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Abstract

We discuss a theory for the interaction of a quantum target with a pulsed matter beam. We find
that coherent transitions in the target due to the pulsed nature of the beam can qualitatively
change scattering probabilities from those of a continous beam. In this paper, we concentrale on
the perturbative limit and show the connection to classical intuition.
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Ugo Fano made numerous key contributions to the
understanding of correlated motion in atoms and molecules
(for example, see Refs. 1, 2). In these studies, he focused on
the key physical features of the system that controlled the
interaction between different degrees of freedom. An
interesting feature of his approach is his ability to cast the
final answer in terms of parameters that are independent of
the particular system and a small number of physical
parameters that are sysiem dependent. Often, these parame-
ters could be measured and used to characterize the dynam-
ics of a wide variety of atoms, molecules, and more comph-
cated quantum systems.

Generally, he is also driven to use quantum theory to
derive results that had previously arisen in dlassical form. An
example of this is his papers on the index of refraction of
solids.? In these papers, the Lorentz-Lorenz expression for
the index of refraction was derived using general quantuum
expressions for properties of the solid and second quantiza-
tion for the photon field.

Over time his interest in density mairices led to an
interesting and influential review paper on the subject!* in
which he discussed states withless than maximum informa-
tiory; he was interested in specifying the density matrix
directly in terms of the information that is available on a
systemn.' Density matrices are useful because they can be
used to describe systems that are only partially coherent. The
coherence of a quantum system is embodied in off-diagonal
terms of the density matrix, Bxpressing a final result in
terms of density matrices can be useful in discovering the
dependence of coherence. '

Por this paper, we touch on all of these aspects in order to
address the problem of the interaction of a quantum target
with a modulated matter beam. We have presented a brief
development of this topic!® with a much more detailed and
exhaustive treatment to be given later. There are several
reasons for studying such a system. As discussed below,
there is a paradox involved in applying the usual ideas from
scattering theory to this problem; we resolve the paradox by
showing that many familiar features of scattering theory do
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not apply. Int this paper, we concentrate on the perturbative
limit in order to clearly show the physical mechanisms
controlling the scattering by a pulsed bearn. We cast the final
result into a form that shows the connection to classical
expressions. And we show how the final result can be
compactly expressed in terms of the density matrix for
particles in the beam.

A simplified cartoon of the system we investigate is shown
in Fig. 1. We imagine a quantum target interacting with a
matter beam. A type of coherence is imprinted onto the
matter beam so that the beam has a pulsed structure in the
longitudinal direction. For the purpose of our discussion, we
do not need the particles in the beam to be completely
coherent although a large level of coherence can be obtained
using pulsed “atom lasers”!®™ or the “pulsed electron
gun.”!"*!") We only require enough coherence so that the
beam is pulsed; the specific coherent requirements vill be
discussed below. The beam can cause transitions in the
target that will be probed after the beam has passed the
quantum scatterer. The question we address is: what, if any,
affect will the coherence have on any inelastic scattering
probability?

Normal scattering theory has many well-known properties
when the beam is weak and the target is weak. By a weak
bearn, we mean that the beam is too weak for double
scattering to be important; thus, we do not need to worry
about the beam causing a transition from’state A to state B
and then later causing a second transition from state B to
state C. By a weak target, we mean that the properties of the
beam do not change to an appreciable extent while interact-
ing with the scatterers; thus, we do not need to worry about
alarge fraction of the beam being scattered by the target. In
these limits, it is well known that the probability for inelastic
scattering only depends on the probability of having an
incident particle with momentum p.!**** This means that
the inelastic scattering probability does not depend on any
coherence property of the beam. It is also well known that
the scattering probability is proportional to the number of
objects in the beam if all other parameters {energy, spatial
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Figure 1. A schermnatic drawing of a Rydberg atom interacting
with a beam bunched in the longitudinal direction.

width, momentum distribution, etc.) are kept fixed. Finally,
the total transition probability between two specific states
depends on the inelastic cross section integrated over all
angles.

