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Interference in nonlinear Compton scattering using a Schrödinger-equation approach
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The interference between Compton scattering and nonlinear Compton scattering from a two-color field in the
x-ray regime is theoretically examined for bound electrons. The underlying phase shifts are analyzed using
a perturbative approach in the incoming classical field. The perturbative approach is bench marked with a
nonperturbative approach in the classical field. The interference for different combinations of linear polarization
of the two fields is examined when the Compton and the nonlinear Compton scattered waves have the same wave
vector and polarization. Only two cases exhibit interference. When there is interference, the calculations reveal
an intrinsic phase difference between the Compton scattered wave function and the nonlinear Compton scattered
wave function of either 0 or π depending on the scattering angle.
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I. INTRODUCTION

The advent of high-intensity sources of light has made
it possible to probe a wide range of nonlinear phenomenon
ranging from multiphoton absorption [1,2] to higher harmonic
generation [3–6]. The past two decades saw the first x-ray
free-electron lasers (XFELs) being commissioned, with some
notable ones being the LCLS [7–9], SACLA [10,11], and the
European XFEL [12–14]. In the hard x-ray regime, the LCLS
can generate pulses with photon energy between 1 and 25 keV
with a pulse duration of 10–50 fs [15,16]. The SACLA facility
in Japan can generate pulses of photon energy between 4
and 20 keV, of pulse duration 2–10 fs [17,18]. The European
XFEL can generate pulses of similar photon energies of up to
25 keV with a pulse duration of ∼50 fs [12–14,19]. All three
facilities can generate laser intensities up to ∼1020 W/cm2

[13,15,17–19]. The progress in XFEL technology [20] in par-
ticular has enabled the study of nonlinear Compton scattering.
Nonlinear Compton scattering is a term that has been used to
refer to several multiphoton scattering processes [21,22]. In
this paper, we restrict our discussions of nonlinear Compton
scattering to a process where two incoming photons scatter
from a free or a bound electron into one outgoing photon.
First theoretically described by Brown and Kibble for free
electrons in 1964 [23], it was not until 1996 that it could
be experimentally confirmed [24]. For an incoming photon
of frequency ωin, Brown and Kibble [23] showed that the
frequency of the nonlinear Compton scattered photon can be
obtained approximately using the Compton expression [25],
provided one uses 2ωin for the incoming photon frequency.
The scattering angle dependence of the differential cross
section for nonlinear Compton scattering [23] substantially
differs from that of Compton scattering [26].

Despite the emergence of XFELs, experimental analysis
of nonlinear Compton scattering has been challenging. One
reason for this difficulty is the small size of the nonlinear
Compton signal, even with incident field intensities as high
as ∼1020 W/cm2 (E = 107 a.u.). In this intensity regime, the

nonlinear Compton signal can be six orders of magnitude
smaller than the size of the corresponding Compton signal
for the same field [27,28]. The relatively few experiments that
have studied nonlinear Compton scattering reflects the diffi-
culty. Another major challenge in such an experiment can be
the noise from the XFEL itself [29,30]. The second harmonic
from the XFEL can undergo Compton scattering and add to
the noise in the already small nonlinear Compton signal. Both
these challenges were discussed in a recent experiment by
Fuchs et al. [15].

In this paper, we study the interference in Compton scat-
tering when using a two-color field of frequency ωin and
2ωin with a phase difference. The interference is between the
Compton scattered photons of the 2ωin field and nonlinear
Compton scattered photons of the ωin field (see Fig. 1). Let
the intensities of the ωin field and the 2ωin field be Iωin and
I2ωin , respectively. In general, the nonlinear Compton signal
scales with the square of the incoming field intensity (∝I2

ωin
)

and the Compton signal scales linearly with intensity (∝I2ωin ),
for intensities that are within the limits stated in Sec. III A. The
interference term scales as ∝Iωin

√
I2ωin . Interference is possi-

ble since it cannot be deduced whether the photon came from
Compton scattering of the 2ωin field or nonlinear Compton
scattering of the ωin field.

This study suggests techniques to overcome two challenges
involved in nonlinear Compton scattering experiments. First,
the difference in the intensity between the constructively and
the destructively interfered scattered waves, combined with
pure Compton scattering measurements can help in deter-
mining the extent of nonlinear Compton scattering without
having to measure the small signal directly. For example,
if the nonlinear Compton signal is 6 orders of magnitude
smaller than the Compton signal, then the interference would
be 3 orders of magnitude smaller. Second, the noise from
the second-harmonic of the XFEL can be determined by
examining the interference between Compton and nonlinear
Compton scattering. For this, consider the ωin field to be
the XFEL fundamental. It gives rise to the desired nonlinear
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FIG. 1. A schematic diagram of the interference between Comp-
ton and nonlinear Compton scattering from a bound electron using
a two-color field. Here kin refers to the momentum of an incoming
photon in the case of nonlinear Compton scattering and k refer to the
momentum of an outgoing photon.

Compton signal at ∼2ωin frequency. The second harmonic of
the XFEL is the 2ωin field and the Compton scattered photons
from this field is the noise at ∼2ωin frequency. Introducing
a phase factor (φ) to the ωin field (or the 2ωin field) and
examining the interference can help in identifying the noise.

Several papers in the last few decades, have examined
interference effects in multiphoton processes when there oc-
curs an overlap in the initial and final states [31–33]. Using
two-color fields to analyze interference effects is also not
uncommon. For instance, Yin et al. [31] examined the in-
terference in the angular distribution of photoelectrons from
single and double-photon ionization from a two-color field.
Their experiment revealed an interesting asymmetry in the
angular distribution despite the initial state of the atom being
spherically symmetric.

