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We describe the dipole-dipole interactions between a linear array of optically driven silver metallic nanospheres
(MNSs). These model calculations incorporate the full electric field generated by an oscillating dipole and
predict several interesting effects due to the retardation of the field. The distribution of the power associated
with MNSs along the array shows a strong variation on a scale smaller than the wavelength of the driving
light. For a given geometry, there is a small range of frequencies where the relative power in the last MNS
compared to the first dramatically changes, suggesting a simple device for wavelength discrimination in this
frequency range. Moreover, small changes in the driving frequency can completely change the direction of
the scattered light when only a single nanosphere is driven.

1. Introduction and Summary

Recently there have been many theoretical and experimental
studies probing the nature of a collection of optically driven
metal nanospheres (MNSs), their interactions, and various
possible uses as subwavelength optical devices.1-13 Arrange-
ments of MNSs with features smaller than the wavelength of
light, λ, can be constructed and will interact strongly with light
tuned to the surface plasmon (SP) frequency (ωSP).14 The
coupling of the MNSs through the electromagnetic field
produces a coherent wave of oscillating dipole moments. This
coupling allows information to pass through geometries smaller
thanλ and causes the direction of the scattered light to strongly
depend onλ. A simple and important geometry to study is a
straight line or chain of equally spaced MNSs placed in a
dielectric medium. This configuration is shown in Figure 1 with
a realistic particle size and spacing. In this paper we will use
an array of 10 nanospheres; it has been shown when using
common parameters that the infinite chain limit is met at around
10 particles.11 A technique for the fabrication of such assemblies
is electron-beam lithography, which allows for good control over
particle size and regular placement.7 Being one of the easiest
configurations to set up experimentally and theoretically, it has
been studied extensively. All of the MNSs in the linear array
can be excited using a broad light beam at a specific frequency
ω. Theoretical analysis of a linear array of MNSs has been done
by several different groups. The numerical methods developed
to describe these arrays and their interactions with an external
electric field include the discrete dipole approximation,8 the
multiple multipole method,10 the finite difference time domain
method,7 and the T-matrix method.2 The method used in this
paper can perhaps best be described as the coupled dipole
approximation. Each nanosphere will be described by a single
point dipole that linearly responds to electric fields. When the
system is driven at a specific frequency,ω, then every time-
dependent quantity can be written asA(t) ) A(0) exp(-iωt).
We will solve a set of self-consistent linear equations describing
the response of each electric dipole to the incident field and to

the scattered electric fields from the other particles. In doing
so, we will use the full electric field from the oscillating dipoles
and contrast these results with using only the near-field
approximation. We report several interesting effects apparent
in this simple system that emerge from treating the full field
rather than the near field. We show that the ohmic power
deposited in a particular MNS can strongly depend on the
position in the line of particles even when all of the MNS are
equally illuminated by a light beam. Furthermore, we can reverse
the ratio of power in the first sphere compared to the last sphere
with an extremely small variation in light frequency, suggesting
a device for wavelength discrimination over this range of
frequencies. Also, we will show that the direction of the light
emitted from the MNS array strongly depends on frequency
when only one of the spheres is driven. Thus, it should be
possible to detect collective properties of the MNS array, such
as inhomogeneous power distribution along the array, using
simple measurements of the far-field radiation, which could
simplify experiments.

There are three uncoupled modes of propagation down this
chain: two (degenerate) transverse (T) waves having the
direction of the dipole moments,pb, perpendicular to the line of
MNSs and a longitudinal (L) mode in whichpb are parallel to
the chain axis. All other forms of propagation can be described
as a linear combination of T and L modes. For the T modes,
widely separated MNSs can interact via the far field of the
scattered light, while this is not possible for the L modes since
there is no scattered light parallel to the dipole moment. A very
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Figure 1. Schematic drawing of a possible setup for a regularly spaced
linear array of silver nanospheres. A wide (compared to the size of a
nanosphere of radiusa) beam of light of frequencyω is propagated
along the array’s axis in the particular medium where the array is
assembled. The light absorbed and scattered by each MNS will in turn
excite neighboring MNSs, and a coherent wave of oscillating electric
dipoles will be produced.
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thorough study on the effect of the far field of the scattered
light on the dispersion relation of T modes was done by Citrin.12

For the geometry discussed in this paper, the light beam will
be directed from left to right, and thus, only T modes are excited
unless noted otherwise.

