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Simulations of sawtooth-wave adiabatic passage with losses
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The results of simulations of cooling based on sawtooth-wave adiabatic passage (SWAP) are presented,
including the possibility of population leaking to states outside of the cycling transition. The amount of
population leaking can be substantially suppressed compared to Doppler cooling, which could be useful for
systems that are difficult to repump back to the cycling transition. The suppression of the leaked population
was more effective when simulating the slowing of a beam than in cooling a thermal distribution. As expected,
calculations of the leaked population versus branching ratio of spontaneous emission show that the suppression is
more effective for narrow linewidth transitions. In this limit, using SWAP to slow a beam may be worth pursuing
even when the branching ratio out of the cycling transition is greater than 10%.
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I. INTRODUCTION

The ability to laser cool atoms [1,2] has enabled the ex-
ploration of the collective behavior in atomic gases, ultracold
scattering, and other effects. Methods used to laser cool atoms,
as well as some variations, have been used for molecules
[3] and nano and microscale objects [4]. However, not all
atoms, molecules, or nanoscale objects can be effectively
laser-cooled with known techniques, which motivates the
search for new cooling methods.

The authors of Ref. [5] described a method for laser cool-
ing called the sawtooth-wave adiabatic passage (SWAP) based
on chirping counterpropagating light waves. This method
was proposed for cooling narrow linewidth transitions. The
basic idea is that the Doppler shift of the counterpropagating
light waves leads to a stimulated absorption from the beam
opposite the atom’s velocity (due to the blue shift of that
beam) followed by a stimulated emission from the beam
propagating in the direction of the atom’s velocity (due to
the red shift of that beam). If the linewidth is narrow, the
spontaneous emission that occurs between the stimulated
absorption and emission will be small. This leads to a mo-
mentum kick of 2h̄k, with k the wave number of the light,
opposite to the velocity of the atom. Experimental results
on the Sr 1S0 to 3P1 transition with 7.5 kHz linewidth
and calculations from a simple theoretical model supported
both the possibility of cooling and the interpretation of the
mechanism.

The authors of Ref. [6] described in more detail the simple
theoretical model for this process and presented the results
from several simulations. The authors of Ref. [7] performed
SWAP cooling of Dy using a transition at 626 nm with a
136-kHz linewidth. This transition is ∼20 times broader than
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that in the demonstration on Sr. The authors of Ref. [8]
described experimental results for SWAP cooling of Sr in a
magneto-optical trap. These studies [5–9] showed that SWAP
gives a more rapid reduction of the kinetic energy compared
to Doppler cooling, although the final temperature that can be
reached is several times hotter than Doppler cooling. Finally,
as first suggested in Ref. [5], SWAP cooling is promising for
molecules because the loss of population to states outside
of the cycling transition can be reduced due to the relative
suppression of spontaneous emission. The authors of Ref. [9]
calculated SWAP cooling for diatomic molecules in a mag-
netic field and did find a reduction in the population into
leakage channels.

In this paper, we perform calculations for a more simplified
case than Ref. [9] to understand the role of leakage during
SWAP cooling. For the model below, there is only one leak
state and it cannot be connected to the excited state by a laser
transition. While not quite as realistic as Ref. [9], this model
allows for a more transparent interpretation of the results
of the cooling when population can leak from the cycling
transition. In particular, we present results on the performance
of SWAP cooling as a function of branching ratio B into the
leak state for various spontaneous decay rates.