The few research works on interference effects involv-
ing nonlinear Compton scattering [34,35] have focused on
high-energy electrons where, the frequencies of the incident
electromagnetic (EM) waves are around the visible region.
These works have also relied on a field-theoretic approach.
Unlike the previous work, here we focus on the case of x-
ray scattering from bound and nonrelativistic free electrons
and examine the interference using a Schrödinger-equation
approach. To understand the interference between Compton
and nonlinear Compton scattered wave functions, we use a
perturbative approach. We study the dependence of the phase
shifts on the frequencies of the incoming field and the binding
energy (BE) of the electron. This analysis is performed over
a range of frequencies from 50 a.u. (1.3 keV) to 680 a.u.
(18.5 keV). This choice for the frequency is motivated by the
typical frequencies accessible from the XFELs [7,20] in use
and in particular, a recent experiment on nonlinear Compton
scattering at the Linac coherent light source at the SLAC
National Accelerator Laboratory [15].

This paper is organized as follows: In Sec. II, we discuss
the theoretical approach to describe Compton and nonlinear
Compton scattering both nonperturbatively and perturbatively
in the incoming classical field in the limit of nonrelativistic
electrons. Then, the procedure for studying the interference
using them is described. In Sec. III, the validity of the pertur-
bative approach is demonstrated. Then the case of interference
from a two-color field is discussed.

Unless otherwise stated, atomic units will be used through-
out this paper.

II. METHODS AND MODELING

A. Nonperturbative treatment in the classical field

We use a time-dependent Schrödinger-equation approach
to study nonlinear Compton scattering [27]. The approach is
the one described previously [28]. This nonrelativistic treat-
ment is well justified [28] in the regime of nonlinear Compton
scattering studied in this paper. This section briefly describes
the method; see Ref. [28] for a detailed discussion of the
derivation.

The Hamiltonian that describes the laser-electron interac-
tion is given by

Ĥ = (P̂ + Â)2

2
+ V (x̂) +

∑
k,ε

ωkâ†
k,ε

âk,ε, (1)

where P̂ and V (x̂) refer to the momentum operator and the
atomic potential experienced by the electron. The quantity ωk

refers to the angular frequency of the scattered photon. The
operators â†

k,ε
and âk,ε can create or annihilate, respectively, a

photon in the mode (k, ε). Here k and ε refer to the momentum
and the polarization of the scattered photon, respectively. The
vector potential Â is written as the sum of the incoming and
scattered EM waves. The incoming wave is treated classically
while the outgoing wave is quantized [23,36]. One can then
derive the homogeneous Schrödinger equation for the electron
in a classical EM-field and the nonhomogeneous Schrödinger
equation for the scattering probability amplitude. The equa-
tions are derived by only considering terms up to the first order
in the quantized field.

The homogeneous Schrödinger equation describing the
wave function of an electron in a classical EM field with no
outgoing photons is given by

i
∂ψ (0)

∂t
− ĤCψ (0) = 0, (2)

where

ĤC = (P̂ + AC )2

2
+ V (x̂). (3)

The quantity AC refers to the vector potential of the incoming
laser pulse. Note that we do not restrict ourselves to the
dipole approximation and include the full space and time
dependence for the vector potential. Several previous works
have examined the effect of dipole approximation and its
underlying limitations in the parameter regime studied in this
paper [37,38]. The explicit space and time dependence (r, t)
is given by

AC = E

ωin
cos[(ωint − kin · r)]

× exp

[
−(2 ln 2)

(
t − k̂in·r

c

)2

t2
wid

]
εin, (4)

where the quantities E , ωin, kin, twid, and εin refer to the incom-
ing electric field amplitude, angular frequency, momentum,
the full width at half maximum (FWHM) of the pulse intensity
and polarization direction, respectively. Note that the quantity
k̂in refers to a unit vector in the direction of kin.
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The nonhomogeneous Schrödinger equation describes the
electron part of the wave function after scattering a photon. It
is given by

i
∂ψ

(1)
k,ε

∂t
− ĤCψ

(1)
k,ε

=
√

2π

V ωk
e−ik·reiωktε∗ · (P̂ + AC )W (t )ψ (0). (5)

Here, V refers to the quantization volume that comes from
quantizing the outgoing field [36]. The final results for the
differential cross section are independent of the quantization
volume. The quantity ψ

(1)
k,ε

(r, t ) refers to the probability am-
plitude for a scattered photon to be of momentum k and
polarization ε and the electron to be found at position r at
time t . The quantity W (t ) is a smooth windowing function
that is used to turn on the source term adiabatically only for
the duration of the incoming laser pulse. The reason for W (t )
is twofold: First, to prevent the unphysical emission of pho-
tons. Second, to find the ground-state of the electron-photon
coupled system. Note that the final results are independent
of the specific choice of the windowing function as long as
W (t ) = 1, while the classical x-ray field is nonzero and the
W (t ) turns on and off smoothly enough.

For the atomic potential, we choose the following:

V (r) = −Z

2
√

r2 + a2
[1 + exp(−r)]. (6)

Here a is a small parameter used to avoid the singularity
at the origin. Note that usage of a2 instead of a marks a
departure in convention from our previous work [28]. A value
of a2 = 0.05 a.u. is used for all the calculations in this paper
unless otherwise specified. The quantity Z , characterizes the
effective nuclear charge, which is varied to model a range of
BE for the electron. This potential was not chosen to repro-
duce any atomic orbitals but was chosen to give a range of
binding energy, confinement distance, and nuclear charge.