2. Method

In our calculations, we assume that the plasmon excitations
caused by incident light produce an oscillating dipole electric
field. This assumption holds if the wavelength of the incident
light is much larger than the diameter, 2a, of the MNS and the
interparticle distanced J 3a.10,15A more complete investigation
of higher order multipole effects in the near field has been done
in ref 10; higher order multipole effects become increasingly
important as the interparticle spacing decreases but should give
only minor, quantitative differences for the cases we present
here. The electric field produced by a single, periodically
oscillating dipole with an electric dipole momentpb is given by

wherek ) ω/V is the wavenumber in the dielectric,V is the
speed of light in the dielectric medium,16 andR̂ is the unit vector
in the direction ofRB (RB is the displacement from the dipole
pb).15 If we use the near-field approximation,R , λ, then we
setk ) 0 and the electric field is

In the near field the electric field is dominant, but when using
the full field this is not immediately obvious. We can neglect
the effects of the magnetic field, however, if the charge
separation is small, i.e., the magnitude of the dipole is not very
large compared to the total charge times the radiusa on the
MNS. Using the full electric dipole fields we can construct self-
consistent equations of motion for a driven system of MNSs.
The equation of motion for a dipole driven by an electric field

can be parametrized as
‚‚
pb + γ

‚
pb + ωSP

2 pb - â
‚‚‚
pb ) ηEB(t) where

γ, ωSP, â, and η are constants; the physical values of these
parameters are substituted in the equation below. The terms of
this equation have a familiar origin: the first term is the
acceleration, the second term is the damping from ohmic
heating, the third term is from the harmonic force, the fourth
term is from radiation damping, and the right-hand side is the
driving term from the electric field. Substituting the oscillating
form, pbn(t) ) pbn exp(-iωt), and substituting the physical values
for the constants gives the coupled dipole-dipole equations of
motion:

wherea is the radius of the MNS,RBnn′ ≡ RBn′ - RBn is the center-
to-center distance between two particles,EBn

(ext) is the external
electric field at thenth nanosphere, andEB(pbn′,RBnn′,k) has been
defined in eq 2. In a previous study, the radiation damping was
erroneously taken to be negligibly small.6 For the parameters

of this paper, the radiation damping is the largest loss mecha-
nism, but the radiation damping does become less important as
the radius of the MNSs decreases. In the ohmic damping term,
γ is the inverse of the electronic relaxation time. To match the
bulk dielectric properties of Ag, we use a value ofγ ) 7.87×
1013 s-1.6 The coupling strength is determined in large part by
the bulk plasmon frequencyωp. The value ofωp has been
defined such thatωp

2 ) (Ne2)/(εm*), whereN is the total number
of conducting electrons per unit volume,e is the charge of an
electron, andm* is the optical effective electron mass.17 For
silver we usedN ) 5.85× 1028 electrons/m3 andm* ) 8.7 ×
10-31kg. We have calculated a value ofωp ≈ 9.3× 1015 rad/s,
and we will useωSP ≈ 5 × 1015 rad/s.6 The solutions to these
coupled inhomogeneous linear algebra equations are the induced
dipole moments,pb, on each sphere. Becausepb appears linearly,
these coupled equations can be solved directly by using standard
linear algebra packages.

3. Results

The MNSs act as both scatterers and detectors of the total
electromagnetic field. The induced dipole moment of an MNS
is proportional to the local electric field, while the ohmic power
dumped into the MNS is proportional to the magnitude of the
dipole moment squared. In Figure 2 the ohmic power of each
of the 10 individual MNSs is plotted for two specific frequen-
cies: one placing most of the power on the first MNS and the
other directing most of the power down the chain. In both cases
the magnitude of the incident electric field is chosen to be 1
V/m to facilitate (through linear scaling) the calculation of the
power at other field strengths. The dramatic difference in the
distribution of power with relatively small changes in frequency
is evident. The near-field approximation has been used in many
studies of interacting MNSs, but does not correctly reproduce
most effects in Figure 2. The near-field approximation is most
accurate whenkd , 1, d being the regular center-to-center
interparticle distance. In the case of Ag nanospheresωSP ≈
5 × 1015 rad/s, which gives a value ofk ≈ 3.0 × 107 m-1, in

