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Abstract
For highly excited low-� states of atoms, a rising electric field causes a mixing between
angular momenta that gives rise to Stark states. A relatively simple situation occurs if the
electric field is not strong enough to mix states with adjacent principle quantum numbers. If
the initial state has slightly lower (higher) energy than the degenerate manifold, then the state
adiabatically connects to a Stark state with the electron on the low (high) potential energy side
of the atom. We show that purely classical calculations for non-hydrogenic atoms have an
adiabatic connection to extreme dipole moments similar to quantum systems. We use a simple
map to show that the classical dynamics arises from the direction of the precession of the
Runge–Lenz vector when the electric field is off. As a demonstration of the importance of this
effect, we perform classical calculations of charge exchange and show that the total cross
section for charge transfer and for ionization strongly depend on whether or not a pure
Coulomb potential is used.

1. Introduction

The behaviour of a highly excited atom in an electric field
has been studied since the dawn of quantum mechanics.
Besides the experimental studies, there have been classical,
semiclassical, and quantum treatments of this system. We
give a brief survey of recent results. For example, [1, 2]
describe fully classical treatments of H in weak electric fields.
Reference [3] measured the Rb spectrum in a strong electric
field and showed that there were resonance states above the
classical threshold as well as above the zero-field threshold; a
fully quantum treatment [4] gave quantitative agreement with
this type of measurement. The non-hydrogenic part of the
potential leads to strong changes from a purely hydrogenic
case. A series of experiments and semiclassical and quantum
calculations elucidated the importance of elastic scattering
from the non-Coulombic part of the potential for the Stark
spectra of atoms (some examples are [5–9]). In addition to
time independent studies, there were several investigations
based on time dependent motion of the electron probability
(some examples are [10–14]). There are fewer purely classical
studies of the non-hydrogenic Stark case; [15] investigated
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how a small polarizability of the core affected the motion
and [16] performed a classical calculation of how a non-
hydrogenic atom is ionized in a low frequency microwave field.
In many of the theoretical studies, a fully quantum treatment
was compared to a semiclassical treatment; [17] investigated
how the linear and the quadratic Stark shift in H compared
between a quantum and a fully classical treatment.

In this study, we investigate how a classical non-
hydrogenic atom responds to a slowly ramped electric field. An
extreme example of this is state selective field ionization [18]
in which the electron is eventually pulled from the atom; state
selective field ionization is difficult to treat fully quantum
mechanically [19] because of the long time scales involved.
For electric fields that are not strong enough to mix states
of different principle quantum number, an electric field gives
eigenstates with an electric dipole moment that can have the
electron on the high (low) potential energy side of the atom.
These are states whose energy shifts up (down) with increasing
electric field strength. If the electric field is in the +z-direction,
the high potential energy side of the atom for the electron has
positive z.

The non-relativistic hydrogen atom is particularly simple
in that the eigenstates only weakly depend on the electric
field strength until the n-mixing regime. The situation is
slightly more complicated for non-hydrogenic atoms [18].
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(a) (b)

Figure 1. A schematic drawing for the electric field dependence of
the energy levels of a non-hydrogenic atom with one state below
(case (a)) or one state above (case (b)) a degenerate manifold.

Figure 1 shows two schematic cases for how energy levels
vary as a function of electric field strength, F . The states
with high angular momentum do not overlap with the non-
Coulombic part of the potential and, thus, they behave similar
to hydrogenic states: a small electric field induces a dipole
moment which can have the electron either on the high or low
potential energy side of the atom. This leads to a linear change
of the energy with the electric field strength with the slope
equal to minus the electric dipole moment. For the states that
are not in the degenerate manifold, they connect to a Stark state
that is on the low (high) potential energy side of the atom if
the zero-field state is below (above) the degenerate manifold.
When the electric field is large enough to mix the angular
momenta, the variation of the energy with electric field strength
is nearly linear indicating a nearly constant electric dipole
moment. In most atoms, the low angular momentum states are
below the degenerate manifold because atomic potentials are
more attractive than pure Coulomb. However, there are cases
where a state from a higher n falls just above the manifold
for a lower n state (for example, the Ba+ n f -states) and these
cases will behave as if the atomic potential is less attractive
than pure Coulomb.