SWAP cooling for small B is important for molecules, but
larger branching ratios might also be interesting. Part of our
motivation was to determine whether SWAP is worth pursuing
when this branching ratio is greater than 1/2. For example,
laser cooling of antihydrogen, H̄, on the 1S-2P transition was
predicted [10] to give an average final energy Ē f � 30 mK
compared to a Doppler temperature of ∼2 mK. Because of the
long lifetime of the 2S state, one could attempt SWAP cooling
on the 2S-3P or 2S-4P transition to obtain colder H̄ which
would improve, for example, the measurement of the 1S-2S
transition [11]. Unfortunately, the simulations below suggest
that the short lifetime of these states and the unfavorable
branching ratio preclude cooling H̄ by SWAP.
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The results presented below suggest that SWAP with leaks
to other states is more effective for slowing a beam of particles
than for cooling. As expected, the quality of the SWAP
cooling increases as the spontaneous decay rate decreases.
However, for very narrow lines, SWAP might be useful even
for branching ratios, B > 0.1.

II. THEORETICAL MODEL

All of the calculations used are based on the model intro-
duced in Ref. [6], with a few modifications, which will be
explicitly noted.

The system is an atom with center-of-mass motion con-
strained to one dimension and with three internal states instead
of the two internal states of Ref. [6]. The translational motion
is represented by momentum eigenstates which are stepped
in units of the photon momentum, h̄k with k the photon wave
number. The two internal states treated in Ref. [6] are a ground
state |g〉 and an excited state |e〉. To incorporate the possibility
of population leaking to other states, the calculations below
include a third state |l〉. For simplicity, the counterpropagating
lasers cause transitions between the ground and excited states,
but do not connect the excited and leak states. The state of the
atom is specified by its internal state and its momentum state,
which is given in multiples of the photon momentum. For
example, |e,−6h̄k〉 represents the atom being in the excited
state and in the −6 momentum state. For conciseness, we
will use the symbol np to refer to the momentum state; in the
example, np = −6.

The master equation

d ρ̂(t )

dt
= 1

ih̄
[Ĥ (t ), ρ̂(t )] + L̂(ρ̂) (1)

determines the evolution of the atom through the time depen-
dence of the density matrix ρ̂. The time-dependent Hamilto-
nian Ĥ (t ) leads to a coherent evolution of the system from
the stimulated absorption or emission of a photon and the
associated recoil. The Lindblad superoperator L̂(ρ̂) models
the incoherent evolution from the spontaneous emission and
its associated recoil.

Within the rotating wave approximation, the time-
dependent Hamiltonian is

Ĥ (t ) = p̂2

2M
− h̄

2
�(t )σ̂z + h̄

2
�sW (t ) cos(kẑ)σ̂x, (2)

where �(t ) is the time-dependent detuning σ̂z = |e〉〈e| −
|g〉〈g|, �s is the standing wave Rabi frequency, the W (t ) is
a window function not used in Ref. [6] but defined below,
σ̂x = |e〉〈g| + |g〉〈e|, and

cos(kẑ)|nph̄k〉 = 1
2 |(np − 1)h̄k〉 + 1

2 |(np + 1)h̄k〉. (3)

The time-dependent detuning has a sawtooth profile cen-
tered on the Doppler-free transition frequency that goes from
−�s/2 to �s/2 with linear ramp α: �(t ) = −�s/2 + αt with
t = 0 defining the start of the ramp. The duration of the ramp
Ts = �s/α will be used below.

For Ĥ (t ), the only difference from Ref. [6] is that we use
a windowing function to turn the standing wave on and off.
The windowing function reduces the ringing that results from
instantaneous changes in the detuning by smoothly going

to 0 at the beginning and end of the ramp. In all of the
calculations, we used W (t ) = exp[−36(t − Ts/2)8/(Ts/2)8]
where 0 � t � Ts, but almost any smooth function which is
flat during the middle part of the ramp will lead to similar
results. In all of the calculations, we chose an exaggerated
duration for the SWAP compared to previous calculations
(e.g., Ref. [6]) to account for the window function and to
leave a small amount in |e〉 at Ts; the population left in
the excited state at Ts decays to the ground and leak states
with their respective branching ratio which would decrease
the effectiveness of SWAP in decreasing leakage out of the
g, e cycle. We chose �s = 240ωr with h̄ωr the recoil energy
although using values 1/2 this size did not strongly affect the
results.

