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Abstract
The results of a theoretical investigation of an ultracold, neutral plasma composed only of equal mass
positive and negative charges are reported. In our simulations, the plasma is created by the fast
dissociation of a neutral particle; each dissociation leads to one positive ion and one negative ion with
the same mass as the positive ion. The temperature of the plasma is controlled by the relative energy of
the dissociation. We studied the early time evolution of this system where the initial energy was tuned
so that the plasma is formed in the strongly coupled regime. In particular, we present results on the
temperature evolution and three body recombination. In the weakly coupled regime, we studied how
an expanding plasma thermalizes and how the scattering between ions affects the expansion. Because
the expansion causes the density to drop, the velocity distribution only evolves for a finite time with
the final distribution depending on the number of particles and initial temperature of the plasma.
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1. Introduction

Ultracold and strongly coupled plasmas are non-traditional
plasmas where the strong interparticle interactions can lead to
collective behavior in the system [1]. Depending on the system,
highly correlated behavior can emerge when the interaction
energy exceeds the kinetic energy because the particles can
only move in the classically allowed region of a highly struc-
tured potential energy surface. Experiments and calculations of
ultracold plasmas consisting of electrons and positive atomic or
molecular ions have demonstrated a wide variety of interesting
effects [1]. Although different ions have different mass, the
mass ratio of the positive charge and the negative charge in
these plasmas is typically larger than 104. We are interested in
the properties of an ultracold, neutral plasma when the mass
ratio of the positive charge and negative charge is small.

In this paper, we present the results of calculations of
ultracold neutral plasmas where the masses of all particles are
the same. There have been many experiments and simulations
on electron–positron plasmas in many different situations (two
of many examples are [2, 3]). However, the ultracold regime is
largely unexplored. As discussed in [4], a possible way to
create an ultracold, equal mass plasma is to dissociate cold
molecules to a positive/negative ion pair (e.g., Rb+ and Rb−

with a ( − + ∼− + − +
−M M M M) ( ) 10 5) [5]; this plasma

would only contain Rb+ and Rb− ions and could be a prototype
of an ultracold, neutral plasma where every charge has the
same mass. The kinetic energy of the break up can be con-
trolled by starting in different vibrational states of the molecule.
For example, the Frank–Condon overlap region moves to lar-
ger R as the vibrational quantum number increases. With this
picture in mind, we performed calculations where many pairs
of oppositely charged ions are launched with opposite velo-
cities so that the center of mass velocity of each pair is 0. Each
pair has a random center of mass position. When the positive
and negative ions separate to large distances, they can interact
with all of the other ions leading to a variety of effects.

One of the more interesting parameters that characterizes
the plasma behavior is the Coulomb coupling parameter
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and e is the electron charge, kB is Boltzmannʼs constant, n is

Journal of Physics B: Atomic, Molecular and Optical Physics

J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 245701 (8pp) doi:10.1088/0953-4075/47/24/245701

0953-4075/14/245701+08$33.00 © 2014 IOP Publishing Ltd Printed in the UK1

mailto:robichf@purdue.edu
http://dx.doi.org/10.1088/0953-4075/47/24/245701


the number density of one species, and T is the temperature;
this expression has twice the density of the usual formula
because both species can interact with the same footing. If Γ
is larger than ∼1, then the components of the plasma start
displaying correlated motion and that component of the
plasma is considered to be strongly coupled. If Γ is less than
∼1, then the plasma is weakly coupled. In the weakly coupled
limit, standard plasma concepts (e.g. Debye screening, elec-
tron–ion scattering, ...) and standard atomic concepts (e.g.
three body recombination) are expected to be good
approximations.

We present results of two qualitatively different aspects
of an equal mass, ultracold neutral plasma. Previous calcu-
lations and experiments suggest that the early time behavior
[6–8] and the late time expansion of the plasmas should be
worth studying [7, 10–13].

