
PHYSICAL REVIEW A 102, 033315 (2020)

Generalized local frame-transformation theory for ultralong-range Rydberg molecules
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A detailed theoretical framework for highly excited Rydberg molecules is developed based on the generalized
local frame transformation. Our approach avoids the use of pseudopotentials and yields analytical expressions
for the body-frame reaction matrix. The latter is used to obtain the molecular potential energy curves, but equally
it can be employed for photodissociation, photoionization, and other processes. To illustrate the reliability and
accuracy of our treatment we consider the Rb∗-Rb Rydberg molecule and compare our treatment with state-of-
the-art alternative approaches. As a second application, the present formalism is used to reanalyze the vibrational
spectra of Sr∗-Sr molecules, providing additional physical insight into their properties and a comparison of our
results with corresponding measurements.
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I. INTRODUCTION

Rydberg molecules constitute one of the most exotic
physical systems in quantum chemistry. They are effectively
three-body systems composed of a ground-state neutral atom
(i.e., perturber), a positively charged core, and an electron;
the subsystem formed by the latter two is a Rydberg atom.
The Rydberg electron mediates an interaction that binds
together the perturber and the ionic core. Early theoreti-
cal studies showed that the delicate nature of the binding
mechanism results in the formation of a class of weakly
bound molecules with bond lengths of the order of a few
hundred nanometers [1,2]. These ultralong-range Rydberg
molecules (ULRMs) are subdivided into “trilobite” [1] and
“butterfly” [2] molecular species originating from the S-
and P-wave “electron-perturber” interactions. Although quite
fragile, both ULRMs were recently experimentally realized
and observed [3–5]. One striking attribute of the ULRMs is
that—despite the homonuclear nature of their constituents—
they can possess huge dipole moments, in the range of
kilodebyes [6,7]. Also, due to the resonant P-wave “electron-
atom” interaction, the butterfly molecules exhibit much deeper
binding energies than the trilobite ones. The state of the art of
these molecules is reviewed in Refs. [8–10].
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From a theoretical viewpoint, the ULRM Hamiltonian pos-
sesses a fundamental attribute that has not received explicit
attention: it exhibits local symmetries in different regions of
configuration space. The exploitation of these local symme-
tries permits a more compact description of the physics of
ULRMs and, furthermore, can be easily generalized to more
complex scenarios, e.g., ULRMs with multiple perturbers.
One particular theoretical toolkit which can be employed in
systems that possess local, rather than global, symmetries is
the local frame-transformation (LFT) theory .

In the most general case these local symmetries can be
associated with incompatible sets of approximately good
quantum numbers which then are interrelated by the LFT
theory. Fano in Ref. [11] and Harmin in Ref. [12] introduced
the fundamental constituents of the LFT theory in order to
describe the Stark photoabsorption spectra of alkali Rydberg
atoms. The LFT concept possesses a versatile scope capable
of describing a plethora of different physical systems well
beyond this original application. Its applications include, for
example, studies of ultracold atoms [13–17], atoms in the
presence of electric or magnetic fields [18–22] or generic
trapping potentials [23], or Rydberg atoms with two valence
electrons [24–26]. In the field of molecular physics, the LFT
theory provides an insightful description of processes such
as electron-molecule collisions [27–29], dissociative recom-
bination of H+

3 [30,31], and Stark photoabsorption spectra in
molecular hydrogen [32]. In addition, the LFT theory has been
extended to investigate the rovibrational spectra of diatomic
molecules [33] and the electronic excitation of molecular
ions [34]. However, for many years the LFT theory lacked
a systematic pathway to improve its accuracy by including,
for example, the physics of energetically strongly closed
channels [35]. For this reason, the generalized local frame-
transformation (GLFT) theory was developed. It resolves the
lack of closed channels in the original theory, providing a
concrete framework based on more rigorous physical grounds.
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FIG. 1. Schematic of the few-body system of a highly excited
Rydberg atom (A+-e) in the presence of a neutral perturber (B)
placed at an internuclear distance R = Rẑ. The Rydberg electron e
at distances r away from the positively charged core atom A+ expe-
riences a Coulomb potential indicated by the gray-shaded area. The
blue-shaded area depicts the range rA of the residual core potential,
i.e., ush(r). VB(|r − R|) refers to the polarization potential between
the Rydberg electron and the neutral perturber B.

In this study, we develop a nonperturbative theoretical
framework for ULRMs which exploits the corresponding lo-
cal symmetries. Our method combines the GLFT formalism
with key ideas from multichannel quantum defect theory
(MQDT) [36], going beyond previous studies [37,38]. MQDT
permits us to treat the multichannel scattering of the Rydberg
electron in the polarization potential of the neutral atom in
a compact manner where all the relevant physics is encapsu-
lated in the corresponding body-frame reaction matrix K . The
GLFT treatment allows us to obtain K analytically without
using the pseudopotential theory developed by Fermi and
Omont [39,40]. In this manner, our theoretical framework
avoids the limitations inherent to these methods [41,42]. For
example, the GLFT approach guarantees the convergence of
the potential energy curves within a particular electronic n
Rydberg manifold without needing to add states from extra
manifolds as in the case of the diagonalization method of
Omont’s pseudopotential theory.

We apply the GLFT method to the calculation of the po-
tential energy curves of both Rb2 and Sr2 ULRMs. In the
case of rubidium, we compare the GLFT theory results with
those obtained by diagonalizing the Omont pseudopotential.
Results from both methods for high-electron Rydberg man-
ifolds (n = 30) differ quantitatively but agree qualitatively.
However, at lower manifolds, i.e., n = 10, the diagonaliza-
tion treatment even exhibits substantial qualitative differences
from the GLFT approach. In the case of strontium, we investi-
gate the ULRMs associated with the Rydberg s state since the
vibrational spectra calculated using the GLFT can be com-
pared directly to experiment [43,44]. This allows us to extract
more precise information about the zero-energy electron-Sr
S-wave scattering length.

The GLFT method gives results identical to those obtained
with the Green’s function treatment developed in Refs. [2]
and [45]. However, one major advantage of the GLFT is that
its scope is much more general. The GLFT treatment encom-
passes all the relevant physics of the Rydberg atom interacting
with the neutral one in terms of the body-frame K matrix

which can be utilized to describe processes of predissociation,
photoabsorption, or angular momentum changing collisions,
as pointed out also in Ref. [38]. Moreover, linking our method
with the Coulomb-Stark frame transformation in Ref. [35]
permits the study of Rydberg molecules in external electric
fields even in the regime where electronic n manifolds are
strongly mixed. Owing to the modular structure of the GLFT
framework, the treatment presented here can also be easily
extended to situations involving multiple perturbers providing
a compact and accurate description of the corresponding po-
tential energy surfaces.

This work is organized as follows: Section II lays out the
concepts of our GLFT-MQDT theory for ULRMs. Section III
is devoted to detailed comparisons with alternative approaches
and ends with a reanalysis of Sr2 experimental spectra. Since
the derivation in Sec. II is quite involved, in our concluding
section (Sec. IV) we provide a summary of the GLFT method
and highlight the crucial expressions from the derivation be-
fore concluding.