These two equations [Eqs. (2) and (5)] are solved numer-
ically in a Cartesian grid of points to obtain the scattering
probability (Pk,ε) which is the probability density in k-space
for a photon to scatter with momentum k and polarization ε.
The Pk,ε is defined as

Pk,ε =
∫

v

ψ
(1)
k,ε

∗
ψ

(1)
k,ε

d3r. (7)

B. Perturbative approach in the classical field

To understand the phase shifts involved in the interference
between Compton and nonlinear Compton scattering, a per-
turbative approach in the classical field is used. We begin by
expanding the wave function perturbatively in powers of the
incoming classical field:

ψ (0) = ψ
(0)
0 + ψ

(0)
1 + ψ

(0)
2 + · · · (8)

The subscript refers to the order of the incoming classical
field and the superscript refers to the order of the outgoing
quantized field. For example, the quantity ψ

(0)
1 refers to the

term that is zeroth order in the quantized field but first order
in the classical field.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 0.64  0.68  0.72  0.76  0.8

V
 P

k,
ε 

(1
0−

3  a
.u

.)

k (a.u.)

Exact
Perturbative

FIG. 2. Comparison of the results of the nonperturbative treat-
ment and a second-order perturbative calculation in the classical
field for the case of nonlinear Compton scattering. The results show
a good agreement between the two in the chosen regime. Here
ωin = 50 a.u., E = 502.9 a.u., twid = 0.5 a.u., θ = 135◦, Z = 4, and
a2 = 0.05 a.u. with a BE of 3.306 a.u.

Before we proceed with the perturbative approach, we
modify ĤC in the following manner:

ĤC → ĤC − A2
C

2

∣∣∣∣
r=0

. (9)

This is equivalent to adding a pure time-dependent function to
the Hamiltonian. Such an addition simply introduces a time-
dependent phase factor to the wave function ψ (0):

ψ (0) → eiξ (t )ψ (0), (10)

where

ξ (t ) =
∫

A2
C

2

∣∣∣∣
r=0

dt . (11)

This does not change the physics of ψ (0) as its norm remains
the same.

Multiplying Eq. (5) on both sides by eiξ (t ) and taking the
phase factor inside the time-derivative yields

i
∂

∂t

(
eiξ (t )ψ

(1)
k,ε

) − (ĤC − ξ̇ (t ))eiξ (t )ψ
(1)
k,ε

=
√

2π

V ωk
e−ik·reiωktε∗ · (P̂ + AC )W (t )eiξ (t )ψ (0). (12)

This reveals that the transformation in Eq. (9) results in ψ
(1)
k,ε

also gaining the same phase factor eiξ (t ). Therefore, none
of the physics associated with ψ

(1)
k,ε

changes as well. This
justifies the transformation in Eq. (9). By adding this transfor-
mation, the norm of the quantity ψ

(0)
0 + ψ

(0)
1 + ψ

(0)
2 remains

∼1 even in cases with a large electric field such as in Fig. 2.
Along with the transformation in Eq. (9), one can then

substitute Eq. (8) in the homogeneous Schrödinger equation
[Eq. (2)]. By separating out the terms based on the order of
the classical field, the equations for the corresponding wave
functions can be derived. The equations for the wave function
that is zeroth, first, and second order in the classical field,
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respectively, are given by

i
∂ψ

(0)
0

∂t
− Ĥaψ

(0)
0 = 0, (13)

i
∂ψ

(0)
1

∂t
− Ĥaψ

(0)
1 = P̂ · AC ψ

(0)
0 , (14)

i
∂ψ

(0)
2

∂t
− Ĥaψ

(0)
2 = (P̂ · AC ) ψ

(0)
1 +

(
A2

C

2
− A2

C

2

∣∣∣∣
r=0

)
ψ

(0)
0 ,

(15)

where

Ĥa = P̂
2

2
+ V (x̂). (16)

The quantity ψ
(0)
0 refers to the electronic wave function that

does not depend on the external field. ψ
(0)
1 and ψ

(0)
2 contain

the probability amplitudes for the electron to absorb one and
two photons, respectively.

Similarly, the first-order wave function in the quantized
field ψ

(1)
k,ε

, can also be expanded in a perturbative power series
in the classical field:

ψ (1) = ψ
(1)
0 + ψ

(1)
1 + ψ

(1)
2 + · · · (17)

Note that, the subscripts k, ε have been dropped from ψ (1) to
reduce clutter in the notation. But one has to keep in mind that
every term that is first order in the quantized field will depend
on these quantities.

Using the transformation in Eq. (9), substituting Eq. (17)
in the nonhomogeneous Schrödinger equation [Eq. (5)] and
separating out the terms based on the order of the classical
field yields the following equations for the wave function
that is zeroth, first, and second order in the classical field,
respectively:

i
∂ψ

(1)
0

∂t
− Ĥaψ

(1)
0

=
√

2π

V ωk
e−ik·reiωktε∗ · P̂ ψ

(0)
0 W (t ), (18)

i
∂ψ

(1)
1

∂t
− Ĥaψ

(1)
1

=
√

2π

V ωk
e−ik·reiωktε∗ · (

P̂ ψ
(0)
1 + AC ψ

(0)
0

)
W (t )

+ (AC · P̂)ψ (1)
0 , (19)

i
∂ψ

(1)
2

∂t
− Ĥaψ

(1)
2

=
√

2π

V ωk
e−ik·reiωktε∗ · (

P̂ ψ
(0)
2 + AC ψ

(0)
1

)
W (t )

+ (AC · P̂) ψ
(1)
1 +

(
A2

C

2
− A2

C

2

∣∣∣∣
r=0

)
ψ

(1)
0 . (20)

Here, ψ
(1)
0 describes the probability amplitude of having one

outgoing photon of momentum k and polarization ε when
there is no incoming field and the electron to be in position

r at time t . Similarly, ψ
(1)
1 is the probability amplitude for

the case with one outgoing photon and one incoming photon
being absorbed and ψ

(1)
2 refers to the case with one outgo-

ing photon but with two incoming photons being absorbed.
A detailed analysis of the source terms can be found in
Sec. III B.