For this paper, we investigate how this system behaves
when the calculation is performed classically. In particular,
we are interested in how a classical low angular momentum
state evolves in a slowly ramping electric field. There are
many reasons why such a calculation could be interesting.
One important reason is simply to see whether the classical
calculation behaves similar to the quantum ([17] investigated
the purely hydrogenic case for similar reasons). That is, do
(almost) all classical trajectories with low angular momenta
evolve to states with the electron having a time average on the
correct side of the atom? For a test of this question, we solved
the classical equations of motion for many low � trajectories
when the electron was subject to a spherical potential that was
purely Coulombic, more attractive than Coulombic, or less
attractive than Coulombic. We also wanted to understand the
mechanism underlying the classical behaviour. Another reason
to investigate this system is that there are situations where an
atom, initially in low �, is subject to a complicated interaction

where the quantum calculation is too difficult for current
computational resources but the classical calculation can be
performed. Thus, it is useful to know whether this property
(how the low-� states evolve with respect to a slowly increasing
electric field) is present in a fully classical calculation.

We found that the classical motion mimicked the
behaviour of the quantum system. If we used a purely
Coulombic spherical potential, we found that the time average
dipole moment along the electric field was approximately
conserved as in the quantum case; this result has been known
for a century. If we used a spherical potential that was more
(less) attractive at short range than a pure Coulomb potential,
we found that almost all of the trajectories evolved so that the
average electron position was on the low (high) potential side
of the atom and with nearly the maximum possible magnitude
of dipole moment. Our results only apply to the classical
analogue of the cases shown in figure 1 where the magnitude of
the quantum defects is small; the classical analogue is that the
precession of the Runge–Lenz vector from the non-Coulombic
potential should give a small change in direction during one
Rydberg period.

To understand this result, we surmised that the main
features of the problem was the precession of the Runge–Lenz
vector, �A, due to a non-Coulombic potential when the electric
field is 0 and due to the rotation in the �A/�L space induced
by the electric field. We were able to qualitatively reproduce
the results of the full classical calculation using a simple
map: rotation of �A in the plane perpendicular to the �L and
a rotation between �A and �L perpendicular to the electric field.
The direction of the precession of �A due to the non-Coulombic
part of the potential depends on whether the potential is less or
is more attractive than pure Coulomb; for �L in the z-direction,
�A precesses clockwise (counter-clockwise) when the potential
is less (more) attractive than pure Coulomb. The direction of
precession of �A from the non-Coulombic potential determines
whether it evolves to be parallel or anti-parallel to the electric
field.

There have been many theoretical studies of the effect of
a non-Coulombic potential on the spectra of atoms in external
fields (e.g. see [5, 7, 20, 21]). These studies have found that
the ‘scattering’ from the non-Coulombic core in alkali atoms
could lead to quite complex behaviour. In these treatments,
either one finds that the electron emerges in random directions
from a quantum scattering event with the core or one finds
that the scattering angle depends sensitively on the impact
parameter (i.e. angular momentum) of the electron. This means
the direction of the major axis of the ellipse for the electron
goes to a random or nearly random direction. This sensitivity
arises because they are treating the case where the change in
the angular momentum during one Rydberg period is large or
the quantum defects are large. In contrast, we are treating the
situation where the change in angular momentum due to the
external field is small during a Rydberg period and the electron
trajectory is such that the states mixed by the electric field
would all have small quantum defects (see figure 1). Because of
these restrictions, the electron acquires only a small scattering
angle each time the electron returns to small r and the value of
the scattering angle smoothly changes. The main findings in
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this paper would need to be revisited if the electron starts with
small angular momentum so that the scattering angle is large
and sensitively dependent on the precise value of the impact
parameter or the field is so large that the change in angular
momentum during one Rydberg period is sufficient to take the
electron from large angular momentum (where the scattering
angle is small and not sensitive) to small angular momentum
(where the scattering angle is large and sensitive).

To show that this result can be important in practice, we
performed classical calculations of ion–atom scattering. As
with studies of the simple Stark effect, ion–atom scattering for
highly excited states has a long history. For example, [22–24]
experimentally studied �-changing and n-changing collisions
as well as charge transfer. Several theoretical studies [25–29]
have investigated most aspects of this system. In the last
section, we investigate charge transfer and ionization in ion–
atom scattering where the target atom is initially in a low
angular momentum state. The early stages of the scattering
involve weak and slowly varying electric fields which can
induce the electron to adiabatically connect to either red or
blue Stark states depending on the initial quantum defect. We
found that even the total cross sections depended on whether
the target atom had a pure Coulomb potential or whether the
potential was more or was less attractive than pure Coulomb.
This effect does not appear to have been noticed previously.