II. THEORETICAL METHOD

A. The Hamiltonian of the three-body system and
general considerations

We are interested in the ULRM system, composed of
a highly excited Rydberg atom A and a neutral ground-
state atom B and shown schematically in Fig. 1. To handle
the multichannel scattering of the Rydberg electron by the
ground-state atom B and to obtain a body-frame K matrix
free of singularities, we employ ideas from the GLFT and
MQDT theory. The pair of quantum numbers l and m indicate
the orbital angular momentum of the Rydberg electron and
its projection relative to the Rydberg core A+, respectively.
Similarly, the quantum numbers L and M denote the elec-
tron’s orbital and azimuthal angular momentum relative to
the perturber B, respectively. The internuclear axis �R = Rẑ
is aligned with the z axis, and thus the azimuthal quantum
numbers m and M are conserved, i.e., m = M. The position
of the Rydberg electron is r with respect to the Rydberg core,
and ξ = r − R with respect to the perturber (see Fig. 1). The
full Hamiltonian in the frame of reference of the Rydberg core
reads

H = −1

2
∇2

r + ush(r) − 1

r
+ VB(|r − R|). (1)

The term ush(r) is a parametrization for the interaction be-
tween the Rydberg electron and the many electrons of the
residual atomic core. This interaction is short range, i.e., it
vanishes for distances r > |rA|, and so its effect on the elec-
tronic motion is encapsulated by a set of quantum defects μl .
Note that in Eq. (1) and throughout this paper we use atomic
units unless otherwise specified.

At distances r ≈ R, the Rydberg electron interacts with the
perturber via a short-range potential, V̂B, of asymptotic form

VB(ξ ) ∼ − α

2ξ 4
, with ξ = |r − R|, (2)

where α is the static polarizability of the neutral atom. At
smaller ξ this interaction also includes electron correlation,
interaction with the perturber’s core electrons, and exchange
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interaction. As with the quantum defects, the effect of VB is
imprinted on the wave function at a large distance by a set of
phase shifts. Since the interactions between the electron and
the Rydberg core and perturber are limited to small volumes
around each site, over the rest of the Rydberg’s orbit the
electron only experiences the Coulomb potential. In the spirit
of MQDT, we postpone the imposition of the physical bound-
ary conditions to a later point in our derivation and impose
“standing-wave” boundary conditions for now. This simplifies
tremendously the analytic manipulations while keeping the
scope of the treatment as general as possible. The Rydberg
electron’s wave function at r → ∞ reads

�lm(r, R) =
∑

l ′
Yl ′m(r̂)

[
f c
l ′ (r)δ̃l ′l − gc

l ′ (r)Kl ′l (R)
]
, (3)

where f c
l (r) and gc

l (r) are energy-normalized regular and ir-
regular Coulomb functions, respectively. Note that the symbol
δ̃l ′l denotes Kronecker’s delta. The pair ( f c

l , gc
l ) is evaluated at

an electronic energy ε(R) which depends on the internuclear
separation R and is defined with the origin centered at the
ionic core. Kl ′l (R) are the elements of the real, symmetric,
body-frame K matrix and satisfy

Kl ′l (R) = −π
〈
f c
l ′ |VB|�lm(R)

〉
. (4)

Note that the preceding equation is an exact relation given by
the Lippmann-Schwinger equation that includes ush(r), VB(r),
and the Coulomb potential.

Once the K matrix is determined, we can impose the proper
physical asymptotic boundary conditions by requiring that the
electronic wave function vanishes at large r. This condition
provides us with the bound states of the Rydberg electron
in the presence of the perturber, yielding the determinantal
equation

det[δ̃l ′l + cot(πν)Kl ′l (R)] = 0, (5)

where the principal quantum number ν = 1/
√−2ε(R) is

determined by the discrete electronic energy ε(R). These ener-
gies, parametrically depending on the internuclear separation,
define the set of Born-Oppenheimer potential energy curves.
The key quantity determining these potential curves is ev-
idently the K matrix. Therefore, the following subsections
show how to analytically obtain the K matrix using the GLFT.

B. Quantum-defect-shifted Coulomb functions
and smooth K matrix

In the same spirit as in Refs. [37] and [38] it is desirable
to express the electronic wave function of Eq. (3) using an
alternative pair of energy-normalized regular and irregular
Coulomb functions, namely, the so-called quantum-defect-
shifted (QDS) Coulomb functions. This alternative pair of
Coulomb solutions permits us to eliminate the potential term
ush(r) from Eq. (1) since its effects are encapsulated in the
atomic quantum defects μl . The energy-normalized QDS pair
of solutions is related to the conventional regular and irregular
Coulomb functions ( f c

l , gc
l ) according to

Fl (r) = f c
l (r) cos πμl − gc

l (r) sin πμl , (6a)

Gl (r) = f c
l (r) sin πμl + gc

l (r) cos πμl . (6b)

The QDS pair of solutions (Fl , Gl ) is associated with the
K matrix, not the K matrix of Eq. (3). These matrices are
interrelated via a simple matrix transformation (see discussion
in Sec. II E).

The electronic wave function from Eq. (3) at large dis-
tances is expressed as a linear combination of the QDS
Coulomb functions,

	lm(r, R) =
∑

l

Ylm(r̂)[Fl ′ (r)δ̃l ′l − Gl ′ (r)Kl ′l (R)], (7)

and in general it fulfills the Lippmann-Schwinger equation,

|	lm(R)〉 = |Fl (R)〉 + ĜQDS
C V̂B |	lm(R)〉 , (8)

where ĜQDS
C ≡ [ε(R) + ∇2

r /2 + 1/r − ush(r)]−1 is the
quantum-defect-shifted principal-value Coulomb Green’s
function and VB is the electron-perturber interaction potential
discussed above. This Green’s function reads in terms of the
QDS Coulomb functions as

GQDS
C (r, r′) = π

∑
lm

Y ∗
lm(r̂)Fl (r<)Gl (r>)Ylm(r̂′), (9)

where r< = min(r, r′) and r> = max(r, r′). Note that
GQDS

C (r, r′) obeys standing-wave boundary conditions at large
distances. The Lippmann-Schwinger equation in Eq. (8) pro-
vides us with the K matrix, Kl ′l (R) = −π 〈Fl ′ (R)|VB|	lm(R)〉.
As shown in Refs. [23] and [35], by employing the Schwinger
identity the K matrix can be expressed in the following
symmetric form:

Kl ′l (R) = −π 〈Fl ′ (R)|V̂BM̂−1V̂B|Fl (R)〉
with M̂ = V̂B − V̂BĜQDS

C V̂B. (10)

Similarly to Refs. [23] and [35], the K-matrix elements
in Eq. (10) can be expanded over a complete basis set of
wave functions |φLM〉 which are solutions of the electron-
perturber (e-B) subsystem. A key assumption, justified by
the short-range nature of the e-B interactions, is that over
the small region of space around the perturber where the
polarization potential V̂B prevails, the Coulomb field is ap-
proximately constant. The |φLM〉 wave functions fulfill the
following Schrödinger equation:[