EB(pb,RB,k) )
1

4πε{k2(R̂× pb) × R̂
eikR

R
+ [3R̂(R̂‚pb) - pb]( 1

R3
- ik
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n′*n
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Figure 2. Ohmic power as a function of the position of 10 MNSs in
a regularly spaced linear array. The center-to-center interparticle distance
is d ) 80 nm, and the diameter, 2a, of each MNS is 50 nm. A plane
transversely polarized electromagnetic wave is propagated from left to
right along the axis of the array. All of the MNSs absorb and scatter
the incident electromagnetic wave of magnitude 1 V/m. The solid line
is for a chosen frequencyω ) 4.85× 1015 rad/s (λdiel ) 259 nm) when
most of the power is in the first sphere. The dashed line is for a
frequency ofω ) 4.62× 1015 rad/s (λdiel ) 272 nm) when most of the
power is in the last sphere. This asymmetry between first and last MNSs
vanishes in the near-field approximation at all wavelengths.
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the dielectric. Typical interparticle spacings are in the range of
80 nm, so in these caseskd ≈ 2π/3. In the near-field
approximation, coupling terms that fall off asR-1 andR-2 are
neglected. When using the full electric field, certain phase-
dependent phenomena are now taken into account that had been
overlooked in earlier work.6 It is important to recognize that
the dipole fields created by the now oscillating electric dipoles
have individual phases that vary with the distance from an MNS.
The retarded electric field can add either constructively or
destructively down the chain to create localized regions of high
total electric field. Using the near-field approximation, all of
the MNSs “talk” to each other instantaneously, and any phase
is solely due to the phase of oscillation of a single dipole. Using
this approximation, the ohmic power is symmetric through the
midpoint of the array at all wavelengths. In contrast, when using
the full dipole field, there is a lag in interparticle communication
due to the finite speed of light. It is this lag that allows the
MNSs to have differing phases that can coherently add or
subtract at specific locations in space.

It is also interesting to compare the ohmic power of the first
MNS to the last one while scanning over a range of frequencies.
Remember that in our geometry the light is directed down the
line of MNSs. Therefore, without the interaction between MNSs,
each of the nanospheres would dissipate the same amount of
ohmic power. It can immediately be seen in Figure 3 that within
a certain band of frequencies the ohmic power from the first
sphere is much greater than that of the last one. Within another
band of frequencies the opposite is true. A similar though lesser
effect is present even for the limit of two MNSs. To clearly
illustrate the sensitivity of the array, we also plotted the single
particle response to an identical beam of light in Figure 3 as
dotted lines. Note that the response of the first MNS follows
the response of a single sphere when the driving frequency is
far off resonance, but the response of the last sphere is strongly
suppressed for all of the plotted frequencies greater than
resonance. This forward-backward asymmetry is not present
when the near-field approximation is used (inset of Figure 3),
and thus the asymmetry is due solely to the retardation of the
electric field. It is also interesting that the power in the first

sphere is greater than for a single sphere for almost all
frequencies and is roughly a factor of 3 times larger at the peak.
Naturally the next step is to investigate what is the cause of the
forward-backward frequency-dependent asymmetry as seen in
Figure 3. Using the calculated dipole moments and looking in
the far-field (r f ∞) limit we can determine the differential
radiated power per solid angle:15

where

and k ) ω/V ) 2π/λ is the wavenumber in the dielectric
medium. In eqs 5 and 6r̂ is the usual radial unit vector and∆Bn