2. Classical model

The classical equations of motion can be solved with a variety
of techniques. We used an adaptive step-size Runge–Kutta
method based on the one described in [30]. With this method,
we solve the six coupled, first-order differential equations.
As a consistency check in the calculations, we make sure
that any conserved quantity changes by less than a part in
105. As an additional check and for the cases where there
were no conserved quantities, we compared distributions of
physical parameters at the end of runs using different levels of
convergence.

We chose a simple form for the non-Coulombic potential
which allowed us to smoothly vary from more attractive, to
pure Coulomb, to less attractive. The form we chose for the
potential energy was

V (r) = − e2

4πε0

1 + C exp(−r/a0)

r
(1)

where a0 is the Bohr radius and C is an adjustable constant.
When C > 0 (C < 0), the potential is more (less) attractive
than pure Coulomb. Of course, the case of C = 0 is hydrogen.
We only show results below for the cases C = 1, 0, and −1
although we did check that other values gave similar results.

The motion of an electron in a non-Coulombic potential
and an electric field is complicated, but we found the Runge–
Lenz vector facilitated an understanding of the motion. In our
discussions below, we use the scaled Runge–Lenz vector

�A =
(

�p × �L − m
e2

4πε0
r̂

)
/
√−2mE (2)

where �p is the electron’s momentum, m is the electron mass
and E is the energy of the electron. With this definition, the

�A points in the direction of the perihelion and has units of
angular momentum. For a pure Coulomb potential, the Runge–
Lenz vector is a constant of the motion. Two non-Coulombic
interactions are important for understanding our results.

For a weak electric field in the z-direction, the angular
momentum and the Runge–Lenz vectors rotate into each
other:

d�L

dt
= − ωẑ × �A

d�A

dt
= − ωẑ × �L (3)

where ω = 3ea0nF/(2�) with n the principle quantum number
and F the electric field strength. From these equations, one can
show that Lz and Az are constants in a weak electric field. The
electric field gives a rotation in Ax and Ly:

Ly(t) = Ly(0) cos(ωt) − Ax(0) sin(ωt)

Ax(t) = Ly(0) sin(ωt) + Ax(0) cos(ωt) (4)

with similar rotation for Ay and Lx.
The other non-Coulombic interaction is from the spherical

potential for the electron for non-hydrogenic atoms. The
spherical potential does not change the angular momentum
with time. However, it does give a rotation of the Runge–
Lenz vector in a plane perpendicular to the angular momentum
during each radial period. If the angular momentum is in the
y-direction, the equation of motion dβ/dt = Ly/(mr2) can be
used to show that over a radial period the change in angle of
the Runge–Lenz vector is

�β = 2
∫ rmax

rmin

Ly

r2 p(r)
dr − 2π (5)

where we used dt = dr/[p(r)/m], rmin is the inner
turning point, rmax is the outer turning point, and p(r) =√

2m[E − Veff(r)] is the radial momentum with Veff =
Vatom(r) + L2

y/(2mr2). Using this notation, after each radial
period the Runge–Lenz vector rotates as

Az(TRyd) = Az(0) cos(�β) − Ax(0) sin(�β)

Ax(TRyd) = Az(0) sin(�β) + Ax(0) cos(�β) (6)

where TRyd is the Rydberg period. For the general case, |�L|
replaces the Ly in equation (5) and the sense of rotation follows
the right hand rule in the plane perpendicular to �L.

Figure 2 shows how �β depends on angular momentum
for the potentials with C = 1 (solid line) and C = −1 (dotted
line). For the potential more attractive than pure Coulomb
(C = 1), there is a maximum in the precession angle at
�y = Ly/� ∼ 1.5. The caseC = −1 is special in that it does not
have a singularity at r = 0 (although there is a discontinuity in
the derivative); this allows the electron to go straight through
the origin for Ly = 0 which is why �β → −π as Ly → 0.

