additional motional errors from Rydberg-Rydberg forces.

B. Bell state fidelity

We will quantify the fidelity of the CZ gate by calculating
the fidelity of the Bell state |B〉 = (|00〉 + |11〉)/

√
2 which

can be prepared by a perfect gate operation. The sequence
starts with the separable state |11〉. Applying the Hadamard
gate to both qubits gives

|in〉 ≡ H1H2|11〉 = 1
2 (|00〉 − |01〉 − |10〉 + |11〉). (11)

Applying the Rydberg CZ gate (defined to be diag(CZ ) =
[1,−1,−1,−1]) followed by a Hadamard gate on qubit 2
gives the Bell state, |B〉 under perfect operation. In what
follows, we will evaluate the implementation of the CZ gate
by starting in a separable density matrix

ρ̂i = |in〉〈in|ρs(r1, r2; r′
1, r′

2) (12)

where the ρs contains the spatial information about the two
atom system and could be an eigenstate or a thermal state of
the two atoms. We will then solve the density matrix equation
for the CZ gate

d ρ̂(t )

dt
= 1

ih̄
[Ĥ (t ), ρ̂(t )] + L̂(ρ̂), (13)

where Ĥ (t ) is the time-dependent Hamiltonian which will
include the kick from photon absorption or emission. In the
calculations, we will simulate the case where the qubit |1〉
can be excited to a Rydberg state |R〉. For the two-atom
Hamiltonian, we use Ĥ = Ĥ1 ⊗ Î + Î ⊗ Ĥ1 + Ĥ2 where Ĥ1 is
a one-atom operator and Ĥ2 describes the Rydberg interaction.

As a basic example, plane wave light propagating in the x
direction will give a one atom Hamiltonian

Ĥ1 = HC − h̄�|R〉〈R| + h̄


2
(eiKx|R〉〈1| + e−iKx|1〉〈R|),

(14)

where HC represents the kinetic energy and confining poten-
tial for each atom, � is the detuning of the laser connecting
states |1〉 and |R〉, K is the photon wave number, and 
 is
the Rabi frequency. In addition to the one atom Hamiltonian,
there is a Rydberg-Rydberg interaction

Ĥ2 = h̄B|RR〉〈RR|, (15)

where h̄B is the energy shift of the pair Rydberg state. The
Rydberg state can decay by spontaneous photon emission
or by absorption or emission of black-body photons. If the
Rydberg state decays, the time to return to the ground state
manifold can be large compared to the gate duration and there
are many more hyperfine ground states than the qubit pair.
Thus we will use the pessimistic approximation that all of the
radiative loss goes to states outside of the qubit pair or the
Rydberg state. This population can be assigned to the single
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dark state |d〉 giving

L̂(ρ̂)=�

2∑
j=1

(
|d〉〈Rj |ρ̂|Rj〉〈d| − 1

2
|Rj〉〈Rj |ρ̂ − 1

2
ρ̂|Rj〉〈Rj |

)
,

(16)
where j labels the two atoms.

Various gate protocols have different time dependence in
the coupling 
(t ), and the detuning �(t ). In some cases,
the confining potential HC, j can depend on time and on the
internal state of the atom.

In practice, we solve the density matrix equations using
a basis set of harmonic oscillator states at angular frequency
ω for the center of mass motion; in cases where more than
1D motion is important, we will distinguish between angular
frequencies of the center of mass motion parallel, ω‖, or per-
pendicular, ω⊥, to the beam propagation direction. This gives

ρ̂ =
∑

|i1i2〉〈i′1i′2|ψv1 (r1)ψv2 (r2)ψ∗
v′

1
(r′

1)ψ∗
v′

2
(r′

2)

× ρi1v1i2v2i′1v
′
1i′2v

′
2
, (17)

where |i〉 are the internal states |0〉, |1〉, |R〉, or |d〉 and the
v indicate the vibrational quantum numbers where each v j

could be 1, 2, or 3 indices depending on the spatial dimension
of the simulation. The number of vibrational states needed
for convergence depends on the temperature in the simula-
tion [more states are needed as kBT/(h̄ω) increases] and the
photon momentum (more states are needed as K increases).

The reduced density matrix is defined as

ρi1i2i′1i′2 =
∑
v1v2

ρi1v1i2v2i′1v1i′2v2 (18)

where we will not use a special symbol for the reduced density
matrix since it has four indices instead of the eight for the
full density matrix. The reduced density matrix is used in the
calculation of the gate fidelity.

After solving the time dependent density matrix equation,
Eq. (13), for the CZ gate, we add a phase to state |1〉 and then
apply a Hadamard gate to qubit 2. The phase is chosen to
maximize the Bell state fidelity. High fidelity single qubit gate
operations have been demonstrated on atomic qubits [8,10]
and it is possible to use magic trapping techniques so the
center of mass vibrational frequencies are identical for both
qubit states [38,39]. We therefore assume the phase on state
|1〉 and the Hadamard gate can be perfectly implemented
irrespective of the vibrational state. The Bell state fidelity is
defined as [40]

F = ρ0000 + ρ1111

2
+ |ρ0011| � 1. (19)

The CZ gate protocol is designed to make F as large as
possible. The requirement for scalable quantum computation
depends on the error correction scheme [41], but F > 0.99
is generally considered a minimum fidelity below which very
large numbers of qubits are required.

To simplify many of the derivations, we will use a wave
function picture to track the effects from a gate although all
of the results are ultimately derived from the density matrix in
Eq. (19). The initial state can be written as

|�i〉 = |in〉ψi(r1, r2), (20)

where |in〉 is defined in Eq. (11). A gate will cause a manip-
ulation of the spatial part of the wave function depending on
the internal state. Ignoring the part of the wave function left in
the states outside of the qubit pair, the wave function after the
gate has the form

|� f 〉 = 1
2 (|00〉ψ f ,00 + |01〉ψ f ,01 + |10〉ψ f ,10 − |11〉ψ f ,11)

(21)

where the ψ f ,ii′ have the effects of different interactions be-
tween the atoms and have norm ∼1.

Applying the Hadamard gate to qubit 2 gives the final state

|�〉 = 1√
2

(
|00〉ψ f ,00 + ψ f ,01

2
+ |11〉ψ f ,11 + ψ f ,10

2

+ |01〉ψ f ,00 − ψ f ,11

2
+ |10〉−ψ f ,11 + ψ f ,10

2

)
. (22)

From this, taking |�〉〈�| and integrating over the spatial co-
ordinates gives the components of the reduced density matrix

ρ0000 = 1
8 (〈ψ f ,00| + 〈ψ f ,01|)(|ψ f ,00〉 + |ψ f ,01〉),

ρ1111 = 1
8 (〈ψ f ,11| + 〈ψ f ,10|)(|ψ f ,11〉 + |ψ f ,10〉),

ρ0011 = 1
8 (〈ψ f ,00| + 〈ψ f ,01|)(|ψ f ,11〉 + |ψ f ,10〉). (23)

IV. ANALYTICAL ESTIMATES OF MOTIONAL
GATE INFIDELITY

This section provides an analytical treatment of two dif-
ferent gate protocols to give an idea of the parameters that
determine the contribution of photon momentum to the gate
infidelity, 1 − F . This derivation often will be based on the
Schrödinger equation since the other effects are small. We
will then average over possible spatial states to account for
cases where the atom is not in a motional eigenstate. These
analytical results are used for interpretation; for the example
results below, we always solve the density matrix equations,
Eq. (13).

A. Bell fidelity for π-2π-π CZ gate

To see how entanglement between the internal qubit state
and the atomic center of mass motion affects the Bell fidelity,
the π -2π -π Rydberg blockade gate is instructive. In this case,
a first pulse excites qubit 1 to the Rydberg state if it is in state
|1〉, a second pulse excites qubit 2 from state |1〉 to the Ryd-
berg state and back to state |1〉 if qubit 1 is not in the Rydberg
state, and a last pulse de-excites qubit 1 from the Rydberg state
back to |1〉. We will consider three contributions to infidelity:
axial momentum kicks, laser focusing, and radiative losses.

Contribution from axial momentum

To derive the effect from axial momentum, the effects on
the ψ f ,ii′ from the different kicks must be determined. The
ψ f ,00 has no kick from momentum absorption, the ψ f ,10 has
a kick on qubit 1 and no kick on qubit 2, the ψ f ,01 has a kick
on qubit 2 and no kick on qubit 1, and ψ f ,11 has the same
kick on qubit 1 as for ψ f ,10. All of the far off resonant qubit
transitions get a small kick from off resonant Stark shifts (for
example, qubit 1 in ψ f ,00 and qubit 2 in ψ f ,11). The effect of
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the kick on qubit 1 can be approximated using the results in
Sec. D 2 while that on qubit 2 for ψ f ,01 can be approximated
using the results in Sec. D 1. The kicks from off resonant shifts
can be calculated using the results in Sec. D 3. Even when the
excitation to the Rydberg state is through a nearly resonant
2 photon transition, the population out of the ground state is
small and each pulse length is small compared to the duration
of the gate. This means the kicks from off resonant shifts can
be ignored compared to the momentum kicks.