The early time behavior can be interesting when the
initial plasma temperature is low because a strongly coupled
plasma heats up due to the energy released from three body
recombination [6–8, 11–13]. For the typical ultracold
plasma, two electrons scatter in the vicinity of a positive ion
leading to one electron becoming bound while the second
leaves with a larger energy. As seen in [7, 8], the electron
coupling parameter decreases from ∼1 to ∼0.6 on a time
scale of ∼10 plasma periods of the electron. Reference [7]
presented calculations of the early time heating of the
plasma due to this process for an ion mass substantially
larger than the electron mass but much less than physical
masses. Reference [8] revisited this system and calculated
the heating as a function of the ion mass ([8], figure 2) and
found that smaller ion masses gave lower electron tem-
peratures. These results motivated us to study the early time
behavior of initially strongly coupled plasmas when the
mass of the positive charge equals that of the negative
charge. In addition to the possible changes to the three body
recombination and heating, we point out that the ion plasma
period would be of order 100× longer than the electron
plasma period. Thus, there would be an experimentally
substantial time interval for studying neutral plasmas where
both components have Γ ∼ 1. For example, if the positive
ion had accessible states, then a Doppler method, as in [9],
would have access to the velocity distribution of the posi-
tive ions; we do not know of a simple way to probe the
negative ions which, typically, do not have several bound
states.

The other possibility for interesting physics is in the
expansion of the plasma [7, 10, 12–13]. For this investigation,
we used plasma temperatures sufficiently high that we could
treat the species as weakly coupled. In the usual ultracold
plasmas, the electrons are confined by the space charge of the
ions and the pressure from the electrons gives a radially
outward force on the ions [1, 6]. During the expansion, the
electron temperature drops substantially and this energy is
converted to radial kinetic energy of the ions. For an equal
mass plasma, this description of the expansion can not be
correct; unlike the electron–ion plasma, the equal mass
plasma could expand faster than the plasma properties can be

established. The plasma period scales like −n 1 2 where n is the
density whereas the expansion time scales with

∝ −L v LTth
1 2 where L is a size scale of the plasma and T is

the temperature of one of the components. Since these two
time scales vary with completely different parameters, it
should be possible to explore scenarios where there are many
plasma oscillations before the plasma substantially expands.
Since the two species start with the same temperature, the
plasma expansion can not extract energy from the thermal
motion. The dominant effects arise from the competition
between particle scattering (which leads to thermalization and
slows the expansion) and plasma expansion (which decreases
the density and slows the particle scattering).

In all discussions below, the quoted density is the density
of one species. The total density of particles is, of course,
twice this value.

2. Numerical methods

We were interested in two qualitatively different types of
behavior which required two different types of computational
methods. For the early time behavior of a strongly coupled
plasma, we needed to simulate the thermalization and evo-
lution of the coupling parameter on a time scale less than ten
plasma periods. This required a method that computes the
positions and velocities of all the particles. For the late time
behavior, we needed to simulate the thermalization and
expansion of the plasma for the case of weak coupling. This
required a method that could handle millions of particles over
very long time scales but where only pair-wise collisions are
relevant.

2.1. Molecular dynamics method

The calculations for the early time behavior of a strongly
coupled plasma used an adaptive steps-size, Runge–Kutta
algorithm [14] to solve the classical equations of motion with
wrap boundary condition for the forces. These calculations
used the same method and programs as described in [8]
sections 2 and 3 except the masses of the positive and
negative particles are the same. We solve for the motion of
every positive and negative ion using the coupled first order
differential equations for positions and velocities; the accel-
eration of an ion is computed by summing the Coulomb force
from every other ion. All of the particles were contained
within a cube of length L so that the number of positive
particles divided by the volume equaled the target density.
When a particle reached the edge of the cube, it was wrapped
back into the cube; for example, if the xj was larger than L
then it was replaced by −x Lj before the next time step. We
did not use a pure Coulomb force for the particles all of the
way to zero separation. We derived the force from a spheri-
cally symmetric potential between particles i and j that had
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the form
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where qi is the charge of particle i, rij is the separation of
particles i and j, π=a n[3 (4 2 )]ws

1 3 is the Wigner–Seitz
radius which is found from the number density n, and C is a
constant substantially less than 1. We performed calculations
for several values of C from 0.01 to 0.05 to determine the
effect that the soft core had on the dynamics. The role that the
constant C plays in the calculation is discussed below in the
results of the different simulations. We emphasize that this
form of the potential is a numerical device for speeding the
calculation while keeping the physical result the same.