A last important feature is that the classical solution gives
the same answer for the same starting condition. Therefore, we
needed to make sure our results did not depend on the specific
choice of our initial condition. For a given starting position and
velocity, we averaged over the phase of the electron orbit by
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Figure 2. The change in angle per Rydberg period as a function of
�y ≡ Ly/� for the case C = 1 (solid line) and the case C = −1
(dotted line). Note there are three ways to connect the region of
negative angular momentum to positive angular momentum: (a)
�β(−�y) = −�β(�y), (b) �β(−�y) = 2π − �β(�y), or (c)
�β(−�y) = −2π − �β(�y). Only one case gives continuity
through the point � = 0. For the C = 1 potential, method (a) gives
continuity. For the C = −1 potential, method (c) gives continuity
(also shown is method (a)).

running the field free case for a random fraction of a Rydberg
period. We also made sure that the initial orientation of the
orbit was not important. For a specified angular momentum �,
we started the position at a random spot on the sphere defined
by the aphelion with a flat distribution in cos(θ ) and in φ.
To ensure a random orientation of the plane of motion with
the electric field set to 0, the velocity vector is chosen from
a random distribution �v = (θ̂ cos α + φ̂ sin α)v where α is
chosen from a random distribution.

3. Ramped electric field results: full classical

In this section, we present the results of our calculations where
we slowly ramped on an electric field to a constant value. A
worry is that the electric field should smoothly turn on to
avoid artefacts from discontinuities in the time derivative of
the Hamiltonian. To avoid this we chose the time dependent
electric field to have a similar form from [31]:

F(t) = twid

tflat
Fmax ln

(
1 + et/twid

1 + e(t−tflat )/twid

)
(7)

where twid gives the effective time width over which the
field ramps on, tflat is approximately the time where the field
becomes constant and where Fmax is the maximum electric
field. This functional form has the property that it smoothly
increases from 0 as t approaches 0 from below and then
smoothly becomes a linear function of time when t is larger
than twid. It then smoothly changes to a constant near the time
t ∼ tflat.

In the calculations of this section, we chose twid =
500TRydberg (i.e. 500 Rydberg periods) and tflat = twid. Our
results were not sensitive to these values as long as the
Runge–Lenz vector can precess many times during the ramp.
This condition is the same as in the quantum atom. If the
electric field is turned on too rapidly, the states do not evolve
adiabatically. In all of the cases, the maximum electric field
strength was 250 V m−1 (i.e. 2.5 V cm−1).

(a)

(b)

(c)

(d)

Figure 3. Trajectories in the zx-plane scaled by the atom size
rn = 2n2a0. For all cases, Ly > 0 which means the angular
momentum is out of the page. (a) Trajectories for ∼10 Rydberg
periods when the electric field is 0: the case C = 0 (solid line) is a
single ellipse nearly vertical, the case C = 1 (dotted line) gives an
ellipse precessing counter-clockwise, and the case C = −1 (dashed
line) gives an ellipse precessing clockwise. (b) Trajectories for
∼200 Rydberg periods showing the precession due to an electric
field in the z-direction for C = 0. The z-component of the
Runge–Lenze vector is conserved. The points of the trajectory are so
dense it shows up as a black wedge instead of separate lines. (c)
Same as (b) but for C = 1. The Runge–Lenz vector is no longer
constant. There are ∼8 Rydberg periods over which the direction of
the major axis rotates counter-clockwise from ∼ − 25◦ to ∼25◦

relative to the −z-axis. (d) Same as (c) but for C = 1. Now the
direction of the major axis rotates clockwise from ∼ − 30◦ to ∼30◦

relative to the z-axis during ∼7 Rydberg periods.

To become oriented with how the classical electron
behaves, figure 3 shows six example trajectories: figure 3(a)
shows trajectories with the electric field off for C = 0, −1, and
1 while 3(b)–(d) show trajectories with an electric field in the
z-direction. For all plots, the angular momentum is initially out
of the page; only for figure 3(b) is the angular momentum into
the page for part of the trajectory. The case with no electric
field, figure 3(a), shows the precession due to a non-Coulombic
force compared to the trajectory for pure Coulomb which is an
ellipse slightly left of vertical; the C = 1 case gives counter-
clockwise precession because the potential is deeper than pure
Coulomb while the C = −1 case gives clockwise precession.
Figure 3(b) shows the trajectory for pure Coulomb plus electric
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field in the z-direction. The trajectory has too many lines to
see the individual ellipses; qualitatively the major axis of the
ellipse oscillates within the black wedge with the minimum
angular momentum at the edge of the wedge. Figure 3(c) shows
the C = 1 case with an electric field in the z-direction; this
is a late time part of the trajectory that arose from slowly
ramping on the electric field. Note that the electron is on the
low potential energy side of the atom for most of the trajectory.
There is a very rapid swing of the major axis around the atom
in the counter-clockwise direction over a short period of time,
∼8 Rydberg periods. Figure 3(d) shows the C = −1 case
that arose from slowly ramping on the electric field. Now the
electron is on the high potential energy side of the atom for
most of the trajectory. Again, there is a rapid swing of the major
axis around the atom, but now in the clockwise direction.