These perturbative equations Eqs. (13)–(15) and (18)–(20)
are solved simultaneously using the same numerical frame-
work that was developed in Ref. [28] to solve the equations
summarized in Sec. II A. These perturbative equations can
also be solved by first obtaining the Green’s function for the
atomic system and then using the same Green’s function for
solving each of the equations with the corresponding source
terms.

C. Two-color field

To study the interference, we replace the single incoming
laser pulse with two pulses of different frequencies. For the
case where one of the incoming pulses has a frequency twice
that of the other, the dominant interference pattern would
consists of linear Compton photons from the 2ωin field and
nonlinear Compton photons from the ωin field.

The effect of the two-color pulse is examined both non-
perturbatively as well as perturbatively. In the nonperturbative
treatment (Sec. II A), this is simulated by simply choosing the
incoming vector potential as the resultant of the two vector
potentials from each incoming pulse. In the perturbative treat-
ment (Sec. II B), each incoming pulse is treated perturbatively
and the results for ψ (1) from each pulse is superposed to obtain
the total scattering probability.

We choose the full width at half maximum of the pulse
intensity (twid) of the 2ωin field to be 1/

√
2 of that of the ωin

field. This is motivated by a preference for a large overlap
for the scattering probability in k-space between Comp-
ton and nonlinear Compton scattered photons. The pulse
widths are chosen in this manner since it is the second-order
wave function (ψ (1)

2 ) that matters for nonlinear Compton
and A2

C effectively would have 1/
√

2 of the pulse width
of AC .

D. Convergence

The amount of convergence is determined in the inter-
ference calculations by examining the relative change in the
total differential cross section. For the calculations in Fig. 2,
the difference in the differential cross section between a grid
size of 24 and 16 a.u. was under 10−3%. The difference in
the differential cross section between a grid spacing of 0.1
and 0.07 a.u. was below 0.8%. In Fig. 3, for Z = 4 and
a scattering angle of 135◦, the difference in the calculated
differential cross section between a grid size of 24 and 16 a.u.
was under 10−9%. The difference in the differential cross
section between a grid spacing of 0.1 and 0.07 a.u. was be-
low 0.08%. For the calculations in Fig. 6, the difference in
the differential cross section between a grid size of 30 and
40 a.u. is under 10−9%. The difference in the differential cross
section between a grid spacing of 0.1 and 0.07 a.u. was below
0.09%. For a discussion on the choice of other parameters, see
Sec. III.
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FIG. 3. The figure shows the differential cross section computed
using the interfered wave functions from Compton and nonlinear
Compton scattering as a function of the imposed phase difference
φ on the 2ωin field for a scattering angle of 135◦. The dotted line
is a curve fit of the form C + D cos φ. The plot reveals that there
is no intrinsic phase difference between the Compton and nonlinear
Compton scattered wave functions. It is clear, there is almost no
effect of the BE on the interference pattern in the chosen parameter
regime. Here ωin = 170 a.u., E = 107 a.u., twid = 0.1 a.u. for the ωin

field. Both initial and final polarizations are in the scattering plane.
The BE for Z = 2 and Z = 4 are 0.8744 and 3.306 a.u., respectively.
The parameter a remains the same for both with a2 = 0.05 a.u.

III. APPLICATIONS

A. Perturbative versus nonperturbative

The region of interest involves incoming x-rays with fre-
quencies (ωin) between 50 and 680 a.u. and electric field
amplitudes (E ) up to a few hundred atomic units which is
typical of XFELs in use [9,11,14]. In this regime, we find
that for the case of linear Compton scattering, a perturbative
treatment in the first order in the classical field [Eqs. (13),
(14), (18), and (19)] is adequate to describe the problem both
for free electrons as well as bound electrons. Nonlinear Comp-
ton scattering however, requires a second-order perturbative
calculation in the classical field [Eqs. (13)–(15) and Eqs. (18)–
(20)].

For the case of nonlinear Compton scattering, the results
for the scattering probability obtained from the second-order
perturbative calculations reveal an excellent agreement with
the nonperturbative calculations (Fig. 2). Note that the validity
of the perturbative expansion depends on the magnitude of
AC (∼E/ωin). For ωin = 50 a.u. and electric fields (E ) below
∼600 a.u. we find that the scattering probability for nonlinear
Compton scattering scales with the square of the intensity of
the incident wave. As the electric field is increased beyond
E ∼ 600 a.u. (with the other parameters fixed), the scattering
probability starts exhibiting nonperturbative behavior. Note
that in this regime, Compton scattering adheres to first-order
perturbative behavior in the classical field as well as the quan-
tized field.

It might be of interest to observe that while the Keldysh
paramater in this regime (Fig. 2) might be less than 1. Tunnel
ionization is not expected to be significant because the fre-
quency of the laser is much greater than the classical orbital
frequency of the electron [39]. Also, when tunnel ionization
becomes significant, the framework described in Sec. II is

adequate since, it includes the full spatial dependence of the
incoming laser field and the potential of the electron.