−∇2
ξ

2
+ VB(ξ)

]
φLM (ξ) =

(
ε(R) + 1

R

)
φLM (ξ). (11)

At distances ξ larger than the range of the V̂B potential, φLM (ξ)
acquires its asymptotic form

φLM (ξ) = YLM (ξ̂ )
[

f 0
LM (ξ ) − g0

LM (ξ ) tan δL
]
, (12)

where [ f 0
LM (ξ ), g0

LM (ξ )] are the energy-normalized regular
and irregular field-free solutions, namely, the spherical Bessel
and Neumann functions, respectively. The term δL ≡ δL(k) is
the energy-dependent scattering phase shift induced by the
polarization potential V̂B. The relative momentum of the e-B
subsystem is k ≡ k(R), and its R dependence comes from the
relation k(R) = √

2ε(R) + 2/R. The quantum numbers L and
M label the angular and azimuthal momentum with respect
to the perturber B and they are different from the quantum
numbers l and m, which are associated with wave functions
centered at the ionic core A+. Also, the azimuthal quantum

033315-3



GIANNAKEAS, EILES, ROBICHEAUX, AND ROST PHYSICAL REVIEW A 102, 033315 (2020)

numbers m and M are conserved; thus they remain the same
for a wave function that is either centered at A+ or B. The K
matrix in Eq. (10) expanded over the states |�LM〉 takes the
form

Kl ′l (R) = −π
∑
LL′

Cl ′m,LM (R)[M]−1
LL′CT

L′M,lm(R),

(13a)

with CT
L′M,lm(R) = 〈φL′M |V̂B|Flm(R)〉 and (13b)

ML′L = 〈φL′M | V̂B − V̂BĜQDS
C V̂B |φLM〉 . (13c)

Evidently, the computation of the K matrix involves the
evaluation of the matrix elements in Eqs. (13b) and (13c).
However, the terms CT

L′M,lm(R) and ML′L require the computa-
tion of complicated volume integrals which involve functions
that are centered at two different locations in the configura-
tion space: recall that the QDS function Flm(r; R) is centered
around A+, while the wave function φLM (ξ) is centered around
B. This challenge can be efficiently avoided by introducing
the core idea of the GLFT approach, which enables us to
transform the complicated volume integrals into simpler sur-
face ones. In the following subsection we introduce and derive
the local frame transformation for Rydberg molecules, which
interrelates the functions |Fl ′m(R)〉 with the solutions | f 0

LM〉.
Such a transformation is valid only in a local region around B,
where the motion of the Rydberg electron is mainly influenced
by the polarization potential.

C. Local frame transformation for two
different scattering centers

According to Fig. 1 the three-body system, A+-e-B,
can be divided into two subsystems: (i) the Rydberg atom
(A+-e), which is conveniently described by the QDS Coulomb
functions centered on the Rydberg core, and (ii) the electron-
perturber (e-B) complex, which is addressed by free particle
scattering solutions relative to the perturber B, which is lo-
cated at a distance R from the Rydberg core. In the following,
we derive the relevant expressions which connect the regular
QDS Coulomb function |Fl ′m(R)〉 centered at A+ with the
energy-normalized regular field-free solutions | f 0

LM〉 centered
at B.

As the first step, at distances r ≈ R we express the regular
QDS Coulomb functions as a linear combination of the two
linearly independent field-free regular and irregular functions
that are centered at the Rydberg core A+,

Flm(r) = πR2

2

[
f 0
lm(r)W

{
Flm, g0

lm

}
R

− g0
lm(r)W

{
Flm, f 0

lm

}
R

]
for r ≈ R, (14)

where the pair functions ( f 0
lm, g0

lm) are the energy-normalized
spherical Bessel and Neumann functions, respectively. The
term W{·, ·}R indicates the Wronskian evaluated at R. It
should be noted that Eq. (14) only applies in the vicinity
around the perturber B. The prefactor πR2/2 is the inverse of
the Wronskian of the regular and irregular field-free solutions
at r = R, i.e., W{ f 0

lm, g0
lm}R = 2/(πR2).

The right-hand side of Eq. (14) is still expressed in terms
of field-free regular and irregular functions relative to A+.

These can be analytically reexpanded into field-free regular
functions centered at a different point by exploiting basic
attributes of bispherical harmonics (see Eq. (34) in Ref. [46]).
This identity relates the spherical functions, i.e., f 0

lm(r) and
g0

lm(r), to spherical Bessel functions relative to B, i.e., f 0
LM (ξ)

with ξ = r − R, via{
f 0
lm(r)

g0
lm(r)

}
=

∑
LM

f 0
LM (ξ)

{J T
LM,lm(R)

N T
LM,lm(R)

}
, (15a)

{J T
LM,lm(R)

N T
LM,lm(R)

}
=

√
2L + 1

2l + 1

∞∑
β=0

iL+β−l (2β + 1)

×Cl0
L0β0C

lm
LMβ0

{
jβ (kR)

nβ (kR)

}
, (15b)

where C j3m3
j1m1, j2m2

are the Clebsch-Gordan coefficients, which
account for the recoupling of angular momenta relative to
the Rydberg core with the corresponding angular quantum
numbers that are associated with the perturber.

Substitution of Eqs. (15a) and (15b) into Eq. (14) results
in the local frame transformation between the QDS regular
Coulomb function and the field-free regular functions:

Flm(r) =
∑
LM

f 0
LM (ξ)UT

LM,lm(R; μl ), with

UT
LM,lm(R; μl ) = πR2

2

[
J T

LM,lm(R)W
{
Flm, g0

lm

}
R

− N T
LM,lm(R)W

{
Flm, f 0

lm

}
R

]
. (16)

Note that, when the quantum defects μl vanish, Eq. (16)
provides us with the transformation of the regular Coulomb
functions f c

lm(r) relative to A+ in terms of the field-free regular
solutions f 0

LM (ξ) relative to B.
In addition, a similar LFT can be derived for the irreg-

ular QDS Coulomb function defined in Eq. (6b) if needed.
More specifically, as discussed in the following subsection,
evaluation of the ML′L matrix elements is greatly simpli-
fied by frame transforming the Whittaker Coulomb functions
which exponentially decay at large distances. The energy-
normalized Whittaker Coulomb functions obey the relation
wc

lm(r) = Ylm(r̂)[gc
l (r) + cot πν f c

l (r)] and the corresponding
LFT reads

wc
lm(r) =

∑
LM

f 0
LM (ξ)VT

LM,lm(R), with

VT
LM,lm(R) = πR2

2

[
J T

LM,lm(R)W
{
wc

lm, g0
lm

}
R

− N T
LM,lm(R)W

{
wc

lm, f 0
lm

}
R

]
. (17)

With this LFT in hand, we compute in the following subsec-
tion the matrix elements necessary to determine the K matrix.