Figure 4 shows the results from three typical trajectories
for n = 30 using the parameters Ly, Ax and Az to help
visualize the dynamics. It is important to remember that the
angular momentum and Runge–Lenz vector satisfy the relation
|�L|2 + |�A|2 = n2

�
2. For all of the trajectories in figure 4,

we chose the initial conditions so that the orbit was in the
xz-plane which means only Ly, Ax and Az are non-zero; because
the electric field is in the z-direction, the quantities Lx, Lz,
and Ay remain zero for this calculation. This figure shows the
cycle average of these quantities (that is, we averaged over one
Rydberg period) scaled by �. The different figures all show the
case where the initial �y = 3, Az � 1.2� and Ax � −30� but
with C = 0 (figure 4(a)), C = 1 (figure 4(b)), and C = −1
(figure 4(c)). From equation (1), figure 4(a) corresponds to
pure Coulomb, figure 4(b) corresponds to more attractive than
pure Coulomb, and figure 4(c) corresponds to less attractive
than pure Coulomb.

Figure 4(a) is the pure Coulomb case which shows that
az = 〈Az〉/� is nearly constant even when the electric field
ramps on. The ax = 〈Ax〉/� and �y = 〈Ly〉/� show a more
complicated behaviour. As the electric field ramps on, these
two parameters oscillate with a frequency that increases as
the electric field increases. As seen from equation (4), the �y

reaches the maximum value ahead of the ax; the oscillations of
these parameters are 90◦ out of phase to satisfy the condition
|��|2 + |�a|2 = n2.

The C = 1 case (deeper than Coulomb potential),
figure 4(b), demonstrates a richer behaviour. When the electric
field is approximately 0 (for t/TRyd < −500), the �y is a
constant and the two components of the Runge–Lenz vector
oscillate due to the precession of the orbit in the xz-plane. As
the electric field increases, a more complicated motion ensues;
see figure 3(c) for part of the trajectory in z − x. The az goes to
a large, positive value which is nearly constant except for some
sharp dips; the frequency of these dips increase with increasing
electric field, but they also become sharper with increasing
electric field. The dips correspond to the part of figure 3(c)
where the major axis swings around the atom and the nearly
constant az corresponds to the dark wedge. Note that a positive
az means the electron is on the negative z side of the atom which
is the low potential side; also, the fact that az ∼ 30 means that
the electron has nearly the maximum allowed dipole moment
for this energy. This is analogous to what happens in the fully

quantized atom (figure 1(a)). The ax and �y have a different
kind of behaviour. The �y has a half oscillation; it increases
from a small value, but, when it returns to the small value,
the �y ‘reflects’ and begins another oscillation; unlike the pure
Coulomb case, the �y stays positive. The ax approximately
linearly increases until it suddenly spikes to large positive
value, quickly followed by a flip in sign, with a jump back to a
medium negative value, after which it approximately linearly
increases again.

This behaviour can be understood by the motion
encapsulated in figure 4(a) modified by the non-Coulombic
spherical potential. When �y is larger than ∼2, the electron
behaves like it is in a pure Coulomb potential plus uniform
electric field: az is nearly constant while there is uniform
rotation in the ax and �y space. For example, when �y is near
its maximum, the ax should be linearly increasing (see the
time t ∼ 2200TRyd in figure 4(a)). As �y decreases toward
0, the precession from the non-Coulombic spherical potential
dominates. This causes a rapid precession between az and
ax. As the az approaches its maximum value from below, the
ax is increasing from the most negative value, −30. When
ax ∼ −10, then the �y and ax can again form a freely rotating
pair in the electric field.

The C = −1 case (shallower than Coulomb potential),
figure 4(c), illustrates similarly rich behaviour. Again, when
the electric field is approximately 0 (for t/TRyd < −500), the
�y is a constant and the two components of the Runge–Lenz
vector oscillate due to the precession of the orbit in the xz-
plane. However, the rotation direction is reversed compared
to the C = 1 case. When the electric field has sufficiently
increased, a situation similar to that in figure 4(b) results except
that the az goes to a large negative value; see figure 3(d) for
part of the trajectory in z− x. A negative az means the electron
is on the positive z side of the atom which is the high potential
side; also, the fact that az ∼ −30, means that the electron has
nearly the maximum allowed dipole moment for this energy.
This is analogous to what happens in the fully quantized
atom (figure 1(b)). The complicated motion for t > 0 can
be explained in a similar manner to figure 4(b).