A recent study of photoabsorption probabilities [38] in this
parameter regime (Fig. 2) exhibited nonperturbative behavior
for one-photon net absorption. In the framework described
in this paper, the complete information about photoabsorp-
tion is contained in ψ (0) [Eq. (2)]. Calculations of ionization
probabilities from ψ (0) reveals that the one-photon net absorp-
tion probability does exhibit nonperturbative behavior in this
regime in agreement with Ref. [38]. However, the nonlinear
Compton scattering probability exhibits perturbative behavior
(Fig. 2).

B. Interference between Compton and nonlinear Compton

We now examine the interference effect in the scattered
photons when the incoming field consist of two different
frequencies with one being twice that of the other and with
a phase shift (φ) imposed on the 2ωin field.

To understand how the phase difference in the incoming
field affects the scattering probability, we use the perturbative
framework developed in Sec. II B. The interference between
the Compton scattered photons and nonlinear Compton scat-
tered photons from the two incoming fields can be understood
as the superposition of the scattering probability amplitudes
from each field alone. For Compton scattering from the 2ωin

field, a first-order perturbative calculation in the classical field
is used to obtain the scattering probability amplitude. For non-
linear Compton scattering from the ωin field, a second-order
perturbative calculation is needed.

The resultant scattering probability amplitude leading to
photons with momentum ∼2kin is given by

ψ
(1)
total = ψ

(1)
1,2ωin

(φ) + ψ
(1)
2,ωin

, (21)

where the first term on the right-hand side [ψ (1)
1,2ωin

(φ)] is the
Compton scattering probability amplitude from the 2ωin field
which is first order in the classical field. The second term
(ψ (1)

2,ωin
) is the nonlinear Compton scattering probability am-

plitude from the ωin field that is second order in the classical
field. Here ψ1,2ωin depends on the phase shift φ. Also, only
the two terms that are in Eq. (21) are relevant because the
frequency bandwidth of the incoming field is small compared
to the frequency ωin so that the peaks in the scattering proba-
bilities [Eq. (7)] are localized in k-space.

In Eq. (21), the phase dependence of ψ
(1)
1,2ωin

(φ) can be
determined by examining the three source terms in the first-
order nonhomogeneous differential equation [Eq. (19)]. The
first source term (S1) determined by P̂ ψ

(0)
1 , is due to photoab-

sorption, the second source term (S2) determined by AC ψ
(0)
0 ,

is due to pure Compton scattering, the third (S3) determined
by AC · P̂ψ

(1)
0 , describes the laser-dressing of virtual pho-

ton emission. The third term (S3) can also be thought of
as emission of a final state photon followed by absorption
of an incoming photon. Some communities refer to this as
u-channel Compton scattering. Here, note that all three terms
depend on AC . The AC being real contains terms of the
form ei(2kin·r−2ωint+φ) and e−i(2kin·r−2ωint+φ), where 2ωin and
2kin refers to the angular frequency and momentum, respec-
tively, of the incoming field. One can then employ the rotating
wave approximation, which would result in only the term with
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ei(2kin·r−2ωint+φ) surviving. This leads to the phase factor (eiφ)
appearing in every source term (S1, S2, and S3) and hence the
final wave function (ψ (1)

1 ) for that field. Therefore, Eq. (21)
becomes

ψ
(1)
total = ψ

(1)
1,2ωin

(0) eiφ + ψ
(1)
2,ωin

, (22)

where ψ
(1)
1,2ωin

(0) is calculated at φ = 0.

The contribution from the three source terms to ψ
(1)
1,2ωin

are
not of the same size. Given that the incoming EM waves
are in the x-ray regime, the photoabsorption term (S1) is
small with respect to the Compton term (S2) [40,41]. Also,
the contribution from the terms S1 and S3 appear to be of
comparable size to each other, but they appear to have a phase
factor between them. Their combined scattering probability
amplitude is found to be an order of magnitude lower than
each of them individually.

As an added check on the approximations made so far, we
compared our results from both the nonperturbative and per-
turbative approaches and they showed an excellent agreement
within the perturbative regime.

From the total scattered wave function, ψ
(1)
total, the total

scattering probability PTot can be obtained.

PTot =
∫

v

∣∣ψ (1)
1,2ωin

∣∣2
d3r +

∫
v

∣∣ψ (1)
2,ωin

∣∣2
d3r

+
∫

v

(
e−iφψ

(1) ∗
1,2ωin

ψ
(1)
2,ωin

+ eiφψ
(1)
1,2ωin

ψ
(1) ∗
2,ωin

)
d3r.

(23)

Of the four terms on the right-hand side, the first term repre-
sents the Compton scattering probability and scales linearly
with intensity (∝I2ωin ). The second term represents the nonlin-
ear Compton scattering probability and scales quadratically
with the intensity(∝I2

ωin
). The third and fourth terms together

gives rise to the interference. Both the third and the fourth
terms are ∝Iωin

√
I2ωin . To illustrate this dependence, consider

the case when scattering probability for nonlinear Compton is
1% of that of Compton. Then, the interference term can be as
large as ∼20% of the Compton scattering probability.

We choose the two incoming fields to be of equal electric
field amplitude with E = 107 a.u., with polarizations in the
same direction and frequency ωin = 170 a.u. The scattered
photon momentum and its polarization are both chosen to
be in the same plane as the incoming fields and a range of
scattering angles (θ ) from 0◦ to 180◦ are considered. Other
cases for these quantities are explored after that.