D. Evaluation of the K matrix in terms of
the local frame transformation

1. The CT
LM,lm(R) matrix elements

The corresponding volume integrals in the CT
LM,lm(R) terms

of Eq. (13b) contain the short-range polarization potential V̂B.
As shown in Ref. [23], such integrals can generally be recast
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into surface ones. Given this, Eq. (13b) reads

CT
LM,lm(R) = ξ 2

2

∫ [
φ∗

LM (ξ)∂ξ Flm(ξ + R)

− ∂ξφ
∗
LM (ξ)Flm(ξ + R)

]
dξ, (18)

where dξ = sin θξ dθξ dϕξ is the solid-angle differential el-
ement around the location of the perturber B. By employing
the local frame transformation [see Eq. (16)], the CT

LM,lm(R)
matrix elements become

CT
LM,lm(R) = − tan δL

π
UT

LM,lm(R; μl ). (19)

2. The ML′L matrix elements

The evaluation of the ML′L matrix elements in Eq. (13c)
poses more challenges than the CT

LM,lm(R) terms. The main
difficulties arise from the QDS Coulomb Green’s function,
which possesses a divergence for r → r′. However, in the
spirit of the GLFT approach this type of divergence can be
eliminated simply by adding and subtracting the field-free
principal-value Green’s function Ĝ0 = [k2(R)/2 + ∇2/2]−1,
which exhibits the same pole in the limit r → r′ [35]. By
forming the difference of principal-value Green’s functions,
i.e., �Ĝ ≡ Ĝ0 − ĜQDS

C , the matrix elements ML′L are found to
obey the following relation:

ML′L = − 1

π
tan δL′ δ̃L′L + 〈φL′M | V̂B�ĜV̂B |φLM〉 . (20)

In order to evaluate Eq. (20) it is desirable to isolate
those terms in �Ĝ which depend on the atomic quantum
defects μl . This is achieved by expressing �Ĝ in terms of the
Coulomb Green’s function ĜC , which obeys exponentially de-
caying boundary conditions asymptotically, i.e., the physical

Coulomb Green’s function. This gives

�G(r, r′) = [G0(r, r′) − GC (r, r′)] − �(r, r′)

+ π cot πν
∑
lm

f c
lm(r<) f c

lm(r′
>), (21)

where

GC (r, r′) = π
∑
lm

f c
lm(r<)wc

lm(r′
>) and (22a)

�(r, r′) = π

lN∑
lm

[
Flm(r<)Glm(r>) − f c

lm(r<)gc
lm(r>)

]
.

(22b)

All the functions that depend on the atomic quantum de-
fects μl are isolated in the term �, which is a finite sum that
terminates at lN . For l > lN all quantum defects μl vanish.

Using Eq. (21) and the LFT from Eq. (16), we recast
the volume integrals into surface integrals as prescribed in
Eq. (18) to obtain

ML′L = − tan δL′

π
δ̃L′L + 〈φL′M |V̂B(Ĝ0 − Ĝc)V̂B|φLM〉

− 〈φL′M |V̂B�̂V̂B|φLM〉
+ tan δL′ tan δL

π
cot πν

∑
lm

UT
L′M,lm(R; 0)Ulm,LM (R; 0).

(23)

The terms 〈φL′M |V̂B(Ĝ0 − Ĝc)V̂B|φLM〉 and 〈φL′M |V̂B�̂V̂B|
φLM〉, expressed in terms of Eq. (15a), Eq. (16), and Eq. (17),
read

〈φL′M | V̂B(Ĝ0 − ĜC )V̂B |φLM〉 = tan δL′ tan δL

π

∑
lm

J T
L′M,lm(R)Nlm,LM (R) − UT

L′M,lm(R, 0)Vlm,LM (R), (24)

〈φL′M | V̂B�̂V̂B |φLM〉 = tan δL′ tan δL

π

{
lN∑
lm

[
− 1 + cos πμl

sin πμl

(
UT

L′M,lm(R, μl )Ulm,LM (R, μl ) + UT
L′M,lm(R, 0)Ulm,LM (R, 0)

)

+ 1

sin πμl

[
UT

L′M,lm(R, μl ) + UT
L′M,lm(R, 0)

]
[Ulm,LM (R, μl ) + Ulm,LM (R, 0)]

]}
. (25)

From these closed-form expressions we can obtain the K ma-
trix free from any unphysical divergences. Since the physical
boundary conditions are not imposed yet, the matrix elements
of K are known for any angular momentum l . This is the
focus of the following subsection, which addresses the im-
portance of the energetically strongly closed channels, i.e.,
l > ν.

E. Preelimination of strongly closed channels in the K matrix
and the connection relation to the K matrix

In general, the motion of the Rydberg electron in the pres-
ence of a charged core and a neutral perturber can be viewed
in terms of half-collisions, as in the photoionization of Ryd-
berg atoms. From this viewpoint, the (l, m) quantum numbers

that are relative to the Rydberg core can be used to label
the different collisional channels. The perturber couples only
the different l channels since m is a good quantum number,
resulting in a nondiagonal K matrix.

The different l channels separate into two categories: (i)
weakly open channels, which refer to l states with a weak
centrifugal barrier yielding a classically allowed region be-
tween the Rydberg core and the perturber; and (ii) strongly
closed channels, indicated by l states associated with strong
centrifugal forces imposing a classical forbidden region be-
tween the core and the perturber. In particular, we consider
all l � n∗ − 1 momenta in the weakly open channels, where
n∗ is the integer lying in the interval ν < n∗ � ν + 1. All
angular momenta with l > n∗ − 1 are regarded as strongly
closed channels.
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For these strongly closed channels, the classically
forbidden region causes the corresponding regular and
irregular Coulomb functions to possess imaginary energy-
normalization constants; the electron’s energy is below the
combined centrifugal and Coulomb potential over the entire
configuration space. Since we have not yet imposed the physi-
cal boundary conditions on these wave functions, the K matrix
contains those unphysical channels.

In order to properly treat the physics of the strongly closed
channels, the wave function in Eq. (7) is partitioned into open
(o) and closed (c) channels, as is usually done in multichannel
quantum defect theory. Subsequently, the closed-channel part
of the wave function is eliminated by imposing the physical
boundary conditions asymptotically, i.e., by forcing the cor-
responding part of the wave function to exponentially decay
at large distances. This preelimination of the strongly closed
channels results in a wave function that involves only the
weakly open channels and is associated with a real and sym-
metric physical K matrix. In compact form the K matrix reads

K
phys
oo (R) = Koo(R) − Koc(R)[tan πν + Kcc(R)]−1Kco(R),

(26)

where the collective index o (c) indicates all the angular mo-
menta that fulfill the relation 0 � l � n∗ − 1 (l > n∗ − 1) for
ν < n∗ � ν + 1, where n∗ is an integer. In total there are Nc

closed channels. The matrix tan πν is diagonal, with ν defined
after Eq. (5). This elimination of strongly closed channels
leads to the wave function

	lm(r, R) =
n∗−1∑

l ′
Yl ′m(r̂)

[
Fl ′ (r) − Gl ′ (r)K

phys
l ′l (R)

]
. (27)

As the final step, we compute the K matrix using the K
matrix by linearly combining the solutions in Eq. (27) to con-
struct the wave function that involves the regular and irregular
Coulomb functions. This transformation can be expressed in
a compact form,

K = [sin πμ + cos πμK
phys

][cos πμ − sin πμK
phys

]−1,

(28)

where cos πμ and sin πμ are diagonal matrices. Recall that
μl indicate the atomic quantum defects.