The Lindblad superoperator is somewhat more compli-
cated than in Ref. [6] due to the branching ratio to the leak
state. We will use γ for the total decay rate of the excited state
and B as the branching ratio to the leak state |l〉, which is not
part of the cycling transition; 1 − B is the branching ratio to
the ground state |g〉. The Lindblad superoperator is given by

L(ρ̂ ) = −γ

2

(
|e〉〈e|ρ̂ + ρ̂|e〉〈e| − 2

[
3

5
ρ̂p + 1

5
eikzρ̂pe−ikz

+1

5
e−ikzρ̂peikz

])
(4)

where

ρ̂p = (1 − B)σ̂−
g ρ̂σ̂+

g + Bσ̂−
l ρ̂σ̂+

l , (5)

with σ̂−
g = |g〉〈e| = σ̂+†

g and σ̂−
l = |l〉〈e| = σ̂

+†
l . The Lind-

blad superoperator of Ref. [6] results when B = 0.
A nontrivial issue is how to treat the density matrix when

going from the end of one SWAP to the beginning of the next.
For the calculations below, we made choices for this treatment
that assumes there is a sufficient delay between SWAPs that
the population left in the excited state due to nonadiabaticity
or due to γ �= 0 will decay to 0. In a mathematical sense,
this means t → ∞, but, in practice, most runs finished with
less than 10% population in the excited state at time Ts so
that adding 3 − 4/γ between SWAPs would decrease the
excited population to a negligible amount. Between SWAPs
we allocated the excited state population between the |g〉
and |l〉 states using the branching ratio of Eq. (5) and the
momentum population was allocated by adding the population
in |e〉|np〉 into np with fraction 3/5 and np ± 1 with fraction
1/5 each. Lastly, the delay between SWAPs can lead to coher-
ences between the momentum states of |g〉 that can affect the
steady-state populations. Because we were uncertain about the
experimental possibilities for coherences between multiple
SWAP cycles, we set the coherence terms in the density matrix
to 0 after each SWAP cycle.

III. BASIC PARAMETERS

As noted in Ref. [6], the dynamics of this master equation
can be scaled, which means the outcomes are determined by
scaled parameters. We will define the parameters in terms
of the total decay rate of the excited state, with the scaled
parameters being denoted by an over-tilde. The important
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parameters are �̃s = �s/γ , α̃ = α/γ 2, �̃s = �s/γ , and ω̃r =
ωr/γ , where h̄ωr = (h̄k)2/(2M ) is the recoil energy.

As discussed in Ref. [6], there are dimensionless ratios
that are important for the effectiveness of SWAP. The adi-
abaticity parameter κ = �̃2

s /α̃ determines whether the the
g ↔ e transition is adiabatic or diabatic. At the Landau-Zener
level, the probability for an adiabatic transition is P = 1 −
exp(−πκ/2). The range of the sweep has to be large enough
to contain the Doppler-shifted resonances plus a bit extra to
accommodate the transients at the beginning and end of the
sweep: �s > 4k|v|. The amount of time spent in the excited
state should be much less than the lifetime of the excited
state: 2k|v|/α 
 (1/γ ). Finally, the resonances should be
separated: �s/2 < |kv − 2ωr |.

IV. RESULTS AND DISCUSSION

The results from three different cases are presented in
this section. The case where the population is confined to
a cycling transition is briefly treated before the more com-
plicated three-state system. For the purpose of obtaining an
absolute energy in some plots, we fixed the wavelength to be
λ = 689.5 nm and kept h̄ωr fixed at 0.36 μK times
Boltzmann’s constant kB.

The authors of Refs. [5–9] suggested that SWAP would
be useful for the case where there is a leak in the cycling
transition to other states. The idea is that the stimulated
emission step would suppress the spontaneous emission into
the leak state(s) |l〉. The results below give an indication of
how effective this might be.