We will write the unkicked wave function as ψ0 and the
kicked wave function as ψk,1 for the kick on atom 1 and ψk,2

for the kick on atom 2. From the previous paragraph, the
different wave functions can be written as

ψ f ,00 = ψ0(r1)ψ0(r2),

ψ f ,01 = ψ0(r1)ψk,2(r2),

ψ f ,10 = ψk,1(r1)ψ0(r2),

ψ f ,11 = ψk,1(r1)ψ0(r2). (24)

The projections needed to determine the fidelity are

1 − |〈ψk,i|ψ0〉| = ε(i) (25)

with ε(1) from Sec. D 2, Eq. (D11), while ε(2) is derived in
Sec. D 1, Eq. (D5).

We use these terms in the wave function in Eq. (23) to find

ρ0000 = 1
4 (2 − ε(2) ),

ρ1111 = 1
2 ,

ρ0011 = 1
4 (1 − ε(1) )(2 + ε(2) ). (26)

These expressions do not include phase corrections from the
momentum kicks and far off resonant Stark shifts mentioned
above. These phases can be corrected by single qubit Z rota-
tions in order to recover an ideal CZ gate, and are therefore not
retained in the analysis. Putting in the analytic forms for the ε

and dropping terms of order ε2, the Bell infidelity is

1 − F = ε(1)

2
+ 3ε(2)

8
= K2kBTeff

2M

(
τ 2

1

2
+ 3τ 2

2

8

)
, (27)

where Teff is from Eq. (C7), τ1 is the time between the two
π pulses, and τ2 = δt/2 with δt the duration of the 2π pulse.
The time between π pulses is several times larger than the
duration of the 2π pulse which suggests ε(1) � ε(2). When
the temperature is much larger than the quantized energy
spacings of the atom trap, Teff � T and Eq. (27) is identical
to the “Doppler dephasing” term in Ref. [11] Supplementary
Material, which differs by a factor of 2 from that in Ref. [29].

B. Contribution from laser focusing

The finite spatial extent of an atom’s position combined
with spatial variation of the laser intensity due to focusing
leads to infidelity in the gate. In this section, we will only
treat this effect. There are several trends to consider. As the
laser waist decreases, the spatial variation of the intensity
increases across the spatial extent of the atom position leading
to decreased fidelity. The fidelity decreases with increasing
temperature due to the increasing spatial extent. The fidelity
increases as the trap frequency increases due to the decreasing
spatial extent.

To obtain the infidelity due to laser focusing, the projection
derived in Sec. F will be used. The decreased norm in each
term can be found by noting that in ψ f ,00 neither atom is
excited, ψ f ,10 atom 1 is excited, ψ f ,01 atom 2 is excited, and
ψ f ,11 has no effect since the 2π pulse changes the sign of the
ψ11 term not excited to ψR1 in the first π pulse. Unlike the
previous section, the main effect is the change in the norm of
the state associated with the transition to the Rydberg state
and back. In this case, the different wave functions can be
written as

ψ f ,00 = ψi,00,

ψ f ,01 = (1 − ε(G) )ψi,00,

ψ f ,10 = (1 − ε(G) )ψi,00,

ψ f ,11 = ψi,00. (28)

Substituting the projections into Eq. (23), gives

ρ0000 = ρ1111 = |ρ0011| = 1

2
− ε(G)

2
+ (ε(G) )2

8
, (29)

where ε(G) is defined in Eq. (F5). Dropping all terms involving
ε2 the Bell state fidelity, Eq. (19), gives

1 − F = ε(G). (30)

If the excitation is due to two photon absorption, the 1/w2
0 is

the sum of the squares of the inverse waists and the 1/x2
R is the

sum of the squares of the inverse Rayleigh ranges.

C. Contribution from radiative losses

The contribution to the infidelity due to radiative losses
can be computed from the form of Eq. (23) by considering
the decrease in magnitude in each part of the wave function.
We will take the most pessimistic interpretation that radiative
losses due to spontaneous emission or blackbody radiation
lead to transitions outside of the qubit states on the time scale
relevant to the gate. Assuming the Rydberg lifetime is much
shorter than the gate duration, the change in norm leads to

ψ f ,00 = ψi,00,

ψ f ,01 =
(

1 − �τ2

2

)
ψi,00,

ψ f ,10 =
(

1 − �τ1

2

)
ψi,00,

ψ f ,11 =
(

1 − �τ1

2

)
ψi,00. (31)

Using Eqs. (23) and (19) and dropping terms quadratic in τ

leads to the infidelity

1 − F = �

(
τ1

2
+ τ2

4

)
, (32)

where � is the inverse of the Rydberg lifetime due to radiative
losses, τ1 is the time between the two π pulses, and τ2 = δt/2
with δt the duration of the 2π pulse.

D. Bell fidelity for adiabatic CZ gate

Another possible gate protocol involves exciting both
qubits simultaneously with the same laser pulse. We will
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let 
(t ) have a Gaussian envelope with fixed detuning �.
This will give a CZ if the detuning, duration, and Rydberg-
Rydberg interaction, h̄B, are chosen appropriately. The one
atom Hamiltonian is Eq. (14) with


(t ) = 
0e−t2/δt2
(33)

the only time dependent part.
As in the previous section, the final wave function has the

form of Eq. (21) where the ψ f ,ii′ have the effects of different
kicks. The ψ f ,00 has no kick from the photon momentum,
the ψ f ,10 has a kick on qubit 1 and no kick on qubit 2, the
ψ f ,01 has the same kick on qubit 2 and no kick on qubit 1,
and the ψ f ,11 has a kick on both qubits. There are small kicks
from far detuned transitions which will be ignored. The results
from Sec. D 3 can be used to compute the effect on ψ f ,10 and
ψ f ,01. The effect on ψ f ,11 is more difficult to obtain because
it involves both qubits.

Because there are four electronic states involved and two
different atomic momenta, we were not able to derive an
expression for the projections involving ψ f ,11. However, we
have found a formula using qualitative arguments that gives
good agreement with all of the calculations we have per-
formed with the full density matrix. The idea is to treat the
adiabatic pulse on the ψ f ,11 state as giving the same kick to
each atom. In analogy to Eq. (D16), we define the duration
of the kick on an individual atom as half of the Rydberg
population integrated over the pulse:

τR = 1

2

∫ ∞

−∞
PR1(t ) + P1R(t ) + 2PRR(t )dt, (34)

where PR1(t ) is the probability for atom 1 to be in the Ry-
dberg state and atom 2 is in state |1〉, P1R(t ) is the reverse
identification, and PRR(t ) is the probability that both atoms
are in the Rydberg state. For the symmetric excitation of this
gate, PR1(t ) = P1R(t ). This calculation requires hardly any
computer time compared to solving the full density matrix
equations including the vibrational states. This leads to the
identification

ψ f ,00 = ψ0(r1)ψ0(r2),

ψ f ,01 = ψ0(r1)ψk,1(r2),

ψ f ,10 = ψk,1(r1)ψ0(r2),

ψ f ,11 = ψk,2(r1)ψk,2(r2) (35)

with the projections from Eq. (D17)

1 − |〈ψ0|ψk,1〉| = ε(ad )(τa),

1 − |〈ψ0|ψk,2〉| = ε(ad )(τR),

1 − |〈ψk,1|ψk,2〉| = ε(ad )(τR − τa), (36)

where τa is from Eq. (D16) and τR is from Eq. (34).
Ignoring all terms quadratic in the ε, the projections in

Eq. (23) give

ρ0000 = 1

2
− K2kBTeff

2M

τ 2
a

4
,

ρ1111 = 1

2
− K2kBTeff

2M

τ 2
R + (τR − τa)2

4
,

|ρ0011| = 1

2
− K2kBTeff

2M

3τ 2
R + 3τ 2

a + (τR − τa)2

8
, (37)

where τa is from Eq. (D16) and τR is from Eq. (34). Both of
these times are computed using only the internal states of the
atoms. Combining these factors, the Bell state infidelity due
to the photon momentum kicks is

1 − F = K2kBTeff

2M

(
τ 2

a

2
+ τ 2

R

2
+ (τR − τa)2

4

)
, (38)

which can be compared to the same expression for the π -2π -π
gate of the previous section, Eq. (27). Although the details
are different, the gates have the same scaling with photon
kick h̄K , atom mass M, and effective temperature Teff . An
advantage of the adiabatic gate is that the time spent in the
Rydberg state, as measured by τa and τR, can be substantially
shorter than the spacing of the π pulses τ1 in the π -2π -π gate
for the same excitation Rabi frequency. This gate also has the
advantage that it can reach high fidelity for both large and
small B, the latter case being useful for gates acting on qubits
with large spatial separations.