Now that we have obtained a closed-form expression for
the physical K matrix we can analyze the role of the strongly
closed channels. Their importance is illustrated in Fig. 2. The
� potential energy curves for Rb∗-Rb near the n = 30 degen-
erate Rydberg manifold are shown for three values of Nc: Nc =
10 (blue circles), Nc = 20 (red squares), and Nc = 60 (green
triangles). Note that the green triangles represent the con-
verged potential curve. Figure 2 illustrates that, at internuclear
distances R < 1100a0, the trilobite potential curve is suffi-
ciently converged by including a small number of strongly
closed channels in the K

phys
matrix elements. However, for

R � 1100a0, the convergence depends strongly on Nc. Several
numerical calculations for different electronic manifolds n
show that the minimum number of strongly closed channels
is Nc ≈ 2n to ensure convergence of K

phys
out to and even

beyond the classical turning point, R ≈ 2n2, yielding potential
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FIG. 2. The � molecular potential curves for the system Rb∗-Rb
at n = 30 computed using different numbers of strongly closed chan-
nels, Nc: Nc = 10 (blue circles), Nc = 20 (red squares), and Nc = 60
(green triangles).

energy curves converged up to eight significant digits. In clos-
ing, we note that the theory from Refs. [37] and [38] neglects
the strongly closed channels and therefore would not give
accurate results for long-range Rydberg molecules. Also, the
present method is computationally efficient since the matrix
inversion in Eq. (26) is performed analytically by exploiting
the fact that K̄cc(R) is a rank 1 matrix. Thus the numerical
solution of the transcendental equation involves a K matrix
whose dimensionality is n × n for the n Rydberg manifold.

III. RESULTS AND DISCUSSION

A. Rubidium

In the following, the GLFT approach is applied to the
Rb∗-Rb system to benchmark it against other state-of-the-art
methods, namely, the diagonalization of Omont-Fermi pseu-
dopotentials and the Coulomb Green’s function method. The
S- and P-wave phase shifts of the “electron-perturber” subsys-
tem are obtained by a nonrelativistic two electron R-matrix
method [47,48]. Recall that the S- and P-wave electron-
perturber phase shifts give rise to the trilobite and butterfly
molecules, respectively. The atomic quantum defects and the
electron-perturber phase shifts are the only auxiliary input
parameters.

Figure 3 shows a comparison of the GLFT method (orange
dots) and the diagonalization approach (solid blue line) where
the electron-perturber interactions are modeled via Omont’s
pseudopotential [40]. For this paradigmatic calculation we
consider the � potential energy curves relative to the n = 30
electronic Rydberg manifold. In the diagonalization approach
the corresponding potential energy curves at n = 30 are calcu-
lated using basis states from manifold above n = 30 and two
additional manifolds below n = 30. On the qualitative level
shown in Fig. 3(a), both methods are in reasonable agree-
ment over the whole range. However, in the zoom-in plots in
Figs. 3(b) and 3(c), near the trilobite and butterfly molecular
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FIG. 3. (a) Comparison of the � molecular potential curves ob-
tained via the diagonalization approach (solid blue line) and the
GLFT method (orange dots) for Rb∗-Rb at n = 30. (b, c) Zoom-
in plots of (a) near the trilobite and butterfly molecular curves,
respectively.

curves, respectively, the quantitative differences between the
GLFT and the diagonalization approaches are evident. Note
that the largest deviations are manifested near the avoided
crossing between the trilobite and the butterfly curves. Similar
quantitative differences are seen in the quantum-defect-shifted
states (explored further in Sec. III B) and, due to the ex-
treme sensitivity of these weakly bound molecules, lead to
noticeable disagreement between theoretical and experimental
values for the binding energies.

In the butterfly molecular curves shown in Fig. 3(c) the
quantitative differences are more apparent, in particular, for
internuclear distances to the left of the avoided crossing be-
tween the butterfly and the low-l potential curve “32p.” The
diagonalization method predicts that the wells in the butter-
fly curve are much shallower than those that are obtained
within the GLFT framework. For example, at distances R =
500a0 the wells in the butterfly potential energy curve are
∼30% shallower than those of the GLFT approach, whereas
at shorter internuclear distances, i.e., R ≈ 100–200a0, the cor-
responding deviation between the two methods increases at
46%. Such discrepancies in the relative depth of the wells
strongly influences the number of vibrational states that they
support. These differences between the diagonalization treat-
ment and more sophisticated methods are known [41] and
stem from the lack of a systematic pathway to increase the
accuracy of the diagonalization method. The convergence
of the potential energy curves at a given n is not guar-
anteed by increasing the number of manifolds included in
the basis. However, the advantage of the GLFT approach
is that its convergence does not suffer from these issues.
This occurs since the corresponding K matrix is evaluated
using the energy-normalized Coulomb functions at the energy
ν = √−2ε(R) of the electronic potential curves. The diag-
onalization method, on the other hand, uses the hydrogenic
wave functions evaluated at hydrogenic energies. Thus, this

FIG. 4. Comparison of the � molecular potential curves for a
Rb∗-Rb n = 10 electronic Rydberg manifold. (a, b) Potential en-
ergy curves obtained via the GLFT method are indicated by black
dots. Solid blue (orange) lines refer to the calculations within the
diagonalization framework where the corresponding results are con-
verged by using one (two) manifold(s) above and two (three) below
n = 10. In addition, for the diagonalization method the local mo-
mentum k(R) is defined as k(R) = √

2/R − 1/n2 for (a) and k(R) =√
2/R − 1/(n − 0.5)2 for (b).

approach requires hydrogenic wave functions from different
Rydberg manifolds in order to minimize the errors of the
potential energy curves at energy ν = √−2ε(R).

This issue becomes more severe at low n. Figures 4(a)
and 4(b) illustrate the � potential energy curves of the n =
10 Rb∗-Rb molecule. The differences between the GLFT ap-
proach (black dots) and the diagonalization method (solid blue
and orange lines) are apparent even on a qualitative level.
In this figure we illustrate also the convergence challenges
inherent in the diagonalization method; the solid blue line
in Figs. 4(a) and 4(b) is calculated using the n = 8, 9, 10, 11
manifolds, while the solid orange line is calculated using the
n = 7–12 manifolds in the basis. This means that the calcu-
lations shown in orange use 50% more basis states than the
corresponding results shown in blue. These particular choices
of the truncated basis yield potential energy curves that are
closest to the corresponding GLFT calculations, which use
only 10 basis states. It is apparent, though, that the results
from the diagonalization method are still quite different both
from the GLFT calculation and from each other. Note, also,
that the orange potential curves in Fig. 4 use many more Ry-
dberg manifolds than in the corresponding calculation shown
in Fig. 3, and in spite of this, the deviations from the GLFT
results are starker. Thus, as mentioned above, the inclusion of
additional Rydberg manifolds in the diagonalization approach
does not guarantee convergence, as also shown in Ref. [41].