is the displacement from the first nanosphere to thenth one;
|∆Bn| ) (n - 1)d for a regularly spaced linear array. We set up
a regular linear array as in Figure 1, but we changed the
simulation so that only the first (leftmost) MNS is excited to a
frequencyω. Exciting a single MNS can probably be realized
by using an electron beam instead of optical radiation. Optical
spot sizes are on at least the order ofλ in dielectric, while
e-beams can have spot sizes much smaller than the interparticle
separationd. We can see in Figure 4 that there are indeed certain
bands of frequency that cause the whole system to scatter light
in the backward direction and that these frequencies are the same
frequencies where the forward-backward asymmetry is realized.
In fact the similarity between Figures 3 and 4 is quite
pronounced, showing that the asymmetric behavior is caused
by the coherent constructive or destructive interference of the
radiated light from the individual MNS. When driving the first
MNS at certain frequencies, the total electric field emitted by
the MNSs adds constructively along the line, which correlates
with a large amplitude at the last sphere. At other frequencies,
the total electric field gives destructive interference along the
line, which correlates with the small amplitudes at the final
sphere. Another way to look at Figure 4 is to perform a discrete
Fourier transform of the induced dipole moments:pb(k) )
∑n pb(r̂‚∆Bn) exp(-ikr̂‚∆Bn). We examinedp(k) at variousω’s by
starting from about 4.0× 1015 rad/s and increasing the
frequency. At first a clear peak could be seen inp(k), and this

Figure 3. Ohmic power as a function of the frequency,ω, of a plane
electromagnetic wave propagating along the axis of a regular linear
array of MNSs. The dimension of the array and MNSs is the same as
in Figures 1 and 2. All of the MNSs absorb and scatter the incident
beam of light as it comes in from left to right. The solid line is the
ohmic power of the first (leftmost) MNS, and the dashed line is for
the last (10th) one. The dotted line is the power response for the single
MNS case. The inset is the same as the main figure, but using only the
near-field approximation. Note that it is now impossible to preferentially
excite the first or last MNS by modifying the driving frequency.

Figure 4. Same physical set up as Figure 2, but this time only the
first sphere is externally excited. Plotted is the differential radiated
power per solid angle versus the frequency of the incident light. The
solid line is the power scattered in the forward direction, and the dashed
line is the power scattered in the backward direction.

dPrad

dΩ
) 1

2
Vk4

(4π)2
ε
[ |pb|2 - | r̂ ‚ pb|2] (4)

pb ≡ ∑
n

pbn e-ikr̂‚∆Bn (5)
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peak increased as we increasedω. At aroundω ≈ 4.8 × 1015

rad/s a clear peak could no longer be discerned andp(k) becomes
very noisy. This implies that above aboutω ≈ 4.8× 1015 rad/s
we are trying to drive the system outside the allowed photonic
bands. This behavior matches closely with Figure 4, suggesting
that scattering light in the forward direction is suppressed due
to driving outside the photonic band gap for this system. It also
suggests that a correct band structure calculation must take into
account the full electric dipole field and radiative damping.
When exciting the system into L modes, widely separated MNSs
do not interact via the far field of the scattered light (R̂ × pb )
0). They do still communicate through the near and intermediate
fields. Unlike using the near-field approximation however, the
scattered field is still retarded. This retardation will once again
cause MNSs to oscillate at various phases allowing for interfer-
ence effects. In Figure 5 we again use the same physical setup
as Figure 1, and we excite only the leftmost MNS at a various
frequenciesω. This time we excite into an L mode (parallel to
the chain). Plotted in Figure 5 is the differential power scattered
per solid angle (dP/dΩ) versus the scattering angleθ at two
different frequencies. The inset is also dP/dΩ, but forcing all
of the MNSs to oscillate in phase. This plot is reminiscent of
the symmetric diffraction pattern of light passing through slits
spaced closely relative to the incident wavelength. A clear
asymmetry, however, can be seen in the main plot. As seen
with the T mode case, the bulk of the scattered light can be
preferentially aimed in different directions by adjusting the
frequency of the driving force.