In our simulations, we are calculating the behavior for a
finite number of particles so the treatment of the boundary
could be important. As in [8], we used a wrap boundary
condition on a cube when computing the forces. When we
computed the force or potential energy between two particles,
we would use −x xi j if − ⩽ − ⩽L x x L2 ( ) 2i j but would
use − +x x Li j if it was less than −L 2 and − −x x Li j if it
was greater than L 2. Similar definitions applied to the y- and
z-components. As the number of particles in the simulation
increases for a given density, the size of the cube increases
and the effect of the edges becomes less. We checked con-
vergence with respect to the cube size by comparing the
results from different size runs. We also checked the con-
vergence by calculating the force from a pair potential that
artificially goes to zero so that particles separated by a wrap
condition do not interact: → −r r r L(1 ) (1 ) exp[ (4 ) ]4 . This
gave the same results as those shown below. We think the fast
convergence with respect to system size is because the
charged particles are screening the interaction between ions
separated by distances larger than ∼L 2.

The particles were initialized to mimic a sudden dis-
sociation of positive and negative ions. Each pair of positive
and negative ions were randomly placed within the cube. The
initial separation of a positive–negative ion pair was
a 2500;ws the separation vector for each pair was randomly
chosen with a uniform distribution on a sphere. Their initial
velocity vectors were chosen to be equal and opposite so the
center of mass velocity was zero; their directions were chosen
so they moved directly apart. The magnitude of velocity was
chosen so that the energy of the pair would be 2 3 the
temperature.

We made sure our reported results were converged with
respect to the time step in the calculation. This was checked
by increasing the accuracy parameter in the calculation. We
checked that the results in our plots did not change and we
checked that the total energy of the system drifted by less than
a mK per particle.

2.2. Monte Carlo method

We also wanted to investigate how an experimentally sized
system would thermalize and expand. For this situation, there
could be millions of particles but we studied cases where the

temperature was high enough that the plasma was only
weakly coupled. These conditions suggest using a Fokker–
Planck type method to include the effect of scattering on the
motion. Due to our difficulties implementing the continuum
Fokker–Planck equation, we used a Monte Carlo imple-
mentation of Fokker–Planck ideas: ions do not experience
force from other ions but the interaction is simulated by
random scattering [15]. The scattering leads to thermalization
of the particles and to a slowing of the plasma expansion. We
simulated a case where the positive and negative ions have a
Gaussian distribution in space but each pair is launched back-
to-back. The plasma will maintain its spherical symmetry
during the expansion. Because there could be different con-
ditions in different radial regions we implemented a some-
what complex Monte Carlo method. The method was nearly
identical to that described for electron–electron scattering in
section IIIA of [15].

As in the previous section, the positive and negative
particles are launched in pairs with zero center-of-mass
velocity. The pairs are launched with a fixed separation and
speed. In the absence of scattering with other particles, all
particles would have the same speed. The initial speed dis-
tribution is strongly peaked. Collisions broaden the distribu-
tion and, in the limit that the particles can scatter many times,
the velocities will approach a Maxwell–Boltzmann distribu-
tion. The ‘temperature’ quoted for each calculation is 2 3 the
energy for each pair. The initial center of mass position for
each pair is chosen randomly from a spherical Gaussian dis-
tribution proportional to − r Lexp( )g

2 2 where the length scale

π= ( )L N n̄ 2 , (4)g
1 3

where n̄ is the average density and N is the number of positive
(or negative) ions. The local (single species) density is

= −n r n r L( ) 2 ¯ exp( )g
3 2 2 2 .

For the Monte Carlo simulation, we would first step
every particleʼs position using itʼs velocity and then we would
update the velocity using pairwise scattering between parti-
cles [15]. In this method, the local density is used to deter-
mine the scattering rate experienced by each particle Unlike
the electron–electron scattering in [15], the ions in our plasma
tend to stay near the same ions once the expansion begins
which led to numerical instabilities. We avoided this problem
by computing the plasma density on a grid that evolved in
time; the radial grid kept a fixed number of points but the
spacing changed with the particle with the largest r:
δ =r r Nmax ( ) r where the number of grid points, Nr, was
fixed. As in [15], only particles with nearly the same r are
allowed to scatter from each other.