A. No leak, B = 0: Steady state versus ω̃r

Before treating cases where population can leak into state
|l〉, it is worthwhile to examine how the excited state linewidth
affects the effectiveness of the SWAP procedure. We did this
by investigating the steady-state temperature reached using
SWAP, as a function of the scaled recoil frequency ω̃r =
ωr/γ . SWAP was proposed as a method for cooling atoms
with narrow linewidths. This corresponds to larger-scaled
recoil energies.

For these calculations, we fixed the range �̃s = 240 and
set the ramp rate at α = �2

s /2 (i.e., κ = 2) which gives a
Landau-Zener probability of P � 0.96. The initial momen-
tum distribution was started as a thermal distribution at low
temperature (typically kBT ∼ 10h̄γ ) and the SWAP procedure
was iterated several times (typically less than 20) until the
average kinetic energy reached a limiting value. After each
SWAP, we allowed the decay of any population in the excited
state and we set the coherence between different momentum
states to be zero after each SWAP as described in Sec. II. For
each ω̃r , the Rabi frequency �̃s was taken to be an integer
and was varied in steps of 1 to approximately find the lowest
steady-state energy; see Fig. 1(c) where the central point was
the value used and the error bars of ±1/2 roughly indicate
the uncertainty in �̃s that would give the lowest steady-state
energy. Different values of ω̃r = εr/(h̄γ ) were obtained by
varying the decay rate γ .

The data in Fig. 1 show the scaled average kinetic energy in
a steady state versus the scaled recoil frequency. As was found
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FIG. 1. The asymptotic temperature, after many sweeps, as a
function of the scaled recoil frequency ω̃r . The temperature is divided
by the Doppler temperature kBTD = h̄γ /2 in (a) and is in μK in (b).
For this case, there is no loss to state |l〉. In both cases, we kept
the photon wavelength fixed at λ = 689.5 nm. For both plots the
temperature is defined in terms of the expectation value of the kinetic
energy as T ≡ 2〈KE〉/kB. The scaled Rabi frequency used in each
calculation is in (c), see text for explanation of error bar.

in Refs. [5–9], SWAP cooling does not achieve a temperature
as low as that from Doppler cooling; for the range plotted
in Fig. 1, the asymptotic temperature was more than ∼10X
the Doppler temperature for every ω̃r . However, as expected
from Refs. [5–9], the lowest temperature is achieved when the
decay rate γ is smallest (i.e., when ω̃r is largest).

B. One sweep with loss

The case where population can leak to state |l〉 is somewhat
more complicated because the loss grows with each SWAP
and the population that is lost remains at the same energy. To
understand the trends for SWAP with a leak out of the cycling
transition, it is sufficient to understand the results from one
SWAP.

1. Single initial velocity

In this section, the initial state has all of the population
in one particular momentum state. One sweep is performed.
This situation mimics that of slowing a beam of atoms. The
quantities of interest are the amount of population lost into
state |l〉 and the change in energy of the states. In all of the
calculations the atom starts in the ground state with p = 20h̄k.

There are several parameters that control the population
lost into the leak state and the energy removed during the
SWAP. We chose to study how the population in the leak
state and the final energy varied with the branching ratio B
to spontaneously decay to the leak state |l〉 for a few scaled
recoil frequencies ω̃r . The ω̃r was stepped by the factor ∼1.4
to show a range of behavior. The range of the sweep �s was
scaled for each ω̃r so that �̃s = 240ω̃r . For each ω̃r , the �̃s
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FIG. 2. The probability Pl for the atom to leak to the state |l〉
after one SWAP as a function of the branching ratio B to the leak
state. The solid (red) line is for ω̃r = 0.25, the medium dash (blue)
line is for 0.35, the short dash (orange) line is for 0.5, the the dotted
(green) line is for 0.7, the dash-dot (purple) line is for 1.0, the dash-
dot-dot (maroon) line is for 1.4, and the dash-dot-dot-dot (black) line
is for 2.0. For all calculations the atom starts in the ground state with
p = 20h̄k.