In addition, in Fig. 4(a) the diagonalization approach de-
pends on the local momentum k(R) of the “e-B” subsystem,
which is defined relative to the n = 10 manifold, i.e., k(R) =√

2/R − 1/102, whereas in Fig. 4(b) the local momentum is
defined by the relation k(R) =

√
2/R − 1/9.52. Note that the

local momentum in the diagonalization method is conven-
tionally defined relative to the hydrogenic manifold, which

033315-7



GIANNAKEAS, EILES, ROBICHEAUX, AND ROST PHYSICAL REVIEW A 102, 033315 (2020)

FIG. 5. Comparison between the Green’s function method (or-
ange dots) and the GLFT framework (blue diamonds) for the � and
� potential energy curves of Rb∗-Rb at n = 10 electronic Rydberg
manifolds.

is an ambiguous approximation resulting in an important
disadvantage. However, in the present method as well as in
the Green’s function approach the e-B momentum depends
directly on the energy ε(R) of the potential curves, i.e., k(R) =√

2/R + 2ε(R), and thus it is determined in a self-consistent
manner.

In Fig. 4 we see that the butterfly potential curves obtained
via the diagonalization method (see the solid blue and orange
lines) are consistent with each other, however, they are inaccu-
rate in predicting the range of internuclear distances R where
the P wave resonance induces a steep drop in the energy of the
butterfly potential curve. For example, in Fig. 4(a) we observe
that the butterfly potential plunges down at a larger R for the
diagonalization calculations than the corresponding ones in
the GLFT method. Upon changing the definition of the local
momentum k(R) in Fig. 4(b) the results of the diagonalization
approach shifted to internuclear distances closer to the GLFT
calculations, but the discrepancies between the two methods
are still apparent.

The robustness and the high level of accuracy of the present
theory is illustrated in Fig. 5, where we compare the results
of the GLFT theory (blue diamonds) with those from the
standard Green’s function method (orange dots) [2,45]. Note
that Fig. 5 depicts both the � and the � Rb2 potential energy
curves. The agreement between the two methods is excellent
over the entire range of internuclear distances R up to the
classical turning point, i.e., R = 2n2. Some deviations are
evident beyond the classical turning point; these stem from
the fact that the Green’s function method which we used is not
designed to correctly address the regime where the momenta
k(R) becomes imaginary. Computationally, the GLFT and
the Green’s function approach operate at the same level of
efficiency. However, we should stress that the Green’s func-
tion method can be used only for bound-state calculations,
in contrast to the GLFT approach, which utilizes the concept
of the K matrix, enabling the treatment of both continuum

and bound states without compromising its computational
efficiency.

B. Strontium

Our discussion of the potential energy curves of Rb∗ + Rb
Rydberg molecules has emphasized their most prominent fea-
tures, namely, the potentials associated with the trilobite and
butterfly states. These potentials, as a result of the high degen-
eracy of states in the Rydberg manifold, are typically many
GHz deep. The remaining potential energy curves, associ-
ated with the nondegenerate quantum-defect-shifted Rydberg
states with a low angular momentum, are the subject of the
present section. The typical well depths are 10–100 MHz.
The potential energy curve associated with a nondegenerate
Rydberg state closely resembles the radial electronic wave
function modulated by the S-wave and P-wave interactions
with the perturber. Since we have confirmed in the previous
section that the GLFT method circumvents the pitfalls inher-
ent in attempts to increase the accuracy of the Fermi-Omont
pseudopotentials and gives converged results, we now apply it
to the calculation of the potential energy curves of Sr(ns) + Sr
Rydberg molecules. These are ideal to study with the GLFT
method because the commonly studied isotope, 84Sr, does not
have a hyperfine structure, the ns Rydberg states have no fine
structure, and the spin-orbit splitting of the P-wave phase shift
is expected to be small. As a result, the spin-independent the-
ory developed here can be applied immediately, although we
note in passing that the modular nature of the GLFT method
can be readily extended to a spin-dependent Hamiltonian in
future applications. By comparing the GLFT results with ex-
perimental signatures of these strontium Rydberg molecules,
we can further benchmark the accuracy of the GLFT theory.

The vibrational spectra of these molecules are reported in
Refs. [43] and [44] for principal quantum numbers ranging
from n = 29 to n = 38. The n dependence of the binding
energies, E ∼ (n − μ̃s)−6, follows the anticipated Rydberg
scaling law. Each potential curve supports around four vibra-
tional states over this range of principle quantum numbers.
These measurements form the basis for a series of experi-
ments at increasingly high densities and principal quantum
numbers. In such regimes many perturbers can be located
within the Rydberg orbit, and the experimental spectra exhibit
features at energies which are sums of two or more dimer
energies and are thus associated with polyatomic states of
two, three, and more Sr perturbers [49,50]. At even higher
densities and Rydberg levels the observed line shapes reveal
details of the many-body response of the gas to the Rydberg
impurity. Since the properties of a Rydberg atom embedded in
these more exotic dense perturber scenarios are fundamentally
linked to the energy levels of the strontium dimer, the GLFT
calculations presented here serve a second purpose: to better
calibrate these potential energy curves and the underlying
atom-electron phase shifts.

As stated at the beginning of Sec. III A, to obtain potential
curves for a new atomic species we only need to modify
the quantum defects and scattering phase shifts which are
the inputs to the GLFT calculation. The quantum defects of
Sr are summarized in Ref. [8] and the electron-atom scat-
tering phase shifts for Sr were calculated in Ref. [51]. It
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is clear from our GLFT calculations that these phase shifts
are not accurate enough to obtain a theoretical spectrum in
agreement with experiment. At large internuclear distances
the calculated potential curves are too deep: the ground-state
molecules are more deeply bound in the calculation than ob-
served in the experiment. At smaller internuclear distances the
potential curves are insufficiently repulsive. The calculated
excited states, particularly the two or three most highly ex-
cited ones, leak into the short-range region of strong ion-atom
attraction, and their energies do not match the correspond-
ing experimental measurements. It is not surprising that the
calculated phase shifts at these very low scattering energies
require tuning in order to obtain quantitative agreement (on
the level of a few MHz at low n to even a few hundred kHz at
higher n); this has been necessary in Rb as well. Rather than
attempting a new fitting of the phase shifts, we adopt the same
parametrization as in the theoretical analysis in Ref. [43].
There, the effective range theory for the energy-dependent
S-wave scattering length aS (k) and a constant parameter for
the energy-dependent P-wave scattering volume a3

P(k) were
used:

aS (k) = aS (0) + πα

3
k, a3

P(k) = [aP(0)]3. (29)

The two fit parameters aS (0) and aP(0) are modified until
the predicted vibrational spectra match the measured spectra.
Although this is a straightforward way to parametrize the
energy-dependent phase shifts, we note that it has two key
limitations. While aS (k) is the valid expansion of the scatter-
ing length in the k → 0 limit, as k increases aS (k) in Eq. (29)
rapidly becomes only qualitatively accurate due to the pres-
ence of additional k2 and k2 ln k terms in the expansion. This
means that although it can be used to obtain the zero-energy
scattering length to a reasonable degree of confidence, it is
not quantitatively reliable at smaller internuclear distances.
This will be reflected in the binding energies of excited states
probing these distances.