In addition to the axial momentum kick, the Rydberg life-
time and the laser focus will contribute to infidelity. It is not
obvious how to analytically account for these effects for this
adiabatic gate. However, they can be accounted for by solving
the small set of density matrix equations that do not include
the effect from axial recoil.

V. RESULTS

In this section, we present the results of calculations that
test the accuracy of the approximations discussed above and
in the Appendix and explore the behavior of the decoher-
ence as a function of atomic parameters. We compare the
approximations to the results from solving the full density
matrix equations which automatically include all of the effects
from photon absorption and reemission including changes in
vibrational level, Doppler shifts, spatial changes, and mo-
mentum changes. Parameters will be chosen to correspond
to transitions in Cs. All calculations in this section will use
M = 132.91 atomic mass units. The excitation to the Rydberg
state occurs from counter-propagating lasers of wavelength
459 and 1038 nm which gives an effective wavelength, λeff �
822.9 nm, for the photon kick, K = 2π/λeff . For the effects
from focusing, we will use a waist (1/e2 intensity radius) of
w0 = 2 μm for each beam. This leads to Rayleigh ranges of
27.4 and 12.1 μm and an effective waist w0 = √

2 μm and
effective Rayleigh range of 11.1 μm in Eq. (30).

We will use two example Rydberg states in the calculation,
66S and 106S. The lifetime of these states, 130 and 366 μs,
respectively, include stimulated absorption and emission due
to blackbody radiation [42,43].

A. π-2π-π CZ gate

The first tests will involve parameters for the π -2π -π gate
of Ref. [11]. To model the pulses, we use


1(t ) = 
1,max
(
e−(t+τ1/2)6/δt6

1 + e−(t−τ1/2)6/δt6
1
)
, (39)


2(t ) = 
2,maxe−t6/δt6
2 , (40)

where the 
 j,max give the appropriate π pulses for atom 1
and 2π pulse for atom 2, τ1 = 1.0044 μs is the time between
pulses for atom 1, δt1 = 0.14 μs is the duration of each of the
atom 1 pulses, and δt2 = 0.22 μs is the duration of the atom 2
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FIG. 3. The infidelity, 1 − F in Eq. (27), due to axial momentum
kick for the atom in the ground state of a harmonic trap as a function
of the trap frequency f , using T = 0 and not including radiative
decay of the Rydberg state. The trap potential is on for the full
sequence, Eq. (39), for the parameters in the text. This calculation
assumes the trapping potential is magic so that the potential is the
same for all internal states. The solid red line is the full density matrix
calculation, the long dashed blue line is from the approximation,
Eq. (D5), and the green dotted line is the approximation that includes
the trapping potential, Eq. (E4). The full density matrix calculation
and Eq. (E4) are indistinguishable. The horizontal solid black line
(66S) and dotted black line (106S) are the contribution to infidelity
due to the finite lifetime (130 and 366 μs respectively) of these
Rydberg states.

pulse. Because of the order of magnitude difference between
τ1 and τ2 = δt2/2, the Bell state infidelity is 1 − F � ε(1)/2.

Figure 3 shows the infidelity, 1 − F in Eq. (27), for these
parameters as a function of the trapping frequency when the
atoms start in the motional ground state. For this case, we
assume a scenario where the trapping potential is magic so
that the potential is the same for all states. The finite lifetime
of the Rydberg state is not included in this calculation, but
the horizontal lines show the contribution to the infidelity
due to the Rydberg finite lifetime for 66S (solid) and 106S
(dotted) states. The solid red line is from numerically solving
the density matrix calculation; the approximation, Eq. (E4),
that includes the trapping potential is the green dotted line that
overlays the exact result. This shows that the small width of
the individual π pulses has a negligible contribution to ε(1).
The blue dashed line is the exact result when the trapping
potential is turned off during the calculation, Eq. (D5). Be-
cause this calculation has ∼1 μs between π pulses, it is not
surprising that Eq. (D5) becomes noticeably different from
calculations with the trap on when f ∼ 100 kHz. For these
calculations, convergence to better than 0.01% was achieved
using a maximum vibrational quantum number of 10.

It is, perhaps, a surprise that there is more, not less, deco-
herence as the trapping frequency increases. Intuition suggests
that higher frequencies lead to less effects from atom recoil
due to the larger energy spacing. However, because the dura-
tions are short, the size of the energy spacings are not relevant.
The main effect is from the spatial size of the initial state and
how far the atom moves during the sequence of laser pulses.
The spatially smaller states at higher frequency have less over-
lap with the unkicked states. At the higher frequencies, the
infidelity due to the axial photon kick can be larger than that
from radiative losses even when the atom is in the motional
ground state.
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FIG. 4. The infidelity, 1 − F , due to axial momentum kicks for
the π -2π -π gate with the atom in a thermal distribution of a har-
monic trap as a function of the temperature, T . The calculation does
not include radiative decay of the Rydberg state. The different plots
are for different trap frequencies: 10 (red solid), 20 (blue dashed),
and 50 kHz (green dotted). The purple short dashed line is the high
temperature approximation, Eq. (43), with the second term in the
square brackets dropped. The approximation, Eqs. (41) and (D11),
are indistinguishable from the full calculation on this scale. The
horizontal lines are the same as Fig. 3.

For the laser parameters of the previous paragraph, we
now compare the approximation, Eq. (D11), to the full cal-
culation with the trapping potential for a thermal distribution.
Results from calculations with three different trap frequencies
are shown in Fig. 4. These calculations include the trapping
potential during the laser manipulations. The results from the
approximation, Eq. (D11), are indistinguishable from the full
solution on the scale shown indicating the trapping potential
has little effect for these cases. As in Fig. 3, the horizontal
lines are the infidelity due to finite Rydberg lifetime of the
66S (solid) and 106S (dotted) states. The fidelity is F > 0.995
for the temperatures plotted. The best value for the 50 kHz
trapping potential is F � 0.999. The maximum number of
vibrational states was used for the 20 kHz calculation at 5 μK
because the 10 kHz calculation was only performed to 1.5 μK;
the maximum number of vibrational states for this case was
∼100.

Figure 4 shows that the decoherence increases linearly with
the temperature once kBT is larger than ∼h̄ω‖. Also, the deco-
herence is nearly independent of the frequency of the trapping
potential when this condition is satisfied because the smallest
relevant length scale is the thermal de Broglie wavelength.
Since the approximation, Eq. (D11), is accurate, we can use it
to derive an expression for the decoherence when ε(1) is small:

ε(1) � K2τ 2
1 kBTeff

2M
= K2τ 2h̄ω‖

4M
coth

(
h̄ω‖

2kBT

)
, (41)

where coth(x) = (ex + e−x )/(ex − e−x ). The limits are

ε(1) → K2τ 2
1 h̄ω‖

4M
[1 + 2e−h̄ω‖/kBT ] for kBT � h̄ω‖ (42)

→ K2τ 2
1 kBT

2M

[
1 + 1

12

(
h̄ω‖
kBT

)2]
for kBT � h̄ω‖, (43)
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FIG. 5. The projection error, ε(1), due to axial momentum kick
for atoms in a thermal distribution of a harmonic trap as a function of
the time between π pulses. All calculations are for a trap frequency
of 10 kHz using Eq. (41). The different plots are for different atom
temperatures: 2 (red solid), 5 (blue dashed), and 10 μK (green
dotted). The solid (66S) and the dotted (106S) black lines are �τ1.

which shows the linear dependence on the temperature when
the atoms are hot compared to the quantum energies. It also
shows that the decoherence does not depend on the trap
frequency at high temperatures. Another point of compari-
son is to remember that the average number of vibrational
quanta is 〈n〉 = 1/{exp[h̄ω‖/(kBT )] − 1}. When kBT = h̄ω‖,
the average vibrational quanta is 〈n〉 � 0.58 and the fractional
error in the high temperature form of the decoherence is 8%.
When kBT = 2h̄ω‖ then 〈n〉 � 1.54 and the fractional error is
2%. This illustrates how quickly the trap frequency becomes
irrelevant to the decoherence.