There are three important parameters to check for con-
vergence. The most important parameter to test is the time
step. The probability for a pair to scatter during a time step is
proportional to δt . If this probability becomes larger than ∼0.1
for a substantial fraction of the pairs, then the effect from
scattering will be underestimated. Another parameter to check
is the radial dependence of the density which determines how
often an ion near a radius r will scatter. We compute the
density by distributing particles on a radial grid. If the grid is
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too coarse, the density variation will not be as rapid as it
should. If the grid is too fine, then the statistical noise from
the finite number of particles in the calculation will give
errors in the local density. Finally, we needed to only allow
scattering between pairs of particles with small separation in
r. This was accomplished in two steps. First a group of
possible scatterers were randomly picked from the particles.
Second, a scattering particle was picked and the particle in the
scattering group with the closest r was used to scatter. Lastly,
the particle pulled from the scattering group was replaced by
another random particle. Ideally, the scattering group should
consist of all particles but it would be prohibitively slow to
search such a large list. We checked the convergence of the
results with the size of the scattering group by doubling its
size until the final results differed by less than 2%.

To test whether this method could give reasonable
results, we performed molecular dynamics calculations with
6400 positive and 6400 negative ions and compared to the
Monte Carlo calculation. The comparison between these
calculations are given in the results section below.

3. Scaling

All of our calculations are purely classical which means that
our results have exact scaling properties. Therefore, we can
present our results for one specific choice of mass and density
while varying the initial energy. These results will be
applicable to other cases that have the same scaled
parameters.

Mass scaling. All of the results presented below were
obtained for the positive and negative charges each having the

mass equivalent to one proton. To obtain the scaling relation,
note that only the time and speed variables need to be scaled
to obtain the same equations of motion. If you write

=t t M M˜ ˜ , you find that all of the velocities are scaled by

the factor M M˜ but all other parameters (e.g. positions,
energies, etc) are unchanged. As an example, if the only
change is that the mass is larger by a factor of 16 while the
initial density and energy are held fixed, then the same motion
occurs but over a time scale a factor of 4 longer.

Density scaling. If the mass and charge are held fixed, the
classical equations of motion exactly scale under the trans-
formation

α α α= = =−v v r r t t˜, ˜, ˜, (5)1 2 3

where α is a dimensionless scale factor. The energy scales as
α= −E Ẽ2 while the density scales as α= −n ñ6 . Thus, we can

explore different parameter regimes by either changing the
initial energy or the initial density; it is not necessary to
change both. The scaled energies and densities are related
through =n n E E˜( ˜)3 which means decreasing the energy by a
factor of 2 while keeping the initial density fixed is equivalent
to increasing the initial density by a factor of 8 while keeping
the energy fixed.

4. Results

In this section, all of the calculations use a mass equal to that
for one proton and an average (one-species) density of

=n 109 cm−3. The scaling relations derived above can con-
vert these results to any mass. Since the masses are all equal,
we use n2 in all of the expressions for the plasma parameters.

The plasma frequency ω ε= = ×ne M2 5.89 10p
2

0
7

rad s−1 and the Wigner–Seitz radius is
π= =a n(3 4 2 ) 4.92ws

1 3 μm. When computing the Coulomb
coupling constant Γ πε= e a k T(4 )2

0 ws B gives
Γ = T(3.39 K) . Because of the symmetric launch of the
positive and negative ions, the two species have the same
temperature at all times within the noise that results from a
finite number of particles.

4.1. Early time behavior of strongly coupled plasma

In this section, we present the results of the evolution of an
ultracold plasma at early times. We performed convergence
checks as in [8]. We found our results depended less on the
soft core parameter C than in [8]; all of the results in this
section used C = 0.01 although they were nearly indis-
tinguishable from the C = 0.02 or 0.03.