We evaluate the differential cross section from the to-
tal scattering probability [Eq. (23)] using the expression for
one-photon differential cross section from Ref. [28]. The dif-
ferential cross section is then given by

dσ

d


(1)

= 2V ωin

(2π )3

∫ ∑
ε PTotk2dk∫
I2ωin dt

. (24)

Note that we use the Compton differential cross section ex-
pression even though the total scattered wave function is
the result of interference between Compton and nonlinear
Compton. For the intensities chosen (E = 107 a.u. for both),
this is reasonable since the Compton scattering probability
is at least 3 orders of magnitude more than the nonlinear
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11
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.u
.)
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FIG. 4. The figure shows the differential cross section computed
using the interfered wave functions from Compton and nonlinear
Compton scattering as a function of the imposed phase difference
φ on the 2ωin field for a scattering angle of 84◦. The dotted line is
curve fit of the form C + D cos φ. The plot reveals that there is a
intrinsic phase difference of π between the Compton and nonlinear
Compton scattered wave functions. Here Z = 4 with the other param-
eters remaining the same as in Fig. 3.

Compton scattering probability. Therefore, in the case of in-
terference between linear and nonlinear Compton scattering,
from Eqs. (23) and (24), we expect the differential cross
section to be of the following form:

dσ

d

= C + D cos(φ − δ). (25)

Here C is the Klein-Nishina differential cross section for
Compton scattering when the scattering probability for non-
linear Compton is much smaller than that of linear Compton.
D arises from the interference term in Eq. (23) and is propor-
tional to Iωin/

√
I2ωin . The quantity δ is the intrinsic phase shift

between the probability amplitude of Compton and nonlinear
Compton scattering.

As a reminder, for the case of free electrons, the differential
cross section for Compton scattering is given by the Klein-
Nishina formula [26] and for nonlinear Compton scattering is
described by Brown and Kibble [23]. These expressions are
specified in Eqs. (26) and (27):

dσ (1)

d

= r2

e

2

(
ωk

ωin

)2[
ωk

ωin
+ ωin

ωk
− 2(k̂in · ε)2

]
, (26)

where re denotes the classical electron radius [42]. The non-
relativistic expression for the differential cross section of
nonlinear Compton scattering by Brown and Kibble [23] is

dσ (2)

d

= (νre)2

[
2(εin · ε)(k̂ · εin ) + 1

2
(k̂in · ε)

]2

, (27)

where

ν =
(

αE√
2ωin

)
, (28)

and α is the fine structure constant and is equal to 1/c in
atomic units with c being speed of light in vacuum.

The results of the calculation are shown in Fig. 3 (θ =
135◦) and Fig. 4 (θ = 84◦). The results are consistent with
the dependence expected [Eq. (25)]. The plot (Fig. 3) shows
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FIG. 5. The figure shows the dependence of the intrinsic phase
difference δ (black dots) versus the scattering angle θ . The blue
solid line indicates the zeros in the differential cross section of
Brown and Kibble [23]. The red dotted line indicates the zeros in
the differential cross section of Compton scattering. The calculation
reveals a discontinuous jump in the intrinsic phase difference (δ) at
scattering angles which are zeros of the differential cross section for
Compton or nonlinear Compton scattering [23]. Here Z = 4 with the
other parameters remaining the same as in Fig. 3.

that the intrinsic phase difference (δ) between the scattering
probability amplitude of Compton and nonlinear Compton to
be zero for θ = 135◦. Further investigation reveals that the
intrinsic phase difference δ depends on the scattering angle θ

(see Fig. 5). It is zero for scattering angles between θ = 0 and
θ ∼ 75◦ which is a zero of the nonlinear Compton differential
cross section. If the scattering angle is increased beyond this
value (θ ∼ 75◦), the intrinsic phase difference (δ) jumps to a
value of π (Fig. 4) and it drops back to zero if you increase
θ beyond 90◦. It is evident that the intrinsic phase difference
switches between a value of 0 or π every time the scattering
angle crosses a zero of the differential cross section of Comp-
ton or nonlinear Compton scattering [23]. This is confirmed
if one chooses a negative scattering angle. For θ = −30◦, the
intrinsic phase difference is π because there lies a zero of the
differential cross section for nonlinear Compton scattering at
θ = 0◦. Note that the Compton scattering differential cross
section [Eq. (26)] given by the Klein-Nishina formula does
not have a zero but rather a minimum at θ ∼ 90◦. But, for our
nonrelativistic calculation the differential cross section goes
to zero in the absence of the Compton profile.

A comparison of the scattering angle dependence of C and
the Klein-Nishina formula gave a good agreement with the
difference between them being under 0.3%. Also it is evident
from Fig. 3, that the BE of the ground state of the electron
does not have a significant effect on the interference between
Compton and nonlinear Compton scattering. The difference
in the differential cross section between Z = 2 and Z = 4
calculation (Fig. 3) is under 0.02%.