As a physical example, we consider the case from Ref. [13]
where Sr is excited from the 3P0 metastable state to 3S1 Ryd-
berg states using a single 317 nm photon. The time scale for
a 2π pulse was of order 100 ns. Using their estimated tem-
perature of 2.5/

√
10 μK = 0.8 μK gives ε(1) � 1.5×10−4.

However, if the gate is composed of more than one pulse,
the duration can be longer. The decoherence increases to
ε(1) � 1.3×10−3 if τ1 = 300 ns.

The scale of the projection error can be compared to the
decoherence from decay of the Rydberg state. Figure 5 shows
the ε(1) for calculations in a 10 kHz trap for three different
temperatures (2, 5, and 10 μK) as a function of the time, τ1,
between the π pulses. Comparing this time scale and trap
frequency to that in Fig. 3, whether the trap is on or off
during these operations has no visual effect on the results. This
emphasizes that the infidelity from Rydberg state decay scales
linearly with τ1 while that from recoil is proportional to the
square of the time. For short times between pulses, the main
error will be due to the decay of the Rydberg state. For pulses
with τ1 ∼ 1 μs, the atoms need to be cold for the projection
error to be smaller than the decay probability.

The infidelity due to laser focusing, Eq. (30), does not
depend on the duration of the gate as long as the duration is
much less than the trap period. The results with the trap on
were visually indistinguishable from those with the trap off for
Figs. 6 and 7. This infidelity has the strongest dependence on
the effective temperature of the mechanisms examined in this
paper. Figure 6 shows the infidelity, Eq. (30), for 3 different
transverse trap frequencies: 10 (solid red), 20 (blue dashed),

0

2

4

6

8

 10

0 1 2 3 4 5

10
3  (

1−
F

)

T (μK)

FIG. 6. The infidelity, 1 − F , due to laser focus, Eq. (30), for the
π -2π -π gate with the atom in a thermal distribution of a harmonic
trap as a function of the temperature T . The calculation does not
include radiative decay of the Rydberg state. The different plots
are for different transverse trap frequencies: 10 (red solid), 20 (blue
dashed), and 50 kHz (green dotted). This calculation does not include
the axial decoherence since it is much smaller than that for the
transverse degrees of freedom. The horizontal lines are the same as
Fig. 3. A transverse misalignment of y0 = 100 nm is assumed.

and 50 kHz (green dotted). For this calculation and that of
Fig. 7, we assumed the terms with xR are less than 10% of the
transverse decoherence and have been dropped. The effective
waist is

√
2 μm and there is assumed misalignment of y0 =

100 nm. This figure illustrates how sensitive the infidelity
is to the transverse trap frequency: at high temperature, the
infidelity is proportional to 1/ f 4

⊥. This figure also shows how
high temperature exacts a high penalty because the infidelity
scales like T 2 in this limit.

Figure 7 shows how the axial displacement, y0, can quickly
degrade the fidelity of the π -2π -π gate. This graph uses

 0
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FIG. 7. The infidelity, 1 − F , due to laser focus, Eq. (30), for the
π -2π -π gate with the atom in a thermal distribution of a harmonic
trap as a function of the displacement, Y0. The calculation does not
include radiative decay of the Rydberg state. The different plots are
for different transverse trap frequencies and temperatures: 10 kHz,
1 μK (red solid), 20 kHz, 1 μK (blue dashed), and 50 kHz, 1 μK
(green dotted), 10 kHz, 5 μK (orange short dash), 20 kHz, 5 μK
(purple dash-dot), and 50 kHz, 5 μK (brown dash-dot-dot). The
10 kHz, 5 μK infidelity is divided by 5 to fit on the same graph.
This calculation does not include the axial decoherence since it is
much smaller than that for the transverse degrees of freedom. The
horizontal lines are the same as Fig. 3.
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the same parameters as Fig. 6 except the temperatures and
frequencies are fixed: the curves use 10, 20, or 50 kHz and 1
or 5 μK. As with Fig. 6, it is clear that larger temperatures
dramatically degrade the fidelity as do lower trap frequen-
cies. Figure 7 demonstrates the importance of alignment for
the gate fidelity since the infidelity, Eq. (30), has a quartic
dependence on y0. It is interesting that the infidelity from
displacement of the focused beam is greater than that due to
finite Rydberg lifetime for displacements larger than ∼200 nm
even for the 66S state; this value is ∼1/10 the waist of the
individual beams.

Because the infidelity is proportional to the atom tempera-
ture for kBT > h̄ω, the change in vibrational character due to
gate pulses should be examined. This effect can be estimated
using the heating of the atom’s center of mass motion due to
the time delay between the pulses. The kick shifts the position
which leads to heating. For reasonable gate parameters, this
effect will be negligible except for high frequency traps at the
lowest temperatures. The center of mass energy will change
by the amount

�E = 1

2
Mω2δx2 = h̄2K2

2M
(ωτ1)2, (44)

which is the recoil energy times (ωτ1)2. Since ωτ1 will be
much less than one, this shows the energy will increase by a
small fraction of the recoil energy per gate. To give an idea
of the size of the two effects, for τ1 = 1.00 μs and λeff =
822.9 nm, the change in energy from Eq. (44) is 0.42 nK per
kick for a 10 kHz trap, 1.7 nK per kick for 20 kHz, and 11 nK
per kick for 50 kHz.

As a comparison, the change in energy that occurs when
the trap is turned off for a time τ � τ1 + 4δt1 � 1.56 μs and
then turned back on is �E = (kBTeff/2)(ωτ )2. For this effect,
the size of the energy change increases with each time the trap
is turned off and back on. Taking < E >= kBTeff , The tem-
perature after N gates is TN = Teff exp[N (ωτ1)2/2]. For 100
gates, T = Teff e0.48 = 1.62Teff for a 10 kHz trap, e1.92Teff =
6.83Teff for a 20 kHz trap, and e12Teff = 1.6×105Teff for a
50 kHz trap. Clearly, several approximations break down for
the 50 kHz trap before this limit is reached. Nevertheless this
result indicates that turning on and off a 50 kHz trap is not
a good idea. Fortunately it is possible to design traps that
present the same trapping potential for ground and Rydberg
atoms so it is feasible to leave the trap potential on continu-
ously [44].

B. Adiabatic CZ gate

This section contains results for the adiabatic gate dis-
cussed in Sec. IV D. Examples of parameters that lead to an
effective CZ gate are in Table I. The values for τ1, Eq. (D16),
result from one atom calculations and τR, Eq. (34), result from
two atom calculations that do not include atomic recoil. The
values for 1 − F in this table result from calculations that do
not include the atomic recoil but do include the radiative loss
from the Rydberg state. In Table I, the infidelity is almost
completely due to the radiative loss; the number of photons
absorbed or emitted is equal to the infidelity to the digits
given. If the radiative loss is not included, the infidelity solely
arises from nonadiabaticity and from nonideal choice of gate
parameters to generate a CZ gate; ignoring radiative loss, the

TABLE I. Parameters for the adiabatic gate. All have 
0 =
2π×17 MHz. Parameters τ1, τR are defined in Eqs. (D16) and (34).
The infidelity 1 − F is that due to the pulse shapes, finite blockade,
and includes finite Rydberg lifetime, but does not include momentum
kicks, i.e. the atoms are fixed in space for the determination of the
gate parameters. The left infidelity is for 66S and the right is for
106S. See Fig. 8 for an example that includes momentum kicks.

Gate �/
0 δt (μs) B (106s−1) τ1, τr (ns) 1 − F (10−4)

1 −0.5000 0.2 2π 600 90, 63 6.3, 2.4
2 −0.8635 0.2165 2π 60 56, 42 3.8, 1.3
3 −0.3000 0.5 2π 4 357, 416 30, 11

infidelity would be 1.8×10−5, 9.9×10−8, and 1.3×10−5 for
the three cases shown.

Compared to the gate in the previous section, the resulting
duration in the Rydberg state, τ1,R, is over an order of magni-
tude shorter for gates 1 and 2 and a factor of ∼3 smaller for
gate 3. This should translate to a factor of ∼100 (gates 1 and
2) or ∼10 (gate 3) improvement in fidelity due to momentum
kicks with a factor of ∼10 and ∼3 improvement of radiative
decay of the Rydberg state.

Figure 8 shows the infidelity including the effect from
momentum kicks, 1 − F , versus the atom temperature for
gate 3 which is the worst gate in the table because it as-
sumes the weakest Rydberg interaction and therefore requires
a relatively long interaction time leading to more spontaneous
emission. The calculation is performed for a trapping fre-
quency of 50 kHz to reduce the size of the density matrix
calculation. Higher temperature or lower frequency requires
more states for convergence. The trap is on for the duration of
the gate but there is no visual difference if the trap is off due to
the short duration of the gate compared to the trap period. The
two atom kick calculations have up to 40 vibrational states for
each atom for the 5 μK calculation and goes to tenth order in
the expansion of the exponential eıKx.