For this section, the particles are launched with an energy
so that the average temperature for a diffuse plasma would be
1 K. The plasma should be strongly coupled with such a low
temperature: Γ = 3.39. However, ultracold neutral plasmas
consisting of electrons and ions do not exhibit strong coupling
of electrons due to heating from three body recombination.
References [7, 8] showed the temperature rise at early times
(of order ten plasma periods); Γe starts at ∼1 due to disorder

Figure 1. Six calculations of the scaled temperature,
Γ πε=− k T e a[ (4 )]1

B
2

0 ws , are shown as a function of the scaled
time τ ω= tp . The plasma parameters are in the text. The solid lines

are when an ion closer to another ion than a0.1 ws were excluded
from the calculation of the temperature and, for the dotted line, the
exclusion region was a0.2 ws. The dashed line includes all ions, even
those forming bound states. Each line type is actually two lines: one
for a calculation using 400 particles of each sign and one for a
calculation using 800 particles of each sign. The near equality of the
calculations with 800 and 1600 total particles demonstrates the
convergence.
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induced heating over a time scale of ω∼1 p followed by a
decrease to ∼0.6 over a time scale of ∼10 plasma periods. We
expect a similar effect for equal mass plasmas because three
body recombination should be important, but the role of the
mass will change the results. For equal masses, the bound
system is in a highly excited state where the positive ion and
negative ion orbit the center of mass.

Figure 1 shows the inverse of the coupling constant with
time scaled by the plasma frequency. The Γ−1 is proportional
to the temperature while quickly showing whether the plasma
is strongly coupled. As with the electron plasma, Γ−1 jumps
to approximately 1 on a time scale of ω∼1 p due to disorder
induced heating; this jump is followed by a slower increase
due to heating from three body recombination. We defined the
temperature to be 2/3 the average kinetic energy. One diffi-
culty is in deciding which particles to include in the average
kinetic energy. Reference [7] took all electrons that were not
deeply bound to an ion and found their velocity distribution;
they fitted this distribution to a Maxwell–Boltzmann dis-
tribution to obtain the temperature. Reference [8] obtained the
temperature by using the equipartition theorem for electrons
that were further than a specified distance from every ion; the
distance we chose was either a 10ws or a 5ws (comparing the
two calculations gives an estimate of the uncertainty of the
temperature); they found this result agreed with the method of
[7]. In figure 1, the dotted and solid lines correspond to the
scaled temperature when the distance was chosen to be a 5ws

and a 10ws respectively. The dashed line includes all particles
but gives an unphysically high temperature due to ‘deeply’
bound ion pairs.

The value of the plasma period can be used to convert the
time axis to physical value. For protons, the final time is ≃1.7
μs. For other ions, the time scale would increase by a factor of

M Mion proton which could easily stretch the time scale to
order 10 μs. This would be easily within the time scale of
experimental probes (e.g. see [9]).

A Coulomb coupling parameter of Γ = 1 is approxi-
mately the demarcation between a strongly or a weakly
coupled plasma. The results in figure 1 are similar to those for
electron–ion plasmas (e.g. figure 1 of [8]) but the coupling
parameter for equal mass particles is somewhat larger than the
electron–ion case. However, the electron component of the
ultracold plasma is hard to probe and the total time scale for a
duration like figure 1 would be ∼60 ns. Although the results
for the equal mass plasma do not qualitatively differ from the
electron–ion case, the equal mass plasma is worth studying
because it seems possible to experimentally probe the equal
mass plasma with parameters near that for strong coupling.

The heating in figure 1 is due to three body recombina-
tion, but the number of bound atoms can not be inferred from
this data. Figure 2 shows the fraction of bound particles as a
function of time for the plasma parameters of figure 1. For
this plot, we defined a pair j- ′j as bound if the closest particle
to j was ′j for two times separated by ω1 p and the separation
was less than a 5ws . The results did not substantially change
when the separation distance was less than a 10ws .

Figure 2 shows that a substantial fraction of particles
become bound over this time range. As might be expected,
the fraction of bound pairs has a rapid initial increase fol-
lowed by a much slower rise. This is expected because the
three body recombination rate rapidly decreases with
increasing temperature and is proportional to the square of the
number of free particles. If the density drops by a factor of
0.8, then the recombination rate drops by the factor 0.64.

The center-of-mass speed of the bound pairs will be
substantially less than that of the free particles. Therefore, it
should be possible to detect the bound pairs by waiting for the
free particles to expand out of the region where the plasma
was created. Later, the particles can be dissociated and
detected by ramping on an electric field.

In figure 1, we did not include the change to the Wigner–
Seitz radius, aws, in the changing Γ. However, this change
does not have a large effect. Changing the density by a factor
of 0.77 changes aws by a factor of 1.09. This would increase
the Γ−1 by the same factor of 1.09.