We examine if the intrinsic phase difference (δ) depends on
the pulse width (twid). We increase the twid to 3 a.u., which is
30 times the pulse width used in Fig. 3. There are computa-
tional challenges associated with this long calculation, so a 2D
calculation is performed instead. For a detailed discussion on
a 2D treatment of nonlinear Compton scattering, see Ref. [28].
For this calculation, fields with different intensities are chosen
to illustrate the difference in their scattering profile. The elec-
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FIG. 6. The results of a 2D calculation for the total scattering
probability as a function of scattered photon momentum for the
interference between Compton and nonlinear Compton scattering
from a two-color field. The two curves correspond to the cases
when the imposed phase difference (φ) is 0◦ (constructive) and 180◦

(destructive). The curve corresponding to φ = 180◦ has been scaled
by a constant factor to make it coincide with the φ = 0◦ curve at the
first peak. The first peak (k ∼ 2.41 a.u.) describes the case of inelastic
scattering of the incoming photons from the electron and the second
peak (k ∼ 2.48 a.u.) describes elastic scattering. The coincidence of
the two curves (φ = 0◦ and φ = 180◦) reveals that the elastic and
the inelastic scattering processes have the same relative phase. Here
ωin = 170 a.u., Eωin = 10.7 a.u., E2ωin = 0.535 a.u., twid = 3 a.u.,
Z = 4, and a2 = 0.1 a.u., with BE = 4.805 a.u.

tric field amplitudes for ωin field (Eωin ) and 2ωin field (E2ωin ),
are chosen to be 10.7 and 0.535 a.u., respectively. The results
of the 2D calculation reveal an intrinsic phase difference (δ)
that is 0 or π depending on the scattering angle. Increasing the
pulse width decreases the bandwidth of the incoming pulse.
The smaller bandwidth reveals two scattering mechanisms for
the incoming photons (see Fig. 6). In Fig. 6, the first peak
k ∼ 2.41 a.u. centered around the Compton scattered momen-
tum for the 2ωin field, arises from the inelastic scattering
of the incoming photons by the electron. The second peak
k ∼ 2.48 a.u., sharply centered around the incoming wave
number of the 2ωin field, arises from the elastic scattering
of the incoming photons by the electron, leaving the electron
in the ground state. Note that the contribution of this elastic
scattering peak to the overall area under the curve is small
(see Fig. 6). Figure 6 shows that the intrinsic phase difference
between the Compton and nonlinear Compton scattering is the
same for the elastic and the inelastic process.

The effect of polarization directions can be interesting. For
a single incoming field, there are 4 possible orientations based
on the direction of the incoming field’s polarization(εin) and
momentum(kin) and the polarization (ε) and the momentum
(k) of the outgoing fields. We choose the four cases in the
following manner:

(1) Case 1: εin = ŷ, k̂in = x̂, ε = −x̂ sin θ + ŷ cos θ , and
k̂ = x̂ cos θ + ŷ sin θ ; i.e., the initial and final polarizations in
the scattering plane. An abbreviated notation of in-in is used
to denote this case.

(2) Case 2: εin = ŷ, k̂in = x̂, ε = ẑ, and k̂ = x̂ cos θ +
ŷ sin θ ; i.e., the initial polarization in the scattering plane but
the final polarization perpendicular to the scattering plane. An
abbreviated notation of in-out is used to denote this case.
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(3) Case 3: εin = ẑ, k̂in = x̂, ε = −x̂ sin θ + ŷ cos, θ and
k̂ = x̂ cos θ + ŷ sin θ ; i.e., the initial polarization perpendic-
ular to the scattering plane but the final polarization in the
scattering plane. An abbreviated notation of out-in is used to
denote this case.

(4) Case 4: εin = ẑ, k̂in = x̂, ε = ẑ, and k̂ = x̂ cos θ +
ŷ sin θ ; i.e., the initial and final polarizations perpendicular
to the scattering plane. An abbreviated notation of out-out is
used to denote this case.

Note that for interference to be possible, the scattered
photons from both Compton and nonlinear Compton should
have the same final polarization and momentum vector. Also,
for nonlinear Compton scattering, from Eq. (27) only Case
1 (in-in) and Case 3 (out-in) are expected to yield nonzero
scattering probabilities (more on this point below). Therefore
based on these two requirements, only the interference cases
with Compton scattering corresponding to Case 1 (in-in) or
Case 3 (out-in) and nonlinear Compton scattering pertaining
to Case 1 (in-in) or Case 3 (out-in) are significant. The results
presented so far (Figs. 3–6) correspond to Case 1 (in-in)
for both linear and nonlinear Compton scattering. While we
expect this to be the dominant case from Eqs. (26) and (27),
the other cases become relevant when one considers the inter-
ference effects from crossed polarizations or from unpolarized
photons. From here on, an abbreviated notation of, for exam-
ple, (in-in, out-in) refers to the interference when the Compton
scattering pertains to Case 1 (in-in) and nonlinear Compton
scattering pertains to Case 3 (out-in).

The nonlinear Compton scattering probability pertaining to
Case 3 (out-in), is expected to be approximately the same size
as Case 1 (in-in) from Eq. (27). For θ ∈ [0, 180] the differen-
tial cross section for Case 1 (in-in) has zeros at θ = 0◦, ∼75◦,
and 180◦ but Case 3 (out-in) has zeros only at θ = 0◦ and
180◦. We examine interference for the case (in-in, out-in) for
the same set of parameters as Fig. 5. The intrinsic phase differ-
ence δ is found to have a similar dependence on the scattering
angle as that of (in-in, in-in) interference in that, it switches
between 0 or π every time the scattering angle crosses a
zero of the differential cross section of Compton or nonlinear
Compton scattering [23]. For a given scattering angle, the
calculations with Z = 2 and Z = 4 show a small difference
in the differential cross sections of about ∼0.014 %. But, they
both still have the same intrinsic phase δ.