As expected, the infidelity is a factor of ∼10 smaller
than the gates of the previous section. The full results were
compared to the simple expression Eq. (38), with the intrinsic

0

1

2

3

4

5

0 1 2 3 4 5

10
3  (

1−
F

)

T (μK)

FIG. 8. The Bell state infidelity for gate 3, see Table I, as a
function of atom temperature. The trap has a frequency of 50 kHz.
The solid red line is from the full density matrix calculation and the
dashed blue line is from Eq. (38) added to the intrinsic 1 − F from
Table I for 66S. The orange short dash and green dotted are the same
for 106S.

022424-10



PHOTON-RECOIL AND LASER-FOCUSING LIMITS TO … PHYSICAL REVIEW A 103, 022424 (2021)

gate error of Table I added to it. As seen in the figure, there is
good agreement between the full calculation and the simple
analytic results. In this temperature range, the main infidelity
for this gate is due to radiative losses in the Rydberg state.
The infidelity from the momentum kicks becomes larger than
that from radiative losses at temperatures a bit above 10 μK.

In this gate, population does transiently occupy the double
Rydberg state which means there can be additional entangle-
ment between the internal states and the motional character
due to Rydberg - Rydberg forces as discussed in Sec. II B.
Examining the projections in Eq. (23), the definition of Bell
state fidelity in Eq. (19), and the overlap factor in Eq. (7), a
van der Waals interaction contributes a decrease to the fidelity
of

1 − F = 3

8
[1 − 〈ψ f ,00|ψ f ,11〉] = 27B2kBTeffτ

2
RR

2Mω2
⊥r2

12

, (45)

where the parameters are defined below Eq. (7) and the ther-
mal average was taken in the expectation value of Eq. (7). For
1/r3

12 interactions, this expression should be divided by 4. Un-
like the momentum kick from the photon, the trap frequency
explicitly appears in the infidelity. As the trap frequency in-
creases, the infidelity decreases as expected.

This expression was checked by solving the full density
matrix equations for gates 2 and 3 for several temperatures and
found to be accurate at the couple percent level. Calculations
gave τRR of 31.6 ps, 8.60 ns, and 157 ns for gates 1, 2, and 3.
For gate 1, the separations r12 are 2.6 and 5.3 μm for the 66S
and 106S states, respectively, while for gate 2 the separations
are 4.2 and 10.5 μm and for gate 3 are 8.0 and 20.0 μm.
The crossover distance [45] between a resonant dipole-dipole
interaction scaling as 1/r3

12 and a van der Waals interaction
scaling as 1/r6

12 increases with the principal quantum number
and we find it to be approximately 2 μm for the 66S state
and 8 μm for the 106S state. Therefore gate 1 has 1/r3

12
interaction strength while gates 2 and 3 have 1/r6

12. For Teff =
5 μK and 50 kHz trap frequency, the infidelities are (gate
1: 2.2×10−5, 5.4×10−6), (gate 2: 2.5×10−2, 4.1×10−3), and
(gate 3: 1.0×10−2, 1.7×10−3).

VI. CONCLUSIONS

We have derived the equations needed to analyze the de-
coherence that arises from the entanglement of internal states
of neutral atoms with the motional degrees of freedom. The
entanglement occurs when the internal states of the atom
are manipulated by laser pulses. Although entangled atomic
states can be prepared using collisional interactions without
resorting to laser excitation, Rydberg gates have the advantage
that they are fast, operate at long range, and can reach high
fidelity without preparation of atoms in the motional ground
state.

Different levels of approximation were considered above
and it was shown that a sudden approximation well describes
the decoherence in this system. This approximation gives a
simple formula for the decoherence, Eq. (D4), in terms of the
shift in position due to the photon absorption and re-emission,
δx, and an initial state length scale �x. We also derived the
infidelity that occurs when the lasers that excite the atom are
focused.

The trends in the decoherence are important for future ex-
periments, especially in the limit of small decoherence ε � 1.
The decoherence is quadratic in the shift in position due to the
absorption and re-emission of the photons which means the
decoherence is quadratic in the separation of laser pulses, τ ,
and in the momentum kick from the photon, h̄K . It is also
inversely quadratic in the initial state length scale �x; larger
�x leads to less decoherence and vice versa. For cold atoms,
the initial state length scale is that for a harmonic oscillator
which is inversely proportional to the trap frequency. This
leads to the decoherence being proportional to the trap fre-
quency at low temperatures. At high temperatures, this length
scale is the thermal de Broglie wave length which is inversely
proportional to the temperature. This leads to the decoherence
being proportional to the temperature at high temperatures.
Finally the combination that δx is inversely proportional to the
mass and �x is inversely proportional to the square root of the
mass leads to the decoherence being inversely proportional to
the mass.

The direction of the trends are as might be expected with
the possible exception that the decoherence is less for small
trap frequencies (i.e., it is not necessary to get into the
motional ground state, but it is necessary to be cold). The
particular power law of the dependence might not be expected
and shows where it is important to do better. For example, if
the momentum kick is decreased by a factor of 2 by using
a pair of counter-propagating photons, the decoherence will
decrease by a factor of 4. The trends discussed above and the
simple expression for the decoherence will be a useful guide
for quantum computation applications.

For focused lasers the π -2π -π gate infidelity increases
with the deviation of the atomic position from the focal po-
sition of the excitation beam. Inspection of Eq. (F5) shows
that there is a temperature independent error associated with
misalignment of the trapping potential and the excitation
laser, followed by contributions that scale as temperature and
temperature squared. The temperature dependent errors are
inversely proportional to the trap frequency to the second and
fourth powers. We have not analyzed the focusing error for
the adiabatic gate, but anticipate that it will be significantly
smaller due to the insensitivity of the adiabatic pulse area to
the laser amplitude [26].

The trend for the focusing error is that it is less for larger
transverse trap frequencies. This is opposite to the motional
infidelity which favors lower axial trap frequencies. This the
case for the π -2π -π gate and the adiabatic gate analyzed
here. Similar trends are expected for other gate protocols.
The expressions derived for the dependence of gate infidelity
on trap parameters, atomic temperature, and pulse parameters
will be useful for reaching high fidelity regimes needed for
quantum information applications.
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APPENDIX A: ANALYTIC RESULTS FOR 1 ATOM

Basic equations

The derivation in this section will be based on the
Schrödinger equation to simplify the interpretation. All of the
calculated results, Sec. V, were found by numerically solving
the full density matrix equation, Eq. (13), except for those
presented in Figs. 6 and 7.

To solve for the decoherence measured by χ , Eq. (5),
the full Schrödinger equation needs to be tracked through
the different excitation and de-excitation steps. By solving
the full Schrödinger equation, we automatically include all of
the effects like changes in vibrational level, Doppler shifts,
spatial changes, and momentum changes. For a three-state
atom, the three state wave function will be written as

|�(t )〉 =
∑

ψ j (x, t )| j〉e−iE j t/h̄, (A1)

where E j is the energy of internal state | j〉 and we have incor-
porated the Cj’s into the spatial function to make the notation
simpler. The spatial functions are solutions of the equations

ih̄
∂ψ0

∂t
= HC,0ψ0,

ih̄
∂ψ1

∂t
= HC,1ψ1 + V1Re−iωR1tψR,

ih̄
∂ψR

∂t
= HC,RψR + V1ReiωR1tψ1, (A2)

where the HC, j is the kinetic energy operator plus the trapping
potential for state | j〉, V1R(x, t ) = h̄
(t ) cos(ω̄t − Kx) is the
coupling between internal states |1〉 and |R〉 due to the laser,
K is the wave number of the photon, and ωR1 = (ER − E1)/h̄.
The 
(t ) is the Rabi frequency for the 1-R transition. The
frequency of the laser, ω̄, might also have time dependence if
the laser is chirped.

The rotating wave approximation should work very well
for this system since the transition frequency is large and the
laser is weak. This leads to the approximation

ih̄
∂ψ1(x, t )

∂t
= H1ψ1(x, t ) + h̄
(t )

2
e−iKX ψR(x, t ),

ih̄
∂ψR(x, t )

∂t
= HrψR(x, t ) + h̄
(t )

2
eiKX ψ1(x, t ), (A3)

where the e±ıKx leads to the momentum kicks during the
absorption and stimulated emission steps. These equations
can be solved numerically using many different techniques,
leap-frog, Crank-Nicolson, etc. In cases where we numeri-
cally solved the Schrödinger equation, we used the leapfrog
algorithm for the time propagation.