4. Conclusion

In summary we have shown that when looking at a system
of MNSs, interesting effects can be lost when using only a near-
field approximation. Within certain closely spaced bands of
frequencies it is possible, using a spatially broad beam of light,

to excite specific MNSs. In Figure 3, the ratio of the power in
the first sphere to that in the last sphere is 1 near the crossing
frequency∼4.7× 1015 rad/s; near this frequency, the ratio varies
by more than an order of magnitude in a small range of
frequencies. Various experimental techniques can detect when
the surface plasmon of an MNS is excited; thus, it seems
possible to distinguish between two nearby wavelengths in a
small frequency range near∼4.7 × 1015 rad/s using a device
less than 1µm in size. Exciting the surface plasmon in a
particular MNS is closely related to the frequencies where the
whole system exhibits a large amount of forward or backward
scattering of light. This pronounced forward and backward
scattering is caused within specific ranges of frequency that
allow the collection of MNSs to constructively or destructively
add their radiated light. This behavior has exciting experimental
consequences such as being able to infer the ohmic power
dissipated in an MNS by looking at the scattered light field.
Rather than having to coat the MNSs with specific dyes to
measure their output power, it should be possible to simply
detect the amount of forward and back scattered light. The
retardation of the incident and scattered light field removes the
symmetry through the middle of the line of nanospheres,
allowing a range of complex effects. Only a few of these effects
have been discussed in this paper; many variations have not
yet been explored and will probably disclose more fascinating
effects.

Acknowledgment. We would like to gratefully acknowledge
fruitful discussions with J. D. Hanson, Albert Polman, and
Kobus Kuipers. The work of J.V.H. and F.R. is supported by
NSF Grant No. 0098195. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the
National Science Foundation. L.D.N. is part of the research
program of the Stichting voor Fundamenteel Onderzoek der
Materie (FOM), which is financially supported by the Neder-
landse Organisatie voor Wetenschappelijk Onderzoek (NWO).

References and Notes

(1) Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.;
Koel, B. E.; Requicha, A. A.Nat. Mater.2003, 2, 229.

(2) Quinten, M.; Lietner, A.; Krenn, J. R.; Aussenegg, F. R.Opt. Lett.
1998, 23, 1331.

(3) Krenn, J. R.; et. al.Phys. ReV. B 1999, 82, 2590.
(4) Müller, J.; et. al.Appl. Phys. Lett.2002, 81, 171.
(5) Zentgraf, T.; Christ, A.; Kuhl, J.; Giessen, H.Phys. ReV. Lett.2004,

93, 243901.
(6) Brongersma, M. L.; Hartman, J. W.; Atwater, H. A.Phys. ReV. B

2000, 62, R16356.
(7) Maier, S. A.; Kik, P. G.; Atwater, H. A.Phys. ReV. B 2003, 67,

205402.
(8) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C.J. Phys.

Chem. B2003, 107, 668.
(9) Li, K.; Stockman, M. I.; Bergman, D.J. Phys. ReV. Lett.2003, 91,

227402.
(10) Park, S. Y.; Stroud, D.Phys. ReV. B 2004, 69, 125418.
(11) Citrin, D. S.Nano Lett.2005, 5, 985.
(12) Citrin, D. S.Nano Lett.2004, 4, 1561.
(13) Colas des Francs, G.; Girard, C.; Martin, O. J. F.Phys. ReV. Lett

2003, 67, 053805.
(14) Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters;

Springer-Verlag: Berlin, 1994.
(15) Jackson, J. D.Classical Electrodynamics, 3rd ed.; John Wiley &

Sons: New York, 1999.
(16) We will use an index of refractionn ) 1.5 (the general phenomena

in this paper do not depend onn).
(17) Johnson, P. B.; Christy, R. W.Phys. ReV. B 1972, 6, 4370.

Figure 5. Again the same physical setup as Figure 4, but this time
the first sphere is externally excited into an L mode. Plotted is the
differential radiated power per solid angle versus the scattering angle
θ for two frequencies, whereθ is the angle relative to the line of MNSs.
The solid line is the power scattered atω ) ωSP ) 5.0 × 1015 rad/s,
and the dashed line is the power scattered whenω ) 5.5× 1015 rad/s.
To more cleary show the asymmetry, the dashed line is scaled by 2.0,
i.e., the amplitude of the driving force is increased by about 40%. The
intermediate electric field of the oscillating dipoles gives the asymmetry.
The inset also plots differential radiated power per solid angle versus
the scattering angle forω ) ωSP, but here the MNSs are forced to
oscillate in phase.
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