In our calculations, we started the ion pairs with random
positions in space. Unlike the electron–ion plasmas, starting
the pairs on a more regular array will not substantially
decrease the initial heating. The reason is that all particles are
on the same footing and that the attraction between the
positive and negative ions will allow for large interactions.
After a time scale of ω∼1 p, the fact that the pairs were
launched from an ordered array will be mostly lost.

4.2. Expanding plasma

This section contains our results on how the ion-ion scattering
affects the plasma expansion. If there were no scattering, then
every ion would have the same speed. Since the particles start
in a compact region, they would move approximately radially
at late times with a speed vinit. This would give a radial shell
of particles expanding with this speed. Collisions between
ions could drastically change this picture. There is an inter-
esting competition between scattering and plasma expansion.
The scattering tends to delay the expansion. However, once

Figure 2. Fraction of bound particles as a function of the scaled time
τ ω= tp . The solid line used 800 particles of each type while the

dotted line used 400 particles of each type.
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the expansion is underway, the scattering rate quickly drops.
Therefore, there is a well defined final velocity distribution
that depends on the initial number and temperature of the
particles. Since Coulomb collision rates decrease with tem-
perature, the effects from scattering will be most pronounced
at the lowest temperatures.

The collisions will tend to randomize the velocities, with
more collisions tending to give a larger spread of velocities.
In the limit of infinite collisions, the velocity distribution will
go to a Maxwell–Boltzmann distribution. In terms of the
distribution of speeds, the Maxwell–Boltzmann distribution is
proportional to −v Mv k Texp ( [2 ])2 2

B which has a peak at
=v k T M2 B . The initial peak in speed is at

=v k T M3init B . Thus, the collisions will move the peak in
the distribution to smaller speeds while broadening the dis-
tribution. Another effect is that each collision changes the
direction the particle is traveling. This will slow the initial
expansion of the plasma because the particle motion will be
more like a random walk. This slowing effect could be
observable if the particle detector is close to the plasma
because the delay could be a large fraction of the travel time.

Performing molecular dynamics calculations for
−10 105 6 particles would be incredibly slow which is why

we used a Monte Carlo method to obtain the results in this
section. Figure 3 shows a comparison between the two
methods for a small enough number of particles where both
methods can be used. The initial speed for 10, 20, and 50 K
are 498, 704, and 1114 m s−1 respectively. All three dis-
tributions are peaked near these values but are substantially
broadened. If these distributions were Maxwell–Boltzmann,
the peaks would be at 407, 575, and 909 m s−1 respectively.
As expected the 10 K distribution shows the largest spreading
relative to the peak.

Most important is the comparison between the two
methods. There is good agreement for the three different
temperatures. The best agreement is for 50 K which we
expected since this plasma is the best example of a weakly
coupled plasma. We did not test calculations for temperatures
lower than 10 K because the Coulomb coupling is becoming
uncomfortably large, Γ = 0.34, at this temperature. In fact,
the 10 K results have the largest disagreement. The Monte
Carlo calculations somewhat underestimate the high energy
part of the distribution. However, this difference seems to be
small enough that we can use this approximation to obtain the
general behavior of the plasma expansion.

Figure 4 shows the velocity distribution for different
numbers of particles. The final time in all of the calculations is
large enough that the plasma has expanded to the point where
further changes in the velocity distribution are negligible.
Each line type corresponds to a factor of 4 in the number of
particles. The largest calculation had 5.12 million particles of
each type while the smallest had 80 thousand. Note that even
the smallest calculation has ten times more particles than in
figure 3. There are a few general trends worth noting.

One of the interesting features is that the peak of the 10 K
distribution is moving to smaller v while the position of the
peak of the 50 K distribution is nearly unchanged. In figure 3,
the peak for all of the distributions was near the vinit for that
temperature. It appears that the scattering leaves the position
of the peak approximately unchanged until the width of the
distribution becomes nearly equal to the value of the peak.
Another interesting feature is how little the distributions
change as more particles are added. Each line type corre-
sponds to a factor of 4 in the number of particles which is a
factor of ≃4 1.61 3 in the size of the plasma. If the plasma
size increases by a factor of 1.6, the amount of time when
collisions could happen increases by at least a factor of 1.6.