The situation described above has the initial ψ1(x, t ) =
C1ψin(x) and ψR(x, t ) = 0. After the pair of laser pulses, the
ψR(x, t ) � 0. There is some population left in state |R〉 due to
Doppler shifts of the wave function but the population is small
for the cases discussed in this manuscript. The full calcula-
tions automatically includes the population left in the Rydberg
state as well as the phase changes due to atomic motion. The
approximations described below ignore the population left in
the Rydberg state but give analytic expressions for the phase
changes correct to lowest nonzero order in v/c within the
limits given for each approximation.

The amplitude 
(t ) is chosen to give approximately 100%
transition from 1-to-R and from R-to-1. This condition can
be accomplished in a variety of ways: a single 2π pulse, two
π pulses, etc. For example, a simple form that satisfies these
requirements and models excitation to the Rydberg state with
a time delay τ before de-excitation is


(t ) =
√

π

δt

(
e−t2/δt2 + e−(t−τ )2/δt2)

. (A4)

APPENDIX B: NO TRAPPING POTENTIAL, Vtr = 0

In many experiments, the trapping potential for the atom
will be dropped during the laser excitation and de-excitation
steps. In this situation, the HC,0 = HC,1 = HC,R = P2/(2M ).
This may seem a special case, but in most experiments it is
expected that the total duration of all laser pulses will be much
shorter than the oscillation period of the trapping potential.
We found that using the approximation Vtr = 0 in this case
also led to accurate results for the momentum kicks.

Equations (A3) can be recast using the Fourier transform

φ j (k, t ) = 1√
2π

∫ ∞

−∞
e−ikxψ j (x, t )dx (B1)

by multiplying from the left by exp(−ikx)/
√

2π and integrat-
ing over x. This gives the Schrödinger equation for the Fourier
transforms

ih̄
∂φ1(k, t )

∂t
= E (k)φ1(k, t ) + h̄
(t )

2
φR(k + K, t ),

ih̄
∂φR(k, t )

∂t
= E (k)φR(k, t ) + h̄
(t )

2
φ1(k − K, t ), (B2)

where E (k) = h̄2k2/(2M ) is the kinetic energy. This may
appear to be just as complicated to solve as the Schrödinger
equation in x, Eqs. (A3), but it is actually much simpler. By
writing the second equation at k + K , every k corresponds to
a simple two-state system. The k-space equations, Eq. (B2),
reduce to Nk pairs of equations where Nk are the number
of k points in φ j (k, t ). We label the functions on a grid
in k using equally spaced points ki = k0 + i · δk where i =
0, 1, . . . ,Nk − 1 as φ1,i(t ) = φ1(ki, t ) and φR,i(t ) = φR(ki +
K, t ). Note the φR,i are at shifted momenta compared to the
φ1,i This results in the set of equations

ih̄
∂φ1,i(t )

∂t
= E (ki )φ1,i(t ) + h̄
(t )

2
φR,i(t ),

ih̄
∂φR,i(t )

∂t
= E (ki + K )φR,i(t ) + h̄
(t )

2
φ1,i(t ), (B3)

where the energy is shifted in the second equation to account
for the shift in the φR,i [19].

Because these equations do not couple the φ at different i,
a massive simplification in the calculation of the decoherence
occurs. The final φ can be written in terms of the initial φ and
a unitary rotation that depends on, i:

φ j,i(t f ) =
∑

j′
Uj j′ (i; t f , t0)φ j′,i(t0), (B4)

where t0 is the initial time and t f is the final time The sim-
plification arises because the decoherence projection χ only
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depends on the U11(i; t f , t0) projected on the initial state. Since
the overlaps do not depend on the representation

χ =
∫ ∞

−∞
φ∗

f ,0(k)φ f ,1(k)dk

� δk
∑

i

|φin,i|2eiE (ki )(t f −t0 )/h̄U11(i; t f , t0), (B5)

where the initial function is φin,i = φin(ki ) and we used the
fact that the φ0,i(t ) = exp(−iE (ki )t/h̄)φin,i(0). Thus, within
the rotating wave approximation and the discretization of the
k-space wave functions, the decoherence overlap is given by

χ =
∑

i

δk|φin,i|2K11(i), (B6)

where K11(i) = exp(iE (ki )(t f − t0)/h̄)U11(i; t f , t0) is the ker-
nel for the momentum ki to start in state |1〉 at time t0,
propagate forward in time to t f with the laser pulses, and then
propagate backward in time to t0 with no laser pulses.

APPENDIX C: THERMAL DISTRIBUTION: Vtr = 0

Using the theoretical development of the previous sec-
tion, the decoherence overlap for a thermal distribution is
derived in this section. The initial system is an incoherent sum
over eigenstates, φα (k), with the probability of each state be-
ing Pα = exp(−Eα/[kBT ])/Z with Z = ∑

α exp(−Eα/[kBT ]).
One way to treat this is to say that the initial state is

φin,i =
∑

α

√
Pαeiθαφα (ki ), (C1)

where the phases θα are random. This leads to the decoherence
overlap being

χ =
∑

i

δkK11(i)
∑
αα′

√
PαPα′φα (ki )φα′ (ki )e

i(θα−θα′ )

=
∑

i

δkK11(i)ρ(ki, ki ), (C2)

where the k-space density matrix is

ρ(ki, ki ) =
∑

α

Pαφ2
α (ki ) (C3)

arises because all of the cross terms in α, α′ average to 0.
Thus, for the cases where the trapping potential can be ne-
glected during the laser manipulations, the decoherence for a
thermal distribution is just as easy to obtain as for a particular
state.

The density matrix in Eq. (C2) depends on the temperature
and the potential the atoms were trapped in just before the
laser manipulations occur. Typically, this is a nearly harmonic
potential.

The density matrix for a thermal distribution in a harmonic
oscillator can be exactly obtained for any temperature. The
Wigner function for a thermal distribution is

W (x, k) = C exp(−[�kx]2 − [�xk]2), (C4)

where �k2 = Mω2/(2kBTeff ), �x2 = h̄2/(2MkBTeff ), and the
Teff is defined in Eq. (C7). The M is the atomic mass, kB

is Boltzmann’s constant, and Teff is an effective temperature

given below. The density matrix can be obtained by Fourier
transform

ρ

(
k + k̄

2
, k − k̄

2

)
=

∫
e−ik̄xW (x, k)dx

= �x√
π

exp

(
−[�xk]2 − k̄2

4�k2

)
(C5)

and a similar expression can be obtained for the spatial den-
sity matrix by Fourier transforming on k. Although tedious,
one can show that this is the exact density matrix by using
ρT = Cρ2T ρ2T .

The diagonal density matrix is obtained by setting k̄ = 0:

ρ(k, k) = h̄√
2πMkBTeff

exp(−h̄2k2/[2MkBTeff ]), (C6)

where we have substituted for �x. The Teff can be fixed
by forcing the average energy from the classical form, Ē =
kBTeff , to equal the average energy from the quantum thermal
distribution,

kBTeff = h̄ω

(
1

2
+ 1

eh̄ω/(kBT ) − 1

)
. (C7)

which gives the limit kBTeff → h̄ω/2 at low temperatures and
kBTeff → kBT at high temperatures.

Thus, the decoherence overlap for a thermal distribution is
obtained by using the result of Eqs. (C6) and (C7) in Eq. (C2).

APPENDIX D: OVERLAPS FOR Vtr = 0

This section derives approximate expressions for the
decoherence overlap for different excitation/de-excitation pro-
cedures. All cases assume the center of mass coordinate is
in a thermal distribution and that the trapping potential is off
during the gate. The latter condition is a good approximation
if the gate duration is short compared to the trapping period.
We note that having the atom in the motional ground state is a
thermal distribution with T → 0 which gives kBTeff → h̄ω/2.
We account for the atom recoil during the stimulated absorp-
tion and emission process in all of the cases.

1. Short, 2π pulse, on resonance

This section derives the χ when there is a single, short
pulse that takes 100% of the atom population from state |1〉 to
the Rydberg state and back to state |1〉. If the atom is treated
as stationary, this leads to a π phase shift for state |1〉. We
assume that the duration of the laser pulse is short enough that
the band width of the laser is much larger than the Doppler
width and the spacing of the energy levels. In this limit, the
shape of the pulse is not important and we choose for it to be
a flat top function:


(t ) = 2π

δt
0 � t � δt 
(t ) = 0 otherwise. (D1)

For this 
(t ), Eqs. (B3) can be solved exactly. Defining the
parameters

δEi = E (ki + K ) − E (ki ),

Ēi = E (ki + K ) + E (ki )

2
, (D2)
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the final population in the state |1〉 is 1 minus a term of order
(δEδt/h̄)4 so it is only the phase dependence that contributes
to χ . We find

K(2)
11 (i) � −e−iδEiτ2/h̄, (D3)

where we have defined τ2 = δt/2 is the time spent in the
Rydberg state.