Figure 4 is one of the main results of this paper. It shows
that the adiabatic connection between the low field states and
high field states is also present in a fully classical calculation:
deeper (shallower) than Coulomb potentials lead to adiabatic
connection to a dipole on the low (high) potential side of the
atom. We found this behaviour in a wide range of calculations.
There were systematics that are worth noting. For a given
potential, larger �y typically required smaller electric fields to
go to these classical ‘Stark’ states and required longer ramp
times; this is similar to quantum calculations since the higher
� are more easily mixed with the degenerate manifold but the
adiabaticity condition is more easily violated.

There is a situation where the classical-quantum
correspondence becomes problematic. When the potential
becomes substantially different than Coulomb, the magnitude
of the quantum defect can become larger than 1/2 and/or the
change in the angle β can have a magnitude larger than π . For
this case, the low-� state is shifted so far from the degenerate n-
manifold that it might not mix with those states in a simple way.
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(a)

(b)

Figure 4. The evolution of the cycle average parameters divided by
�: �y = 〈Ly〉/�, ax = 〈Ax〉/�, and az = 〈Az〉/�.

In this case, how the state evolves depends on the relative
position of more than one low-� state. We do not expect the
straightforward treatment of this paper will hold in that case.

(c)

Figure 4. (Continued).

4. Ramped electric field results: map

To understand the key features of this process, we constructed a
simple map based on the two kinds of rotation present: rotation
in ax and az due to non-Coulombic potential and rotation in ax

and �y due to the electric field. Because the map is a rotation,
the magnitude, a2

x + a2
z + �2

y , is a conserved quantity.
The parameters at the jth iteration are obtained from the

j − 1 using the two steps

az( j) = az( j − 1) cos(�β) − ax( j − 1) sin(�β)

ãx( j) = az( j − 1) sin(�β) + ax( j − 1) cos(�β) (8)

where �β is evaluated for Ly = ��y( j − 1) and ãx( j) stores
an intermediate value of ax. The second step is

�y( j) = �y( j − 1) cos(�φ) − ãx( j) sin(�φ)

ax( j) = �y( j − 1) sin(�φ) + ãx( j) cos(�φ) (9)

where �φ = 3ea0nFTRyd/(2�) is the rotation angle due to the
electric field.

To compare to the calculations presented in figure 4, the
dependence of the electric field with iteration number and
the function �β need to be specified. The dependence of the
electric field is simply as in equation (7) but with the time
defined to be t = jTRyd. For the �β, we fit the numerical
calculation in figure 2 to simple functions. The simplest is
�β = 0 for C = 0. The C = 1 function was taken to
be �β = 1.2�y exp(−|�3

y |/16)/(1 + �6
y/100). The C = −1

function was taken to be �β = −π exp(−0.7�y − �3
y/20) for

�y > 0 and �β(�y) = −�β(−�y) for �y < 0.

6



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 235003 G W Gordon and F Robicheau

(a)

(b)

Figure 5. Same as figure 3 but calculated using the map.

Results are shown in figure 5 for calculations done with
similar initial conditions to those in figure 4. It is clear that the
map gives similar results to the full calculation. The C = 0
case is most similar because there is hardly any approximation

(c)

Figure 5. (Continued.)

for a pure Coulomb potential. The C = 1 and C = −1 do
not give results identical to that for the full calculation but
this should not be expected considering the simplicity of the
map and our approximations for �β(Ly). However, there is
the same qualitative behaviour in all of the parameters. For
C = 1 (figures 4(b) and 5(b)), the az adiabatically evolves to
nearly the maximum value of 30 except for regions where it
sharply dips down to ∼ − 30. The C = −1 case (figures 4(c)
and 5(c)) has the az near −30 except for the sharp spikes up
to ∼30. Thus, it appears that this simple map captures the
essential features of the full calculation. The ax and �y also
have similar behaviour in figures 4 and 5 demonstrating that
the map encompasses the main features of this system.