Ordinary properties of scattering theory cannot be recon-
ciled with our intuition of how a pulsed bearn will interact
with a quantum target. To be specific, let us take the case of
a pulsed electron beam interacting with a highly excited
alkali atom. If we imagine the electrons as a charge distribu-
tion, then at a fixed point in space we would expect to have
a classical electric field that oscillates in the beam direction
with a period given by the distance between the pulses of
electrons divided by the speed of electrons. It should be
possible to use this oscillating electric field to drive a reso-
nant transition in the atom when the period of the electric
field matches the beat period 4/(E, - E,) of a transition in
the atom. This aspect of our intuition violates the expecta-
tion that inelastic transitions do not depend on coherence
properties of the beam. This also violates the expectation
from scattering theory that transition probabilities are
proportional to the number of particles in the beam. To see
this, remember that a transition amplitude caused by an
oscillating electric field is proportional to the field strength,
which is proportional to the number of particles in a beam;
thus, our infuition says that the pulsed beam should give a
transition probability proportional to the square of the
number of particles in the beam. Finally, this. coherent
scattering must be a sort of scattering from a collective
property of the beam and thus no single electron will be
strongly scattered. Therefore, our intuition says that the
coherent scattering between two specific states will depend
on the inelastic scattering amplitude in the forward direc-
tion, which violates the usual scattering theory,? where the
transition probability between two states integrates the
inelastic cross section over all directions the electron can
scatter into.

Although classical intuition for scattering by a pulsed
beam violates quantum-scattering theory in several places,
it should not be dismissed. In this case, classical intuition is
a reliable guide to a correct description of the phenomena.
We show below that the usual derivation of inelastic scatter-
ing leaves out a term in the transition probability. It is this
missing term that gives all of the effects that our intuition
claims should be present.

The derivation treats the scattering as if the incident
particles are completely coherent and can be treated as a
normnalizable wave-packet of finite extent; this allows us to
use a wave-function description of the dynamics instead of
a density matrix formalism. At a later stage, we will intro-
duce the incoherence into the beam and relate our results to
the momentum space density matrix of the beam. To be
specific, we will take the electron beam to be traveling in the
z-direction. Atomic units are used unless explicitly stated
otherwise. For one incident electron and one scatterer, the
normalized wave-funiction of the collision complex is

Wit = B Ty 4 Y O B i),
b

where E, is the energy and @, is the wave-function for state
a of the target and y/=(r, ¢) is the inddent electron’s wave-
function, which does not include any effects from the target,
and wiS(r, t) is the scattered part of the wave-function
leaving the target in state b; the part of the scattered wave
with a <~ a gives the elastic scattering. The normalization is
chosen so that {g2<(r, t)| ¥ (r, 1)) = 1.

Omice we obtain the scattered wave, the probability for the
incident partlcle to cause a iransition in the target to state
bis Py, = (Y% | ¥i%). To connect this result to the usual
scattering cross sections we can use the energy-dependent
scattering wave-function at large r:

1 eikbr

PYSEE @ aeﬂ“ t+ Zb D, frealkpT & K)

\Pk,a = (2)

where k, = (2(E, - E,} + k*)'? from energy conservation.
Moreover, the differential cross section can be obtained from
the scattering amplitude in the form

do ~ k;, ~ ~
o (Th= ?[fbﬁa(kbrk kzy|*. (3}

The incident direction is chosen to be in the z-direction for
the definition of the differential cross section.?

Many of the usual features of scattering theory can be
derived from the definition of the transition probability. We
first make a wave-packet using the wave-function from (2):
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= [ W . exp[~i(E, +K* / 2)t]A(K) 2k, (4}

where to obtain unit normalization the amplitudes must
satisfy [ |A(k)|*Pk = L. Ingeneral the amplitude Ais complex.
For example, if we have an Ay (k) that makes a wave-packet,
then the amplitude A(k) = Ao(k)[l + exp (-ik - R)]/2" gives
a two wave-packet state with the second packet shifted in
space by an amount R. We assume that the 4 are strongly
peaked arcund the vector k, = (0, 0, k). The scattering
probability for a target at r, can be obtained as a triple
integral

1
{2z}

Py = — | Prdkdk!

AR K o ki & KO i (f e KAy (5)

3 . u ~
% r—zexp{z{(kb ~kpyr+ (k- k' ki~ kB n),

where k; = (2(E, - E,) + k'*)"2, Performing the integration
over r gives a factor of 2xd(k;, - k;), and averaging the x, y
components of ry over a range L, L, gives a factor of
(2m)Pdk, -k, Yd(k, - k,)/L,L,. The product of these two terms
is (2 7;)35(}; K /(LXL {dkb/dk 1}, where we have used the
usual relation d(f{x)) = d(x)/|f (x)| if f{x) has its only zero at
x = 0. If we now use the relation dkb/dk = kfk, then the
scattering probability can be simplified to

nea-Lllfd%f TIAL kT e )