We can use this approximation with the thermal density
matrix, Eq. (C6), to obtain an analytic expression for the
decoherence overlap. The energy difference is δEi = Erec +
h̄2kiK/M where Erec = h̄2K2/(2M ) is the recoil energy of the
atom. Thus, the overlap is reduced to the Fourier transform of
a Gaussian giving:

χ (2) = −e−iErecτ2/h̄e−(δx/[2�x])2
, (D4)

where δx = h̄Kτ2/M is the distance an atom shifts due to the
absorption and re-emission of photons separated in time by
τ2 and �x = h̄/

√
2kBTeffM is proportional to the de Broglie

wave length at the effective temperature Teff in Eq. (C7).
This form leads to a nice interpretation of the decoherence.

The phase has a −1 from the pulse and has an accumulation
that arises from the average change in kinetic energy of the
atom due to the photon absorption, Erec, for photons separated
by τ2. The decrease in normalization arises because the atoms
shift position due to their changed velocity over the duration
τ2. At low temperatures, the shift is compared to the spatial
width of the ground state wave packet because kBTeff � h̄ω/2.
At higher temperatures, the shift is compared to the coherence
length of the atomic packet which is proportional to the ther-
mal de Broglie wave length.

If the phase is corrected, this gives a value

ε(2) �
(

δx

2�x

)2

= K2τ 2
2 kBTeff

2M
(D5)

where the Taylor series expansion of the Gaussian in Eq. (D4)
was used because the duration is short. This result shows that
ε for this case is proportional to: the square of the duration
of the pulse, the effective temperature, Teff in Eq. (C7), the
square of the photon momentum, and the inverse of the atom
mass. This suggests which parameters can be used to suppress
decoherence due to momentum kick. For example, a one
photon excitation with 319 nm photons is approximately 6.6
times worse than excitation with counter propagating 459 and
1038 nm photons.

2. Two short, π pulses, on resonance

This section derives the effect from a case like in Eq. (A4).
We will assume τ is much less than the period of center of
mass motion.

As a first approximation, we treat the case where the
δt � τ1 which allows a very simplified derivation. In this
case, we treat the excitation and de-excitation steps as
being instantaneous and can be thought of as a sudden ap-
proximation. The final wave function is obtained from the
concatenation of three steps. The first step is the excitation
from state |1〉 to |R〉 with the momentum kick:

φR(k + K ) = −iφin,1(k), (D6)

where the −i results from the π pulse. The second step is the
free evolution of state |R〉 for a time τ1:

φR(k + K ) = −iφin,1(k)e−iE (k+K )τ1/h̄, (D7)

where the phase accumulation is at the shifted momentum.
The third step is the de-excitation giving:

φ f ,1(k) = (−i)2φin,1(k)e−iE (k+K )τ1/h̄, (D8)

where the −i again results from the π pulse. This gives the
sudden approximation of the kernel:

K(1)
11 = −e−i[E (k+K )−E (k)]τ1/h̄. (D9)

This is the same form as Eq. (D3) which means the χ also
has the same form:

χ (1) = −e−iErecτ1/h̄e−(δx/[2�x])2
(D10)

with the parameters as defined below Eq. (D4). The interpre-
tation is the same as below Eq. (D4) and has the same type of
scaling. As in the previous section, if the phase is corrected
this gives a value

ε(1) =
(

δx

2�x

)2

= K2τ 2
1 kBTeff

2M
, (D11)

where τ1 is the time between π pulses. This expression has the
same form as in the previous section and, thus, has the same
scaling. In most applications, the separation of the pulses is at
least a few times longer than the duration of the pulses. Since
the ε(1) is proportional to τ 2

1 , this suggests that gates based
on excitation followed by a delay and then de-excitation will
have larger decoherence due to photon kick.

To extend the applicability to δt < τ , the derivation from
Sec. D 1 can be repeated but with two pulses with strength
π/δt centered at t = 0 and τ1. Ignoring the terms of order
(δEδt/h̄)4 as in the previous section, a full derivation gives
exactly the same value as Eq. (D9). This can be seen because
the two pulses give a phase accumulation of −δEi(2δt )/2 and
the time between the pulses gives a phase accumulation of
−δEi(τ1 − δt ). Thus, the result in Eq. (D11) does not depend
on the sudden approximation and is more accurate than might
be expected.

3. One adiabatic pulse

Instead of exciting the Rydberg state, some gates have a
laser pulse that is detuned so that the population adiabatically
evolves, ∼100% of the population is in state |1〉 at the end of
the pulse. This is apparently quite different from the previous
two cases, because the admixture of Rydberg state can be
small and “virtual” when the detuning is large. However, the
derivation below shows that the same form for ε results.

For this case, there is a detuning, � of the laser from h̄ωR1

so the Eq. (B3) is modified to

ih̄
∂φ1,i(t )

∂t
=

(
Ēi + h̄� − δE

2

)
φ1,i(t ) + h̄
(t )

2
φR,i(t ),

ih̄
∂φR,i(t )

∂t
=

(
Ēi − h̄� − δE

2

)
φR,i(t ) + h̄
(t )

2
φ1,i(t ).

(D12)
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Because the gate is adiabatic, the final probability in |1〉 is
�1 so only the difference in the phase accumulated in φ1,i

compared to φ0,i is important. This will lead to

K11 = K11(δE = 0)e−iα. (D13)

If α can be written in the form α = δEτa/h̄, then this example
will have the same form and interpretation as the previous
two sections. To calculate α, we integrate the time dependent
difference between the adiabatic energy and that with δE = 0
and the phase accumulated in φ0,i:

α = 1

h̄

∫ ∞

−∞

[
sgn(�)

2

√
(h̄� − δE )2 + h̄2
2 + Ē

− h̄sgn(�)

2

√
�2 + 
2 −

(
Ē − δE

2

)]
dt,

(D14)

where sgn(�) means take the sign of �. The first line is the
adiabatic energy of φ1,i, the first term on the second line is the
adiabatic energy when δE = 0, and the term in parenthesis on
the second line is E (ki ). Taylor series expanding Eq. (D14) to
first order in δE gives

α = δE

h̄

(
1

2

∫ ∞

−∞
− |�|√

�2 + h̄2
2(t )
+ 1dt

)
≡ δE τa

h̄
,

(D15)
where the term in parenthesis can be identified as the time τa.
By finding the time dependent eigenstates, the term in paren-
thesis is the integral of the probability to be in the Rydberg

state for δE = 0:

τa =
∫ ∞

−∞

〈φR,i(t )|φR,i(t )〉|δE=0

〈φ1,i(−∞)|φ1,i(−∞)〉dt . (D16)

This leads to a K(ad )
11 with the same form as Eq. (D3) which

implies the χ also has the same form with the parameters
as defined below Eq. (D4). The interpretation is the same as
below Eq. (D4) and has the same type of scaling. As in the
previous sections, if the phase is corrected this gives a value

ε(ad )(τa) =
(

δx

2�x

)2

= K2τ 2
a kBTeff

2M
, (D17)

where τa is defined in Eq. (D16).
For the gate parameters in Table I, we numerically found

that Eq. (D17) accurately reproduced the results of the full one
atom simulations that included vibrational states.

4. STIRAP pulses

Another method for exciting the Rydberg state is to use
stimulated Raman adiabatic passage (STIRAP). This involves
two photon excitation with an intermediate state. The two
laser pulses only partially overlap and the ordering of the
pulses is typically counterintuitive with the laser coupling
the intermediate state to the Rydberg state coming before the
laser coupling the intermediate state to |1〉. In this case, it
is not obvious how the timing of the pulses will affect the
momentum kick to the atom.

To understand this case, we will introduce another state |p〉
to represent the intermediate state. The Eq. (B3) is modified
to

ih̄
∂φ1,i(t )

∂t
= [E (ki ) + h̄�1]φ1,i(t ) + h̄
1(t )

2
φp,i(t ),

ih̄
∂φp,i(t )

∂t
= E (ki + K1)φp,i(t ) + h̄
1(t )

2
φ1,i(t ) + h̄
R(t )

2
φR,i(t ),

ih̄
∂φR,i(t )

∂t
= [E (ki + K1 − KR) − h̄�R]φR,i(t ) + h̄
R(t )

2
φp,i(t ), (D18)

where Kj is the wave number of the photon, � j is the detun-
ing, and 
 j is the laser coupling of the intermediate state to
the states | j〉 = |1〉 or |R〉. Note the - sign for �R is because
the Rydberg state is at higher energy than the intermediate
state.