We can use the map to help visualize how the system
evolves. Because the three variables (ax, �y, az) have an

invariant norm (
√

a2
x + �2

y + a2
z = n) in the map, we can

plot how an initial condition evolves on a sphere. Figure 6
shows how the angle on the sphere evolves for different initial
conditions when the electric field is held fixed at 250 V m−1;
the angles are defined as cos(η) = az/n and tan(ξ ) = �y/ax.
The starting condition is chosen to have either ξ = π/2 or
ξ = −π/2 and our set of initial cos(η) was chosen to be −0.95,
−0.9, −0.8, −0.6, . . . , 0.6, 0.8, 0.9, and 0.95. Figure 6(a)
shows the case where C = 0. For this situation, the electric
field causes a rotation between ax and �y keeping az fixed. This
leads to vertical lines. For our definitions, ξ decreases until it
reaches −π at which point it is reset to π . Figure 6(b) shows
the case where C = 1. The trajectory evolves by ξ decreasing
until it is near either 0 or −1. When ξ is near an integer multiple
of π , the �y is small. This triggers a precession in ax and az so

7



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 235003 G W Gordon and F Robicheau

(a)

(b)

(c)

Figure 6. Evolution of the parameters (ax, �y, az) for different initial
conditions when F = 250 V m−1. The parameters in the plot are

defined as cos(η) = az/
√

a2
x + �2

y + a2
z and tan(ξ ) = �y/ax. Case (a)

is for C = 0, (b) is for C = 1, and (c) is for C = −1. For all cases, the
initial condition was for cos(η), ξ/π equal to (−0.95,0.5), (−0.9,0.5),
(−0.8,0.5), (−0.6,0.5), . . . , (0.6,0.5), (0.8,0.5), (0.9,0.5), (0.95,0.5)
and for the same points but with ξ/π changed from 0.5 to −0.5.

that cos(η) decreases to ∼ − 1. At this point, the ξ increases
by a little less than π at which point the cos(η) increases to its
original value. After which, ξ decreases again keeping cos(η)

approximately fixed. Taking the earth as a model, the trajectory
follows constant latitude until it nears the great circle defined
by ξ = 0 or ξ = π , it then moves around the earth keeping
approximately the same distance from this great circle until
it reaches its original latitude, after which the motion repeats.
Figure 6(c) shows the case where C = −1. The motion is
similar with the only difference being that the cos(η) increases
when ξ nears 0 or −1 from above followed by ξ increasing by
∼π , after which cos(η) decreases until it reaches its original
value.

5. Charge transfer results

To show that the non-Coulombic atomic potential could
affect an important physical process, we computed the charge
transfer and ionization cross sections for ions hitting an atom in
a Rydberg state. We performed the calculations for the C = 1,
C = 0 and C = −1 potentials.

In these calculations, we start the ion at an initial position
(bx, by, zinit) where the bx, by are from a flat distribution within
the circle defined by bmax. The bmax is chosen so that all of
the trajectories that end with ionization or charge transfer

are within a smaller circle defined by 0.95bmax (for most
calculations all ionization or charge transfers were within
a circle defined by 0.85bmax). The total cross section for a
process is the fraction of runs that end in that process times the
area πb2

max. The cross section calculation was performed for
a specified starting angular momentum L and binding energy
but with all other orbital parameters being random.

A difficulty with this kind of calculation is that the ion
should start far from the atom and continue far past the atom. In
order to speed up the convergence with respect to the distance
that we started the ion, we used the time dependent factor in
equation (7) to smoothly turn on the charge of the ion:

Z(t) = Z ln

(
1 + e(t−t0 )/twid

1 + e(t−t0−twid)/twid

)
(10)

where Z is the charge of the ion, t0 = z0/vion − 7twid is
roughly the time at which the ion charge turns on, and we
used twid = 10TRyd. The position of the ion in time was given
by the vector (bx, by, viont) so that t = 0 is the time of closest
approach. We started the simulation at random times so the
electron would be at random phases of its orbit. The initial time
was chosen to be tinit = z0/vion − 14twid − twid × ran where ran
was a random number from a flat distribution between 0 and 1.
This time is chosen so that the ion charge is initially less than
0.0006 of its full value and is at � 0.9984 of its full value when
the ion is at the position z0. Finally, calculations were done
for three different z0 to test for convergence: z0 = 400n2a0,
800n2a0, and 1600n2a0 where n is the principle quantum
number for the atom. We found that our results were similar
for all three z0 which indicates convergence with respect to
initial distance. For the total cross sections, the number of
charge transfer plus the number of ionization trajectories was
8000 for each ion speed. For the differential cross sections, the
number of charge transfer trajectories was 24 000.