was varied to give the best slowing for B = 0 and was then
fixed for all other values of the branching ratio. As can be seen
in Fig. 5, there could be other choices for �̃s, but the general
trends remain. The ramp rate was chosen so that α = �2

s /2
(i.e., κ = 2) which gives a Landau-Zener probability of P �
0.96. A slower ramp rate would give a larger Landau-Zener
probability, but at the cost of spontaneous emission between
the stimulated absorption and stimulated emission steps. After
the SWAP, the excited-state population was allowed to decay
as in Ref. [6].

The parameters in the simulation gave a final energy after
one SWAP that ranged from 0.82 times the initial energy for
ω̃r = 2 to 0.84 times the initial energy for ω̃r = 0.25. For a
perfect SWAP, the momentum should go from 20h̄k to 18h̄k,
meaning the expected final energy is (18/20)2 = 0.81 times
that of the initial energy. This indicates that the SWAP proce-
dure is effective at slowing the atoms for np ∼ 20, roughly
independent of the decay rate. As an example, for ω̃r = 1,
89% of the population finishes in the 18h̄k momentum state
when B = 0.

Figure 2 shows the population that leaks to the state |l〉 as
a function of B. As expected, there is no population leak for
B = 0, and the population in |l〉 increases with the branching
ratio. For small branching ratio into the leak state B, the
leaked population Pl is proportional to B, but increases more
slowly than linearly for larger B. The slope of Pl for B ∼ 0
determines the effectiveness of the SWAP procedure at small
branching ratios: a smaller slope means less loss and a greater
effectiveness. Although the B ∼ 0 is important, even the
extreme case B ∼ 1 (i.e., the branching ratio of spontaneous
emission into the leak state is ∼100%) has less than 1/4
of the population leaking into state |l〉 during a SWAP for
the parameters in Fig. 2. As an example, for ω̃r = 1, the
B ∼ 1 population loss is 12% per sweep. If this loss were
the same for successive np there would be approximately
70% population loss after ten SWAPs. Similarly, the ω̃r = 1,
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FIG. 3. The probability Pl for the atom to leak to the state |l〉 after
one SWAP as a function of the branching ratio B to decay to the leak
state |l〉. The line types are the same as Fig. 2. For all calculations,
the atom starts in a thermal distribution of momenta as described in
the text.

B = 1/2 case gives 8% loss per SWAP which is a factor
of �6 suppression of the loss that would occur for Doppler
cooling.

With one exception, there is a clear trend of decreas-
ing population leak as ω̃r increases. This is understandable
because an increased scaled recoil energy means a smaller
decay rate, which should make the SWAP procedure more
effective: there is more stimulated emission back to |g〉 and
less spontaneous emission which could lead to either |g〉 or
|l〉. As an example, the ω̃r = 1 case [dash-dot (purple) line]
used �̃s = 33 and had Pl � B/5 for B � 0. For this case, the
loss is � 5 times smaller than the best case using Doppler
cooling. Even the worst case shown [ω̃r = 0.25 solid (red)
line] has a loss for B � 0 that is � 3 times smaller than the
best case using Doppler cooling. The exception to the trend
is the ω̃r = 0.7 [dotted (green) line]. This case also had an
anomalous value for �̃s compared to the trends observed for
the other ω̃r . We do not know why this case is different from
what we expected.

2. Thermal distribution

In this section, we present the results for the effect of one
SWAP when the initial distribution of momenta is thermal.
The initial distribution was chosen to be proportional to
exp(−[np/14]2) which corresponds to a temperature, kBT =
98h̄ωr . This temperature was chosen to give similar SWAP
parameters to Sec. IV B 1. As with the previous section, we
performed calculations for several ω̃r , the range of the sweep
was �̃s = 240ω̃r , and we varied the �̃s for each ω̃r to obtain
the best cooling for B = 0.