Figure 3. The velocity distribution for an expanding plasma
composed of 6400 positive and 6400 negative ions for three different
temperatures. The final time for all calculations was four plasma
periods, i.e. π ω=t 8fin p. The solid line is the result from the

molecular dynamics calculation and the dashed line is the result of
the Monte Carlo calculation. The individual temperatures have been
scaled to a peak of ∼0.9 but the relative scaling of the Monte Carlo
and molecular dynamics is held fixed.

Figure 4. The velocity distribution for an expanding plasma for
different number of ions for two different temperatures. The final
time for all calculations was L v6 g,max init where Lg,max was the Lg
for the calculation with ×5.12 106 particles of each type. The solid
line is for ×5.12 106, the dotted line is for ×1.28 106, the dashed
line is for ×3.2 105 and the dot–dashed line is for ×8 104 particles
of each type. The individual temperatures have been scaled but the
relative scaling within a temperature is held fixed.
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(Since collisions slow the plasma expansion, the duration for
possible collisions will increase somewhat faster than linearly
with the plasma size.) Although each line type corresponds to
another factor of 1.6 in plasma size, there is only ∼10%
change in the 50 K distribution; the almost complete lack of
change in the 10 K distribution, for the largest numbers, will
be addressed below.

The speed distribution must have small v behavior pro-
portional to v2 or a higher power. This masks one of the
trends that arises because Coulomb scattering is larger at
smaller relative energy. The high energy tail of the distribu-
tion is being filled more slowly than the low energy part. This
is easiest to see in the 5.12 million calculation for 50 K (solid
line). The distribution drops from the peak faster on the high
energy side than the low energy side.

Figure 5 shows a comparison of the final speed dis-
tribution to a Maxwell–Boltzmann distribution. All of the
Monte Carlo calculations have ×5.12 106 particles of each
type and, thus, should have the largest amount of scattering of
our calculations. As expected, the 10 K distribution is most
similar to the Maxwell–Boltzmann distribution while the
50 K distribution is least similar. This shows that the dis-
tribution does approach thermal for a large enough number of
particles. The small changes in the 10 K distribution in
figure 4 is because the distribution is nearly thermal.

The 20 K and 50 K distributions both show that the dif-
ference from a thermal distribution is more strongly pro-
nounced on the high energy side of the peak compared to the
low energy side because Coulomb collisions thermalize high
energy particles slower than low energy particles.

Experimental results corresponding to figures 4 and 5
would be interesting. These plots are, in essence, snapshots of
how the Maxwell–Boltzmann distribution is reached in a
plasma. By changing the number and/or energy of the plasma,
there is direct control over the duration of the particle

scattering. The final velocity distribution gives a direct test of
our understanding of charged-particle scattering in a plasma.

5. Conclusions

We have performed two types of calculations for ultracold
neutral plasmas where all of the particles have the same mass.
In our molecular dynamics calculations, we investigated the
initial heating and formation of bound states for a plasma that
is strongly coupled initially. We found similar heating as
observed in ion–electron calculations but the physical time
scale is now of order 1–10 μs. In our Monte Carlo calcula-
tions, we studied the expansion and thermalization of particles
of a weakly coupled plasma. Because the density drops with
expansion, the collision rate rapidly drops and the velocity
distribution stops evolving. We showed that the speed dis-
tribution approaches a Maxwell–Boltzmann distribution at
low temperature and with enough particles; the largest dif-
ferences are on the high energy side of the distribution.

There are several situations that we did not investigate
due to the limitations of our computational tools. One
interesting possibility would be to study this system in a
strong magnetic field [16]. If the cyclotron radius of the
motion becomes comparable to or smaller than the plasma
size, there should be interesting modifications to the scat-
tering. Also, there could be interesting plasma waves and
instabilities because both species have the same mass which
would argue that a plasma wave in one species will be
degenerate with one in the other species. Another interesting
possibility would be to study the expansion of a plasma that
is initially strongly coupled. A final interesting possibility
would be to include a direction distribution for the initial
dissociation of charges; for example, there would be dif-
ferent scattering if the charges are launched mainly in the
± z-direction than if they are launched in random directions
as was done in our calculations.
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