Figure 7 shows the total charge transfer and the total
ionization cross section for the different atomic potentials
as a function of ion speed for an initial L = 1.5�. For this
figure, the ion charge is 3 and the atom starts with an energy
corresponding to that for n = 12. At lower ion speeds, the
C = 1 charge transfer cross section is larger than that forC = 0
which is larger than that for C = −1. This difference arises
because, while it is on the atom, the electron adiabatically
connects to the low (high) potential side of the atom for C = 1
(C = −1). For ion scattering, the low potential side of the atom
is the same side as the ion. Thus, for C = 1 (C = −1), the
electron is close to (far from) the ion as it passes. This facilitates
the charge transfer for C = 1 and suppresses it for C = −1.
At high ion velocities, there is not a large difference between
the potentials because the Runge–Lenz vector cannot precess
fast enough to track the ion. There is a similar difference in
the ionization cross section but it is not quite as pronounced
because the ionization is largest for the highest ion speed in
our plot.

Figure 8 shows the energy distribution of the captured
electron for the ion speed of 1.5 × 105 m s−1 in figure 7(a)
and 2.5 × 105 m s−1 in figure 7(b); these speeds correspond to
scaled speeds of 0.82 and 1.37 of figure 7. The initial binding
energy of the atom is E = −0.5/122 � −0.094 eV and the
initial angular momentum was taken to be 1.5� as in figure 7. In
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(a)

(b)

Figure 7. The charge transfer cross section (σx in (a)) and the
ionization cross section (σi in (b)) versus the ion speed. The cross
sections have been scaled by the geometric cross section,
π(2n2a0)

2 � 7.30 × 10−12 cm2, and the ion speed has been scaled
by the average electron speed, αc/n � 1.82 × 105 m s−1. In both
plots, the cross section when the potential is more attractive than
Coulombic (C = 1) is the solid line, when the potential is
Coulombic (C = 0) is the dashed line, and when the potential is less
attractive than Coulombic (C = −1) is the dotted line.

figure 7, the charge transfer cross section at these two energies
was largest for C = 1 and smallest for C = −1 which is
reflected in the energy distributions of figure 8. At the lower
speed, the charge transfer energy distribution is peaked near
the initial binding energy of the atom, but, at the higher speed,
the energy distribution rises until the threshold is reached. This
has been seen in previous calculations and experiments. It is
interesting that the energy distributions have quite different
shapes at the lower speed. Also, most of the difference between
the different curves occurs between −0.2 and −0.08 eV. It
appears that the mechanism that gives charge transfer with
large energy change behaves similarly for all calculations at
the lower speed. At the higher speed, the shapes are more
similar but the size is different.

We also computed the angular momentum distribution of
the transferred electron. There were some differences resulting
from the different potentials. The C = 1 case had a distribution
that (roughly) linearly increased until ∼30� after which it
rapidly decreased whereas the C = −1 case (roughly) linearly
increased with a smaller slope until ∼20� after which it slowly
decreased to 0 at ∼40�.

We performed charge transfer and ionization calculations
for larger initial L (2.5� and 3.5�). We found that when L
increased the results for the different potentials become similar
to each other. This is not surprising because the differences

(a)

(b)

Figure 8. The energy distribution of the transferred electron for the
ion speed of 1.5 × 105 m s−1 in figure 7(a) and 2.5 × 105 m s−1 in
figure 7(b); these speeds correspond to scaled speeds of 0.82 and
1.37 of figure 6. Within each graph, each energy distribution has
been scaled by the same factor. The line types are the same as in
figure 6.

between the potentials were at small r which is not accessed
when the electron has larger L.

6. Conclusions

We have performed classical calculations of an electron in
non-Coulombic potential plus a static electric field to show
that the classical behaviour mimics that in the fully quantum
system. We found that the sign of the dipole resulting from
a slowly increasing electric field depended on whether the
potential was more or was less attractive than pure Coulomb
if the system started in a low angular momentum state. We
developed a simple map that reproduced this effect. This
classical property is the result of the direction of precession of
the Runge–Lenz vector due to the non-Coulombic potential.
Classical calculations of charge transfer from highly excited
states showed that this effect could lead to substantial changes
in the charge transfer cross section; there were also substantial
changes to the energy and angular momentum distributions of
the transferred electron.
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