There was not a substantial difference in the amount of
energy removed in one SWAP for different ω̃r at B = 0.
This trend is similar to that in the previous section. The final
average energy somewhat increased with decreasing ω̃r : the
largest for ω̃r = 1/4 (approximately 0.83 times the initial
average energy) and the smallest for ω̃r = 2 (approximately
0.78 times the initial average energy).

The population that leaked to state |l〉 after one SWAP
is plotted in Fig. 3 for several different ω̃r . The line types
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FIG. 4. The probability P for the atom to be in the momentum
state nph̄k. The solid (red) line is the initial momentum distribution.
The medium dashed (blue) line is the momentum distribution when
the atom finishes in the |g〉 state for ω̃r = 1 and the short dashed
(orange) line is when the atom finishes in the |l〉 state. This line was
scaled to give the same area as the medium dashed (blue) line. The
branching ratio to spontaneously decay back to |g〉 is 1 − B = 0.99
for these results.

are the same as for Fig. 2. The amount of population that
leaks out of the cycling transition is much larger than for
the previous section where only one momentum component is
initially occupied. This is because the thermal distribution has
several momentum components, and the SWAP parameters
were chosen to give an overall efficiency. However, parame-
ters that work well for large momenta are not so good for small
momenta and vice versa. For example, at larger momentum,
the time between the stimulated absorption and stimulated
emission is larger, which necessitates a larger ramp rate and
larger Rabi frequency to decrease stimulated emission, while
a smaller momentum requires a smaller ramp rate and Rabi
frequency to get separation between the stimulated absorption
and stimulated emission. The best slope for small B is for
ω̃r = 2 and is ∼2 times smaller than would result from spon-
taneous emission from the excited state. Unlike the previous
section, the interpretation of this slope is ambiguous because
it is not clear how many photons were absorbed.

The momentum distribution after SWAP, Fig. 4, indicates
that the atoms that leak into the state |l〉 are those with
smaller energy. In this calculation, ω̃r = 1 and the branching
ratio back to |g〉 is 1 − B = 0.99. For this case, 0.605% of
the atoms leak to the state |l〉. The solid (red) line shows
the initial thermal distribution of the atoms. The medium
dashed (blue) line shows the momentum distribution after the
SWAP for the atoms that finish in the |g〉 state. The increase
in the distribution for small |np| shows that there has been
cooling during the SWAP, even with the loss. The short dashed
(orange) line is the momentum distribution for atoms that
leaked to |l〉. This distribution has been scaled so the integral
would be the same as for the |g〉 state. This distribution is even
more strongly peaked at small |np| which indicates that the
atoms that leak preferentially have smaller energy. This trend
is plausible because choosing �̃s to give the largest energy
decrease indicates the SWAP is most efficient for the states
with larger |np|.
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FIG. 5. The relative SWAP efficiency, R ≡ (〈KE〉0 −
〈KE〉 f )/(〈KE〉0P) for B = 0.02. One calculation was for a
single initial momentum 20h̄k and the other was for a thermal
distribution. For the np = 20 plot, the red X ’s are when maximizing
the change in KE while the black ∗’s are when maximizing R.

C. Relative efficiency with loss

One possible measure of the efficiency of SWAP cooling
is the change in energy divided by the population lost to
the leak state. To make it dimensionless, we define it as
R ≡ (〈KE〉0 − 〈KE〉 f )/(〈KE〉0P). Larger R implies a more
effective SWAP either by having a larger change in energy
or smaller loss. This quantity is inversely proportional to B
for small branching ratio to the leak state which leads to the
obvious conclusion that smaller loss is better.