In typical STIRAP, the detunings � are chosen so that
states |1〉 and |R〉 are degenerate. If the net recoil is zero
K1 = KR, then this leads to the same equations as when recoil
is not taken into account. This is because the dark state only
involves φ1 and φR. Thus, there is no decoherence due to recoil
when equal frequency photons are used in STIRAP.

If STIRAP is used to excite the Rydberg state and then
de-excite it, then this leads to a K(S)

11 with the same form as
Eq. (D3), which means the χ also has the same form with the
parameters as defined below Eq. (D4). The interpretation is
the same as below Eq. (D4) and has the same type of scaling.
As in the previous sections, if the phase is corrected this gives

a value

ε(S) =
(

δx

2�x

)2

(D19)

with the same scaling as previously discussed. The τ is still
defined as in Eq. (D16) but the δx = h̄(K1 − KR)τ/M.

APPENDIX E: HARMONIC TRAPPING, Vtr �= 0

The case where the trapping potential is on during the
gate manipulations can not be solved in the general case.
However, the case discussed in Sec. D 2 can be solved for
analytically when the atom starts in the motional ground state
and can be done analytically for small ε when the atom is in
a thermal distribution. We will only present the derivation for
the thermal distribution but will give the exact result for the
ground state at the end of this section.
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Because the duration of each photon pulse is assumed to
be much smaller than the oscillation period, the projection is
given by

χ (HO) =
∞∑

n=0

Pn〈ψn|
(
e−iHτ/h̄

)†
e−iKxe−iHτ/h̄eiKx|ψn〉, (E1)

where Pn = exp(−h̄ωn/[kBT ])/Z and
∑

n Pn = 1 defines Z .
Going from right to left, the operators inside the expectation
value come from the photon kick, propagating the result for
time τ , the photon kick in the opposite direction, and the time
propagation of the 〈ψn|. If ε is small, then the terms with K
can be Taylor series expanded to give

〈ψn|...|ψn〉 = 1 − K2〈ψn|x2 − eiEnτ/h̄xe−iHτ/h̄x|ψn〉

= 1 − h̄K2

Mω

[
(1 − cos ωτ )

(
n + 1

2

)
+ i

2
sin ωτ

]

(E2)

where the terms linear in x give 0 and we used raising and
lowering operators to obtain the second line. The sum over n
can be done analytically and gives

χ (HO) = 1 − i
h̄K2

2Mω
sin ωτ − K2kBTeff

Mω2
(1 − cos ωτ ), (E3)

where Teff is given in Eq. (C7). When evaluating the |χ |, the
imaginary term is proportional to K4 and should be dropped
because we are only keeping to order K2. This gives

ε(HO) = K2kBTeff

Mω2
(1 − cos ωτ ), (E4)

where τ is the time between the pulses. By Taylor series ex-
panding the cosine, Eq. (D11) is obtained. More importantly,
it shows that the fractional error in Eq. (D11) is (ωτ )2/12 and
gives numerical meaning to whether the gate is fast compared
to the trapping period. Note that having τ equal to a period of
the trap frequency gives ε(HO) = 0.

For the case where there are two very short kicks separated
in time by τ , the ground state projection for a harmonic
oscillator of angular frequency ω can be found analytically:

|χ |(HO,v=0) = exp

[
− h̄2K2

2Mh̄ω
(1 − cos ωτ )

]
. (E5)

This result matches that in Eq. (E3) by Taylor series expand-
ing the exponential and noting that kBTeff = h̄ω/2 for T = 0.

APPENDIX F: LASER FOCUSING

This section contains effects that arise from the phase and
intensity variation for a Gaussian beam. As pointed out in
Ref. [46], the intensity dependence of a focused laser can
lead to gate infidelity. In addition, there is also phase variation
that will be shown to be negligible. To be consistent with the
discussion in the other sections, the light propagates in the x
direction and the focused beam intensity varies in y and z. In
this section, we will also consider the possibility that the focus
is not at the origin but at x = x0, y = y0, z where x0 is an axial
misalignment and y0 is a transverse misalignment. We will
assume that both the misalignments and spatial extent of the

atomic density distribution are small compared to the waist. If
this limit is not satisfied, then the infidelity will be large.

The phase variation has a linear term from the Gouy phase
that decreases the momentum kick along the beam axis K →
K − 1/xR where xR = πw2

0/λ is the Rayleigh range with w0

the waist. Typically, KxR � 10 so the relative change in the
axial momentum can be ignored. In each counter propagating
Gaussian beam, there is also a spatially cubic term in the phase

�� = ±
(

x3

3x3
R

+ x[(y − y0)2 + z2]

xRw2
0

)
, (F1)

where the ± is + for right propagating and − for left propa-
gating, w0 is the waist, the first term is from the Gouy phase,
and the second term is from the curvature of phase fronts. If
the excitation is by two photons, the effect from the phase will
partially cancel due to the change in sign of the two beams. To
estimate the size of the effect from phase variation, we will use
a 2 μm waist and note that the spatial extent for 5 μK Cs in
a 20 kHz trap is 140 nm. To obtain an idea of the importance,
we compare to the phase accumulated by a plane wave Kx.
The term from the Gouy phase has a relative contribution of
∼10−6 (for 459 nm) and ∼10−7 (for 1038 nm). The term
from the phase front curvature has a relative contribution of
∼3×10−5 for each. Thus this effect might be worth revisiting
if infidelities less than 10−4 become important. Since the
extent of the atom density distribution scales like the square
root of the temperature, if the temperature were 15 μK, the
relative contribution would be 3× larger.

The focusing leads to a spatial dependence to the electric
field strength

E (x, y, z) = E0[1 − η(x, y, z)],

η ≡ (x − x0)2

2x2
R

+ (y − y0)2 + z2

w2
0

, (F2)

where xR is the Rayleigh range and w0 is the waist for single
photon excitation. For two photon excitation, 1/x2

R is the sum
of the squares of the inverse Rayleigh ranges and 1/w2

0 is
the sum of the squares of the inverse waists. As discussed
in Ref. [46] and the supplemental material of Ref. [11], this
spatial dependence leads to infidelity.

We will briefly repeat the derivation leading to infidelity for
the π -2π -π gate. We will assume that the individual pulses
are fast enough to ignore the spatial evolution during a pulse.
After a net 2π pulse with fractional error 1 − η, the spatial
wave function for the |1〉 state is

ψ f ,1 = cos[π (1 − η)]ψin,1 � −
(

1 − π2η2

2

)
ψin,1, (F3)

which leads to

ε(G) = π2

2
〈η2〉. (F4)

For typical parameters w0 � xR but the trapping potential is
often substantially weaker in the axial direction so we will
keep all the terms. We will assume the temperature is the same
along the x, y, and z coordinates and that the trap frequency
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is the same in the y and z directions. For this case,

ε(G) = π2

2

[
3〈x2〉2 + 6〈x2〉x2

0 + x4
0

4x4
R

+
(〈x2〉 + x2

0

)(
2〈y2〉 + y2

0

)
x2

Rw2
0

+ 8〈y2〉2 + 8〈y2〉y2
0 + y4

0

w4
0

]
(F5)

where we have used 〈y2〉 = 〈z2〉 = kBTeff,⊥/(Mω2
⊥), 〈y4〉 =

〈z4〉 = 3〈y2〉2, and 〈x2〉 = kBTeff,‖/(Mω2
‖ ) where the symbols

are meant to indicate that the Teff and ω are different for x and
y, z.

This is a complicated expression so it is worthwhile to note
that in many cases the effect on the axial motion from focusing
(first two lines) will be substantially smaller than that from the

transverse focusing (last line). In this case, the expression

ε(G) � π2

2

(
y0

w0

)4

+ 4π2

(
y0

w0

)2

D + 4π2D2 (F6)

with D = kBTeff,⊥/(Mω2
⊥w2

0 ) gives a good approximation of
the effect from focusing and makes clearer the dependence on
parameters.

There is one tricky aspect that arises for the π -2π -π gate.
The state |11〉 has nontrivial time evolution. The first π pulse
puts this state into a superposition of |R1〉 and |11〉 with most
of the population in |R1〉. The 2π pulse mainly changes the
sign of the |11〉 state. This means the last π pulse rotates
almost perfectly opposite the initial π pulse so that the final
superposition has |11〉 to order η4. Thus, to the order in this
section, |11〉 has no decoherence. Only the states |01〉 and |10〉
will suffer decoherence from focusing.
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