(k)| Atk P,

where g;, , is the inelastic cross section, which only depends
on the magnitude of k. This formula has a simple physical
interpretation: the scattering probability is the average value
of the cross section (g, ) times the time-integrated current
density (which is | particle over an area L.L,). Note that the
transition probability only depends on | A( k) 1%, whichis the
probability density for the incident particle to have wave-
number k. The density matrix in wave-number space is
ok, k') = (A(k)A*(k')), where (...) means to average over
the different realizations of this one particle beam scattering
off one quantum target; using this definition, we find that
the transition probability only depends on diagonal elements
of the density matrix. Because of this the transition probabil-
ity does not depend on any coherence properties of the
bearn; ccherence properties of the beam are manifest in
off-diagonal elements of the density matrix. Another way of
seeing this idea is that the coherence of a wave-packet is
embodied in a well-specified phase relationship of the
different wave-niumbers k of the electron; if the final result
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. N<dbwz)/LxLy =

only depends on }A(k)]? then this phase relationship is
irrelevant.

It is not obvious that the analysis changes if there are N
particles in the beam of transverse area LL; the time
integral of the current density is ¢’ = N/LL,. ’I‘he transition
probability from state a to state b is usually assumed to be
¢ {ay, 2, i.e., the transition probability equals
the inelastic cross section averaged over the momentum
distribution in the incident beam times the time integral of
the particle current density. This result arises from the
assumption that each incident particle contributes incoher-
ently to the transition. But is this assumption correct? It is
relatively easy to extend the derivation to N particles in the
bearn and test this assumption. To check the assumption
that the scattering probability is the incoherent sum of the
probabilities from each particle in the beam, we write out a
wave-function for an N-particle beam where the only
assumption is that there is only one scattering event; this
wave-function is

N N
wm=®wﬁ“gwﬁﬂwﬂ

(7)
+y O, B Y {y/jfjj T, 1) H W (r t}}.
b 7

The j-superseript on the incident and scattered wave-func-
tions is meant to indicate that the wave-packet for each
incident particle is not necessarily related to any of the other
packets. In (7), we made the assumption that the initial
state of the incident beam is such that the wave-function for
the incident particles is a preduct of one-particle functions.
This situation can occur when the incident wave is the
output from an atom laser, since the atoms are bosons. This
situation alsc holds when all lengths of a packet are smaller
than the average distance between adjacent objects because
the incident particles are distinguishable.

Coherent and incoherent probabilities for exciting the
target to state b are given by

sca,j sca_;
Z(W.!u—a Ypea)

mc sca,f sca, j’ ine,
Z l V/b«-a xWbe-a ”I’a 7 )
J=j

Pb(—a

where unit normalization of the incident packets has been
used. The first term of (8) is the incoherent sum of probabili-
ties from each individual projectile and the second term
arises from the coherent effect of the prejectiles on the
target. It is important to remember that the coherent term s
zero unless the incident wave-packet has an energy width
that is larger than the energy change in the target; if the
energy width of the packet is too small there is no overlap
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between the incident and scattered waves because they do
not contain the same energy components. Because the
coherent term is an overlap of the initial and scattered
waves, it will be easier to abserve the effect for transitions
where the inelastic aoss section is peaked in the forward
direction. As discussed below, the second term of (8) is
proportional to off-diagonal elements of the density matrix.

Properties of the scattered packet prevent a strong overlap
with the incident packet because the incident packet has a
momenturn distribution strongly peaked in the z-direction
whereas the scattered wave has a larger angular distribution
of momentum. This means that

sca g1, eca,f scd, f

Iu—-a i Wiu-a >>> KW&HCJl Wb(-m'a >I2 N

It is illustrative to use this fact to approximate (8) in the
form

=

54, j sca,f sca,

{N}
Pb@d " Z§<Wb+-a ¥ bea )*lZ(Wmc} yfb«-—a >| ’ (9)
Jz

which can serve as the basis for discussing the physical pro-
cesses important for scattering with a pulsed inddent beam.

How can the coherent transition probability, which
depends on the small overlap of the initial and scattered
waves, be comparable to or larger than the incoherent
transition probability? The answer is that although an
individual contribution to the incoherent term is larger than
one for the coherent term, there are N times more contribu-
tions to the coherent term. Therefore, the coherent contribu-
tion to the probability can be dominant for large numbers of
projectiles N. We interpret the second term in {9) as arising
from the coherent field from all of the projectiles acting on
the target. This interpretation arises from the form of this
term in which the amplitudes from each individual particle
are superposed and the probability is the absolute value
squared. Another reason for this interpretation is that in the
first-order Born approximation the second term in (9) exactly
equals the transition from state a to state b calculated using
first-order time-dependent perturbation theory and the
time-dependent coupling potential generated by the incident
wave-packets | /|2, We can also think of the coherent
term as arising because part of the scartered wave of each
particle overlaps the incident wave; in this case, it is impossi-
ble to know which particle caused the transition and there-
fore the amplitudes must be added coherently.