On the other hand, a constant scattering volume is un-
physical as k → 0, since the threshold law of the phase shift
is quadratic in k as can be seen in the Born approximation.
This is typically not problematic in the calculation of Rydberg
molecule potential curves since the P-wave contribution is
much smaller than the S-wave interaction at distances R where
this unphysical nature of aP is most prominent, i.e., in the
vicinity of the classical turning point (R ≈ 2n2). Although
this parametrization could in principle be at least qualitatively
accurate at larger k values, we note that the phase shifts in
Ref. [51] exhibit a significant energy dependence and this is
only a crude approximation. We therefore emphasize that both
of these parametrizations, but especially the effective P-wave
scattering volume, are only convenient parametrizations for
fitting and imply only very generic properties of the phase
shifts except for the zero-energy scattering length, which can
be fit quite accurately using only the ground vibrational state’s
binding energy. We obtain the phase shifts from Eq. (29) using

δS (k) = − tan−1[kaS (k)], δP(k) = − tan−1
[
k3a3

P(k)
]
.

(30)

Figure 6 depicts two potential energy curves for the
Sr(30s) + Sr Rydberg molecule. We show by the solid blue

FIG. 6. Comparison of the potential energy curves from model
calculations (i) (solid blue curve) and (ii) (dashed brown curve) for
the Sr(30s) + Sr Rydberg dimer. These models are defined in the
text. The dissociation threshold at zero energy is the quantum-defect-
shifted energy of the 30s state. Yellow curves show the vibrational
bound states calculated in model (i), defined in the text and in Table I.

curve the potential energy calculated using the GLFT ap-
proach with aS (0) = −12.65a0 and aP(0) = 9.6a0. We refer
to this model calculation as (i); within each model we calcu-
late a family of potential curves for each n using these same
parameters and computational technique. Importantly, (i) also
includes the ion-atom polarization interaction, − α

2R4 , where
α ≈ 186 a.u. is the polarization of Sr. This attractive inter-
action is strongest at distances R < 500a0 and was neglected
in Ref. [43]. The dashed brown curve in Fig. 6 shows the
potential energy curve used in Ref. [43], which employed a
model potential from first-order perturbation theory (PT) to
treat S- and P-wave electron-perturber scattering,

VPT(R) = 2πaS (ks)|	s(R)|2 + 6πa3
P(ks)

∣∣∣∣d	s(R)

dR

∣∣∣∣
2

. (31)

The semiclassical electron momentum is ks =√
2/R − 1/(n − μ̃s)2, and 	s(R) is the Rydberg ns wave

function. We refer to the model calculation using Eq. (31)
with aS (0) = −13.2a0 and aP(0) = 8.4a0 as (ii). The aS (0)
value in each case was obtained by fitting the binding energy

TABLE I. Definitions of the model calculations described in the
text. PT refers to the potential [Eq. (31)] obtained within first-order
perturbation theory; the polarization potential refers to the ion-atom
potential, −α/2R4.

Polarization
GLFT PT aS (0) aP(0) potential

(i)
√

✗ −12.65 9.6
√

(ii) ✗
√ −13.2 8.4 ✗

(iii) Measurements from Ref. [43]
(iv) ✗

√ −13.2 9.8
√

(v)
√

✗ −13.2 8.4 ✗
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FIG. 7. (a) Comparison of calculated (circles) and measured
(squares) spectra for strontium Rydberg molecules. The theoretical
calculations are based on model (i), defined in the text and Table I.
The vibrational states whose binding energies are represented by
open purple circles have substantially weaker line strengths than
those shown by filled orange circles. Experimental data for the miss-
ing n states are not available. (b) Comparison of calculated binding
energies for the 30s Rydberg molecule using the four models defined
in Table I—(i), (ii), (iv), and (v)—and the experimental values (iii).
Note that a log-linear plot is used in (a) and a linear plot in (b).

of the ground vibrational state to the measured value. Since
the P-wave interaction and ion-atom interaction are very weak
at such large R values this state’s energy is essentially fixed
by the strength of the S-wave interaction. After fitting aS (0),
aP(0) was fit by aligning the theoretical and experimental
binding energies for the higher excited states. The vibrational
wave functions bound in potential (i) are also shown in
Fig. 6, in yellow (light gray). Those obtained using potential
(ii), not shown, are nearly identical and have very similar
binding energies, despite the differences in the potential
energy curves. Since the P-wave interaction in both models is
repulsive enough to restrict nearly all of the vibrational states
to distances larger than 500a0, the polarization potential
has only a small effect. In our numerical calculations for
the vibrational states a hard-wall cutoff is imposed for the
atom-ion interaction at distances R ∼ 100–200a0. Our results
are insensitive to this cutoff since the vibrational states are
mostly localized in the outer well of the potential curves (see
Fig. 6).

Fig. 7(a) compares the binding energies computed using
the GLFT approach (model (i)) with the measurements re-
ported in Ref. [43]. This demonstrates that the fitted aS (0)
and aP(0) values used in model (i) are sufficient to closely
reproduce the measured spectra over this whole range of n
values. To verify that the fit parameters are independent of
n we chose to fit them to the vibrational energies using only
the 30s spectrum. The filled orange circles mark states whose
line strengths are roughly equal, while the open purple circles
mark states whose line strengths are less than 20% as strong
as the average orange point. The line strengths are computed
using a simple approximation for the Franck-Condon factor
assuming a flat initial scattering state between the two atoms,
as in Ref. [43].

Figure 7(b) shows the 30s vibrational spectrum computed
using the different models which are summarized in Table I.

We include now also a perturbative calculation using Eq. (31)
including the polarization potential. We label this calculation
model (iv). By this additional comparison we are able to better
understand the way in which the fit parameters compensate
for inaccuracies in the 30s potential curves, whether these
stem from the choice of method (GLFT or PT) or from the
inclusion of the polarization potential. To obtain a theoretical
spectrum with model (iv) matching the experimental data
when including the polarization potential, we had to refit the
aP(0) parameter to aP(0) = 9.8a0. Although the model calcu-
lation (ii) used in Ref. [43] apparently ignored the polarization
potential, this comparison shows that this error was compen-
sated for by the difference �aP = 1.4a0 between model (ii)
and model (iv). Figure 7(b) shows also the results of model
(v), which refers to a GLFT calculation using the scatter-
ing parameters of model (ii) and neglecting the polarization
potential. This method clearly fails to predict the measured
binding energies.