The polarization directions are now chosen to be Case 3
(out-in) for Compton scattering and Case 1 (in-in) for nonlin-
ear Compton scattering. This is an interesting case because for
such an arrangement we expect the nonlinear Compton signal
to be comparable to the Compton signal. This arises out of the
interplay of two factors. First, for the chosen intensity (E =
107 a.u.) nonlinear Compton signal from the incoming field
is less than that of the Compton signal. Second, the Compton
scattering for this arrangement is suppressed because of the
choice of polarization [Case 3 (out-in)]. The results of the
calculation reveal that the size of the Compton scattered wave
function (ψ (1)

1,2ωin
) is in fact comparable to that from nonlinear

Compton scattering (ψ (1)
2,ωin

). However, no interference occurs
because the scattered wave function for Compton scatter-
ing and that for nonlinear Compton scattering are found to
be orthogonal to each other. This is found to be a conse-
quence of the fact that the Compton scattered wave function is

antisymmetric in the ẑ direction but the nonlinear Compton
scattered wave function is symmetric along the same direc-
tion. These symmetries can be deduced from the form of the
perturbation equations.

Consider the equations from the perturbative approach
(Sec. II B) keeping in mind our choice of Case 3 (out-in) for
Compton scattering and Case 1 (in-in) for nonlinear Comp-
ton scattering. The symmetric or the antisymmetric nature
of the scattered wave function can be understood by track-
ing the effect of the source terms involved. The Hamiltonian
for the atomic electron (Ha) is parity-symmetric and the start-
ing wave function (ψ (0)

0 ) being the ground state of the electron
is symmetric. The source terms in all the equations from
Eqs. (13)–(15) and from Eqs. (18)–(20), have definite parity in
the z direction. Therefore, the wave functions of different per-
turbative order also have definite parity in the z direction, since
the homogeneous part of the equations preserves parity. One
can track the changes in the parity of the ground state wave
function of the electron (ψ (0)

0 ) from each source term in the
first-order perturbative treatment for Compton scattering and
the second-order treatment for nonlinear Compton scattering,
respectively. Such an analysis can be used to determine that
the scattered wave function for Compton scattering (ψ (1)

1,2ωin
)

is antisymmetric in the z direction for Case 3 (out-in) and
the scattered wave function for nonlinear Compton scattering
(ψ (1)

2,ωin
) is symmetric in the z direction for Case 1 (in-in).

Equivalently, instead of parity arguments this can also be un-
derstood through the number of insertions of the electric field
in the source terms of perturbative equations for Compton and
nonlinear Compton scattering.

For the case of polarizations (out-in, out-in), we find that
similar to the previous case there is no interference. Again,
one can use a similar approach using perturbative equations
to deduce that the Compton scattered wave function for
Case 3 (out-in) is antisymmetric and the nonlinear Comp-
ton scattered wave function for Case 3 (out-in) is symmetric
in z.

Upon exploring other cases for polarization, we find that
for some cases we expect a zero scattering probability for non-
linear Compton scattering [Eq. (27)]. Consider the case when
the polarization of the scattered photons for nonlinear Comp-
ton pertains to Case 4 (out-out). From Eq. (27), one would
expect a zero scattering probability. The calculations however
reveal a nonzero but small scattering probability. It is small
when compared to nonlinear Compton scattering probability
of Case 1 (in-in). This expectation of zero scattering probabil-
ity is a consequence of the assumption [23] that the electron is
initially at rest. In our calculations, this is not the case because
of the Compton profile of the ground state electron. The effect
of the Compton profile on the nonlinear Compton scattering
probability can be studied by examining the scattering from a
free electron modeled by a Gaussian wave packet. Decreasing
the spatial width of the initial free-electron wave packet (ψ (0)

0 )
along the z direction widens the initial z-momentum distri-
bution of the electron. Therefore, from Eq. (5) the scattering
probability is expected to be proportional to the inverse square
of the spatial width in the z direction of the wave packet.
Numerical calculations for nonlinear Compton scattering for
Case 4 (out-out), confirms this behavior. Therefore, it is clear,
that the nonzero scattering probability for nonlinear Compton
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scattering for Case 4 (out-out) is the effect of the Compton
profile.

IV. CONCLUSION AND SUMMARY

The interference between Compton scattering and non-
linear Compton scattering from two incoming fields was
examined. To understand the phase shifts involved, a first-
order perturbative approach in the incoming classical field was
used to describe Compton scattering and a second-order per-
turbative approach was used to describe nonlinear Compton
scattering. The regimes where the approach is valid was ana-
lyzed by comparing it with a previously developed approach
that was nonperturbative in the classical field [28]. The effect
of the polarization of the incoming and outgoing photons on
the interference was studied. For interference to exist, the scat-
tered wave vector and polarization of the scattered wave for
both Compton scattering and nonlinear Compton scattering
have to be the same. As a reminder, an abbreviated notation
of say (in-in, out-in) denotes that for Compton scattering the
incoming and outgoing photon polarizations are both in the
scattering plane and for nonlinear Compton scattering the
incoming photon polarization is out of the scattering plane and
the outgoing photon polarization is in the scattering plane.

For the case of (in-in, in-in), the results of the numerical
calculation shows that the phase shift between Compton scat-
tering and nonlinear Compton scattering was either 0 or π ,

switching between the two, every time the scattering angle
crosses a zero in the differential cross section of Compton
or nonlinear Compton scattering [23]. A similar behavior
for the intrinsic phase difference is found for (in-in, out-in)
interference.

For both (out-in, in-in) interference and (out-in, out-in)
interference, it was found that the scattered wave functions for
Compton and nonlinear Compton scattering were orthogonal
to each other. Therefore, no interference was found to exist.

These results can help with two common experimen-
tal challenges in nonlinear Compton scattering. First, the
interference could be used to detect the small nonlinear
Compton scattering signal. Second, the interference could be
used to distinguish the Compton scattering noise originating
from the second-harmonic of the XFEL and the nonlinear
Compton scattering signal from the fundamental harmonic of
the XFEL.
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