Years of use have accustomed us to the behavior of
scattering processes with incoherent matter beams. In a
previous paper,””! we have discussed an expression for the
coherent scattering in terms of usual scattering parameters.
Here, we will discuss the first-order perturbation theory
limit, This lirnit is llustrative because it allows closed-form

expressions in terms of parameters that should be important
according to our intuition; specifically, we will show that the
coherent transition probability in {9) is exactly the same as
the transition probability from the collective classical field
generated by the particles of the beam. To lowest order in
the coupling between states a and b, the scatiered wave can
be written as the solution of

Nz J ine,j g,
(‘E“ H oJ Whes (1.0)= Vig(twpcs (rne’® 80 (10)

where H, = p%2 is the kinetic energy operator and the
position-dependent matrix element V,, (r}) = (®,| V| @, This
equation has the solution

sca, f

Vi ety = =i e, (1 B, e B gy, (1)

For the example of a transition between one-electron states
of an atom, Vi, (r) = [d’r'®F(x' ), (r'}/|x - ¥'|. We can now
perform the pro;ectlon of the incident wave on the scattered
wave to obtain

(i |y d)

=-i .fwf AryT (r,ne T,y i, 1) B gy

= —:‘j’ {d3r e'iH°("")W§"c"i(r,t)]’Vba(r)sv;m’j(r,t')e’-w"“ﬁ*)"dr' (12)
s ifl [ Pry T )7y 0 1) BB g

A PR,

where
Vba I Vbcz (l', t )d

is the time-dependent interaction between the states a and b
that arises from the time-dependent density from partide 7.
If we sumn the contributions from all of the particles in the
beam, we obtain the coherent-scattering amplitude

Apeal) = 2w |pyed)

= -iff Tyt @B a, (13,
7

where

V(1= | Vig0)p(r, 1)dx
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is the time-dependent interaction between the states g and
b that arises from the time-dependent density of all of
the particles in the beam. This is exactly the term that
should be expected from classical intuition: the density of
particles generates a time-dependent potential V(r, t) =
[d°r p(x', ty}r - v’} that couples states a and b and it is this
time-dependent coupling that generates transitions. When
the density of particles has a modulation in space, the
transition probability can be greatly enhanced when the
classical field oscillates with the same frequency as the beat
frequency of the states. From this analysis, we can identify
dipole-allowed transitions as those being most amenable to
coherent excitation; furthermore, it is only transitions that
preserve the magnetic quantumn number m in the beam
direction that will be enhanced since this is the direction in
which the “classical electric field” from the beam is oscillat-
ing.

Scattering theory has a long history, so it is natural to ask
how this result fits within the more usual theories and why
the coherent-scattering term hasn’t appeared in experiments
performed to date. Transitions from (13) are neglected in
usual scattering theory and in experiments performed to
date because the beams have not contained time-dependent
densities of the correct frequencies, Inmost experiments and
in the usual scattering theory, p(r, f) is essentially time inde-
pendent on the time-scales of the target, = h/|E, - E,|.
Typically, the average density is a smooth function of time;
the Fourier transform of ¥, (t) in (13) is strongly peaked in
frequency with a width much less than {E, - E,|. In this
case,

¥ vl idy=0

and thus the transition probability reduces to the usual
expression in terms of the inelastic cross section and the
time-integrated current density. We note that it should be
possible to measure the result of the coherent scattering by
deliberately modulating the particde beam and by using
highly excited states of atoms {(where the energy differences
are small) in order to slow down the atomic dynamics. To be
specific, we believe that an electron beam that is modulated
on a ~10 ps time-scale''%*Y) can be accelerated 1o keV
energies and made to interact with Rydberg states of alkali
atoms; there are transition periods of highly excited atoms
of this time-scale and thus a possible signal is to change the
transition probability by changing the period of modulation
of the electron beam.

It might not be clear that any coherence of the beam is
necessary to get a transition since the final results only
depend on the time-dependent density of particles in space.
The important point is that a modulation of the beam in
space automatically implies a level of coherence between
momentum components of the beam. We can rewrite the
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transition amplitude using

Apal®)= -1 ,fi dtf Brp(r, 0V, (r)e/FrEal

= —2mi| PRPK p(k, KU, (k' - k)

12 2
xJ[Eb—Ea-FTM ?J,

(14)

where Uy, (q) = (27)[d°rV,,(r)exp(-iq - r) is the Fourier
transform of the interaction potential. If there is no coher-

" ence between the different momentum components, then

the density matrix is p(k, k') = 0 unless k = k’, and the
transition amplitude is zero because it is proportional to
&E,- E,)WithE, # E,.