Lessons learned from different models

From these calculations, we arrive at three conclusions.
First, the GLFT model using fitted effective electron-atom
scattering phase shifts [model (i)] reproduces, for all n values
where measurements exist, the experimental spectra. Com-
plementing the theoretical comparisons in Sec. III A, this
provides an experimental confirmation of the validity of the
GLFT approach. Some minor discrepancies are, however, vis-
ible in the comparison. The theory predicts weakly bound
vibrational states (binding energies of 3 MHz or less) with
weak but finite line strengths, which are not observed in the
experiment. These might be suppressed in the experiment by
additional contributions to the line strength not accounted for
in our approximate Franck-Condon factors, or they could be
obscured by the atomic resonance, or indeed they could signal
an additional energy dependence that cannot be compensated
for by fitting a constant P-wave scattering volume or that
stems from the higher-order effective range terms neglected
in aS (k). A more glaring discrepancy is that the theory pre-
dicts two deep bound states for the 29s state with strong line
strengths, which are not observed. The theory calculations
from Ref. [43] using model (ii) show also these extra vibra-
tional bound states; based on the trends of the other vibrational
states as a function of n one would expect these states to exist.
Further study of the experimental spectrum is necessary to
resolve this issue and identify whether it has an origin in the
experimental setup or whether it heralds additional physics
not included in the theory.

Our second conclusion is that the electron-strontium scat-
tering length must be in the neighborhood of −12.65a0. We
estimate an uncertainty of 0.1 a.u. on this value based on
the fit of aS (0). The extracted scattering length from model
(ii), −13.2a0, is about 5% different; this difference can be
attributed to the known differences between calculations using
the Fermi pseudopotential and the GLFT calculation. Indeed,
in the trilobite potentials dominated by S-wave scattering pre-
sented in our study of Rb [see Fig. 3(b)] differences of this
order were already visible. The aS (0) values obtained using
models (i) and (ii) both differ quite strongly, by 25%, from
the calculated scattering length [51]. Although the authors
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FIG. 8. An outline of the key expressions utilized in the GLFT
method.

of Ref. [43] attributed this to the uncertainty in the potential
energy calculation, we can now claim on more rigorous the-
oretical grounds that the greater part of this difference is due
to a real discrepancy between the scattering length provided
in Ref. [51], and only the 5% error between −12.65a0 and
−13.2a0 is due to the approximations made in the perturba-
tive potential energy curve of model (i). That the calculated
scattering length is overestimated is not surprising due to the
challenges of converging the atom-electron scattering calcu-
lations at such low energies.

Third, we conclude that the P-wave scattering volume must
be large and positive in order to produce a repulsive barrier
at short range which suppresses the effect of the polarization
potential and localizes the vibrational states in the outer wells.
This implies that the P-wave phase shift must be negative and
significantly larger in magnitude than given by the calcula-
tions of Ref. [51], particularly at high k values. These results
show that further work is necessary in order to produce a
more accurate set of scattering phase shifts. Caution is also
warranted since, as shown in Figs. 6 and 7, the scattering
parameters and even the potential energy curves themselves
are not uniquely determined by the binding energies, and fit-
ting of the binding energies alone is likely insufficient without
additional theoretical calculations of the strontium-electron
phase shifts to pin down these phase shifts.

IV. SUMMARY AND CONCLUSIONS

A. Summary of the method

Since the derivation of the GLFT approach for Rydberg
molecules involves many steps, we provide here a summary
of the key equations that must be implemented in order to
utilize this method. Also, note that Fig. 8 outlines the sum-
mary of these key expressions. First, Eqs. (13a) to (13c)
define the K matrix which is associated with the QDS energy-
normalized regular and irregular Coulomb functions. Using
the Schwinger identity, the K matrix acquires a separable form
and depends on two terms: the CT

LM,lm(R) and the ML′L matrix
elements. These are expressed in terms of the local frame

transformation in Eq. (19) and in Eqs. (23) to (25), respec-
tively. Equation (16) provides the local frame-transformation
relation which connects the QDS Coulomb functions cen-
tered at the Rydberg core with the regular field-free functions
around the perturber.

In the spirit of MQDT theory, the strongly closed chan-
nels of the K matrix are eliminated. This elimination step
yields the physical K matrix, namely, K

phys
, which is given

in Eq. (26). In the final step, the physical K
phys

is connected
to the K matrix via expression (28). Note that the K matrix
is associated with the energy-normalized pair of regular and
irregular Coulomb functions.

For a specific Rydberg molecule two inputs are required:
the atomic quantum defects μl and the electron-atom scat-
tering phase shifts δL. Using these two parameters, the K
matrix is inserted in the determinantal equation (5). The roots
ν(R) of Eq. (5) determine the molecular energy curves via
ε(R) = − 1

2ν2 .

B. Conclusions

Based on the generalized local frame-transformation
theory we have developed a formalism to describe asymmet-
rically excited three-body systems, exemplified here with an
excited Rydberg atom interacting with a ground-state atom.
By employing the key concept of the LFT, we have ob-
tained closed-form analytical formulas for the body-frame K
matrix associated with a diatomic ultralong-range Rydberg
molecule. The potential energy curves are then obtained by
numerically solving the one-dimensional determinantal equa-
tion expressed in terms of the K matrix. We have shown
that this GLFT approach provides potential energy curves
which are known to be more accurate than those obtained
via the diagonalization approach, which cannot be rigorously
converged. We have used this advantage of the GLFT to rean-
alyze the vibrational spectra of strontium Rydberg molecules
and have seen that it can be used to extract a more accurate
zero-energy scattering length from experimental measure-
ments. One major advantage of the GLFT method over the
Green’s function treatment, which operates at the same level
of accuracy, is that it can be easily extended to other physi-
cal systems, for example, to Rydberg atoms in the presence
of multiple perturbers. This would provide quantitative im-
provements to the theory of polyatomic Rydberg molecules
and Rydberg composites developed in [50], [52] and [53].
In addition, due the modularity of the GLFT toolkit, the
LFT for Rydberg molecules presented here can be combined
with other frame transformations in order to investigate more
complicated physical systems, e.g., Rydberg molecules in ex-
ternal electric fields, or relativistic effects can be included.
Another possible and less straightforward application of the
present theory is related to the case where a molecule is
used as a perturber [54,55]. In this particular case, the frame
transformation derived here can be extended in order to in-
corporate the charge-dipole interaction which influences the
motion of the Rydberg electron, especially if the molecule
is a polar one. The resulting frame transformation can be
combined with the LFT theory of Clark in Ref. [29] ex-
pressing the electronic wave function from the body frame
of the Rydberg molecule to the body frame of the molecular

033315-11



GIANNAKEAS, EILES, ROBICHEAUX, AND ROST PHYSICAL REVIEW A 102, 033315 (2020)

perturber. This step permits us to connect to the electron-
molecule K matrix in a manner analogous to that shown
here.
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