Less obvious is the trend with respect to the linewidth
keeping the branching ratio small and fixed. Figure 5 shows
the results of two calculations of the relative efficiency with
B = 0.02 as a function of the scaled recoil frequency, ω̃r (a
smaller decay rate γ , means larger ω̃r). In the left graph red
X , the calculation was performed using the parameters of
Fig. 2 (i.e., a specific initial momentum to mimic a beam)
while the right graph used the parameters of Fig. 3 (i.e., a
thermal distribution). To give an idea of the size that might be
expected, the beam case would have R = 0.19/0.02 = 9.5 for
Doppler cooling.

For a given scaled recoil energy, SWAP was more efficient
for the beam case than for the thermal case, which is mainly
due to the relative slope in Fig. 2 versus Fig. 3. For the thermal
case, the efficiency monotonically increases with increasing
ω̃r which supports the proposition that SWAP is better for
narrow transitions. However, the increase is not quite as
rapid for larger ω̃r which indicates there may be limits to
the effectiveness of cooling a thermal gas. The beam case,
np = 20, is more complicated because there are two �̃s that
give local maxima for R. To illustrate the existence of the two
extrema, there are two plots: one when minimizing 〈KE〉 f and
one when maximizing R. For ω̃r < 0.7, the larger �̃s gives a
minimum in 〈KE〉 f and a maximum in R while the smaller �̃s

gives both for ω̃r > 1.4. Between these values of ω̃r , the lower
�̃s gives a smaller 〈KE〉 f but also a smaller R. At ω̃r = 2, the
relative efficiency is almost ten times that for Doppler cooling.

D. Implication for H̄

One of the motivations for the above studies was to explore
whether H̄ can be further cooled from the apparent limit
of Doppler cooling in the ALPHA trap: the average final
energy in the simulation was Ē f /kB ∼ 30 mK [10]. This
simulation was based on one laser Doppler cooling on the
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1S-2P transition at 121.6 nm. The idea for further cooling is to
excite the H̄ to the metastable 2S state and attempt to laser cool
on the 2S-3P or 2S-4P transition. The best case is the 2S-4P
transition which has the larger photon momentum and smaller
decay rate, meaning it will have the larger ω̃r ; the value
ω̃r � 0.065 is smaller than any of the values simulated above.
For this transition, the Doppler temperature TD � 0.31 mK.
Thus, the starting kBT/(h̄ωr ) is five times that in Fig. 3
assuming T ∼ 20 mK [10]. Unfortunately, the branching ratio
to leak states is B � 0.88 for either transition. We simulated
multiple SWAPs until all of the population had leaked out
of the cycling transition and found a decrease of 16% in
the kinetic energy. This is a large decrease considering the
unfavorable conditions (i.e., large branching ratio and large
linewidth). However, since populating the 2S state is very
difficult, the simulations strongly suggest that SWAP cooling
is not worthwhile for further cooling H̄.

V. CONCLUSION

Results from simulations of SWAP cooling of a thermal
distribution or slowing a beam were presented when a loss
channel was present. For the cases investigated, there was
not a large difference in the cooling or slowing versus the

branching ratio B for spontaneous decay into the leak state(s)
for one SWAP, and there was less population lost during one
SWAP when slowing a beam compared to cooling a thermal
distribution. The population lost to the leak state strongly
depended on the branching ratio as well as the spontaneous
decay rate of the excited state. For small branching ratios,
the population lost to the leak state is proportional to the
branching ratio but did not increase as rapidly for larger B.
For the same branching ratio, atoms with larger scaled recoil
energy εr/(h̄γ ) have less population lost into the leak during
each SWAP. For the cases we investigated, the population
lost during each SWAP for small B was as much as five
times smaller than would be lost during Doppler cooling. This
confirms the suggestion in Ref. [5] that SWAP could be useful
for cooling molecules. SWAP might be useful for slowing
beams even for unfavorable (i.e., large) branching ratios out
of the cycling transition if the scaled recoil energy is large.
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