Clearly, there are many interesting aspects that arise when
using modulated matter beams. There is one last interesting
feature that can be obtained from this form of the transition
amplitude. If the beam only has longitudinal coherence and
there is no transverse coherence, then the density matrix is
proportional to delta functions of k, - k; and k, - k,, which
give

ok, K + ARZ)U(EAK)
k, + Ak ’

Ay (@) J'dBk (13)

where Ak = (2(E, ~ E,) + k*)"* - k is the minimum change
in momentum. This equation clearly shows that the final
scattering amplitude depends on the off-diagonal density
matrix elements in the longitudinal direction. But perhaps
more importantly, it shows that the transition amplitude is
proportional to the scattering amplitude (which is propor-
tional to Uiq]) only in the forward direction. This means
that the fotal transition probability will depend on the total
cross section from the incoherent scattering and on the
differential scattering cross section in the forward direction
from the coherent scattering.

In conclusion, we would like to suggest another physical
reason for the ccherent-scattering term. When a beam of
particles interacts with a quantumn scatterer, there are two
mechanisms for causing a transition. In the usual case, the
incident particle scatters from the target and changes energy
and momentum. After the scattering, it is possible to tell
which incident particle has caused the transitiony; thus, the
transition probability is the incoherent swm over all of the
distinguishable possible causes of the transition. In the
coherent case we discussed, the projectile continues in the
forward direction after the scattering but with changed
momentum because of the energy transferred to the target;
however, if the projectile has a coherent energy spread that
it is greater than the energy transfer, then it is not possible
toknow which projectile caused the transition because it still



F. Robicheaux and L.D. Noordam

overlaps the unscattered wave-packet. Since it is not possibie
to tell which particle caused the transition, the amplitudes
for all of the possibilities need to be added coherently and
then squared to obtain the transition probability. This
analysis suggests that dipole-allowed transitions for the
interaction of a fast electron with a quantum target will be
good candidates to observe effects from pulsed beams; the
inelastic, differential cross section is only peaked in the
forward-scattering direction for dipole-allowed transitions.

Scattering theory with modulated matter beams has been
discussed in this paper, with the focus on the change in the
transition probability that results from having a pulsed beam
of particles interacting with a quantum target. We find that
if the scattered wave overlaps the initial wave, then there is
the possibility for the transition amplitudes of the different
incident particles to add coherently. In our analysis, we have
used several aspects of Fano’s work; density matrices, the
correlation that develops between: a beam electron and a
target through electron-electron interactions, and the
expression of the final result in terms of dassically intuitive
parameters were all used in our discussion. We find that the
coherent part of the transition amplitude violates many of
the usual assumptions in scattering theory. (1) The total
transition probability is proportional to the square of the
number of particles in the beam. (2) The total transition is
proportional to the differential cross section only in the

forward-scattering direction. (3) The transition probability
depends on coherence properties of the beam; in other
words, the transition probability depends on off-diagonal
elements of the density matrix in momentum space. (4) The
transition probability can be related to dlassical, large-scale
properties of the beam (for example, average charge den-
sity). The study of scattering usinig coherent beams is just
beginning and we expect many other interesting properties
to emerge in future studies.
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Résumé

Nous discutons d'une théorie traitant l'interaction d'une cible quantique avec un faisceau de
particules pulsées. Nous trouvons que des transitions cohérentes induites par les pulsations du
Jaisceau influent sur les probabilités de transition, qui différent alors qualitativerent des
probabilités induites par un faisceau continu. Dans cet article, nous concentrons notre étude sur la
limite perturbatrice et sur les liens avec Uintuition classique.

Endnotes
! A pure state can be specified by the coefﬁcients C; of the
basis states that comstruct it: |¥) = LCly). In the

simplest representation, a density matrix can be consid-
ered to be the expectation value of the operator |y},
which has the simple form Py = for a pure state.
This behavior should be contrasted with the optical
theorem, where the total aross section (summed over all
possible final states and integrated over all angles) may be
obtained from the imaginary part of the elastic- scattermg
amplitude in the forward direction.

The relationship between the scattering amplitude when
the scatterer is centered at the point r, and the amplitude
when the scatterer is centered at 0is

frealK & K[, = flo K « K)e'®kn, (16)
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