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Abstract
A new version of the time-dependent close-coupling method is used to calculate the single and
double photoionization of the Be and Mg atoms. Total cross sections are calculated using an
implicit time propagator with a core orthogonalization method on a variable radial mesh. The
double to single photoionization cross section ratios are found to be in good agreement with
experiment for both Be and Mg.

(Some figures may appear in colour only in the online journal)

1. Introduction

The double photoionization of atoms yields the emission of
two free electrons moving in the field of a doubly charged
atomic ion. Near the double ionization threshold the two slow
moving free electrons interact strongly with each other and
the residual ion core; a simple example of the quantal three-
body Coulomb breakup problem. Experimental studies of the
He atom have yielded double to single photoionization total
cross section ratios [1], as well as double photoionization
energy and differential cross sections [2]. In general, various
non-perturbative theoretical approaches, including R-matrix
methods [3–7], the converged close-coupling (CCC) method
[8], the time-dependent close-coupling (TDCC) method [9],
and the exterior complex scaling method [10], have yielded
double photoionization cross sections in good agreement with
experiment.

In recent years, both experiment and theory have studied
the double photoionization of the alkaline-earth atoms. As one
moves to heavier alkaline-earth atoms the double ionization
threshold is lowered and the residual doubly charged atomic
ion is no longer a point source. For the double photoionization
of Be, theoretical calculations based on the CCC method
[11], the TDCC method [12], and R-matrix methods [13, 14]
are in good agreement with experiment [15, 16]. For the double
photoionization of Mg, theoretical calculations based on the
CCC method [17] and the R-matrix with pseudo-states (RMPS)
method [14] are also in good agreement with experiment [18].
Non-perturbative calculations for the double photoionization

of Ca have also been made using the hyperspherical R-matrix
[19] and CCC [17] methods.

The TDCC method, based on an explicit time propagator
with a core pseudopotential method on a fixed radial
mesh, produces a range of cross sections for the double
photoionization of Be that are in good agreement with
measurements and other theoretical approaches. Total double
photoionization cross sections are in reasonable agreement
with synchrotron measurements [15, 16], while the energy
and angle differential cross sections agree well with
convergent close-coupling [11] and exterior complex-scaling
[20] calculations. The core pseudopotential employed in the
TDCC calculations smoothly removed the inner node from
the 2s wavefunctions to avoid unphysical de-excitation to the
inner 1s subshell. This approximation appears to work well,
presumably because the inner node of the 2s orbital is close
to the nucleus, and modifying the 2s orbitals in this portion
of radial space does not seriously affect the photoionization
process.

On the other hand, we have found that the explicit time
propagator with a core pseudopotential approach applied to the
double photoionization of Mg (and heavier systems) does not
appear to work satisfactorily. In the Mg case, one must modify
the 3s and 3p orbitals to avoid unphysical de-excitation. In
particular, one must remove two nodes from the 3s orbital.
The cross sections that result from this procedure are not in
particularly good agreement with other approaches, and the
double to single ionization ratio does not agree well with
the measured value [18]. Attempts to use alternative forms
of the pseudopotential [21] do not improve the comparison
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with other work. Thus in this paper, we apply a new
version of the TDCC method to calculate the double
photoionization of the Be and Mg atoms. Our new version
is based on an implicit time propagator with a core
orthogonalization method on a variable radial mesh. The key
step in the approach is the orthogonalization at each time step
to the physical inner atomic orbitals to avoid the unphysical
de-excitation of the active electrons as the time propagation
proceeds. This is the first application of such a technique to
the TDCC approach to atomic ionization. We find that the new
version yields single and double photoionization cross sections
that are in good agreement with experimentally measured
ratios for both Be [16] and Mg [18].

The remainder of the paper is organized as follows: in
section 2 we compare and contrast the explicit and implicit
time propagators, as well as the core pseudopotential and core
orthogonalization methods; in section 3 we present double
to single photoionization cross section ratios in comparison
with experiment; and in section 4 we conclude with a brief
summary. Unless otherwise stated we will use atomic units.

2. Theory

The TDCC method [22] has been used to calculate the double
photoionization cross sections for several light atoms. The
six dimensional wavefunction for the two ionized electrons is
expanded in coupled spherical harmonics and substituted into
the time-dependent Schrödinger equation in the weak field
limit to yield a set of (l1, l2) close-coupled equations given by
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Z is the nuclear charge, Ul(r) is an atomic core potential,
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The initial condition for the solution of the close-coupled
equations found in equation (1) is given by
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The solution of the close-coupled equations at later times may
be obtained by using an explicit propagator:
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The solution of the close-coupled equations at later times may
also be obtained by using an implicit propagator:
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The form of the implicit propagator found in equation (6) is
similar to that used in the TDCC method for the electron-
impact ionization of H+

2 [23]. The key to accurate time
propagation is that the Tl(r) operator contains kinetic, nuclear,
and atomic core terms. As the radial mesh spacing �r becomes
smaller, the time step �t in the explicit method becomes quite
small, while the time step �t in the implicit method remains
roughly constant. We also note for l1l2 coupled channels
involving high angular momenta that the time step �t in the
explicit method becomes smaller, while in the implicit method
it remains fairly constant.

The atomic core potential for the singly ionized atomic
system is given by

Ul(r) = VH (r) − αl

2

(
24ρ(r)

π

)1/3

, (7)

where VH (r) is the direct Hartree potential and ρ(r) is the
probability density in the local exchange potential. The bound
radial orbitals needed to construct the atomic core potential
are calculated using a Hartree–Fock atomic structure code
[24] for the double ionized atomic system. The bound Pnl(r)
and continuum Pkl(r) radial orbitals for the singly ionized
atomic system are obtained by diagonalization of Tl(r) of
equation (2) on the radial lattice. The parameter αl is varied
to obtain accurate energy values for the first excited state for
each l.
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The problem of the unphysical de-excitation of either
of the two active electrons to closed subshells during the
time relaxation or propagation of the TDCC equations may
be solved in either of two ways. The first way involves the use
of a standard pseudopotential method. For example, for the
double photoionization of the ground state of Mg, the inner
nodes of the 3s and 3p orbitals may be smoothly removed and
pseudopotentialsUPP0(r) andUPP1(r) constructed by inverting
the one electron radial Schrödinger equation. The one electron
operators in the TDCC equations are now given by

Tl(r) = −1

2

∂2

∂r2
+ UPPl(r), (8)

for l = 0 and l = 1, with equation (2) still used for l � 2.
The second way involves the use of equation (2) for all l
and a standard core-orthogonalization method for the inner
subshells. For example, for the double photoionization of the
ground state of Mg, the P10

01 (r1, r2, t) radial wavefunction is
orthogonalized at each time step �t of the TDCC propagation
of the 1P excited state according to
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Similar expressions are easily found for the P00
00 (r1, r2, τ )

and P00
11 (r1, r2, τ ) radial wavefunctions used in the TDCC

relaxation of the 1S ground state and the P10
10 (r1, r2, t),

P10
12 (r1, r2, t), and P10

21 (r1, r2, t) radial wavefunctions used in
the TDCC propagation of the 1P excited state. The core
orthogonalization expression found in equation (9) is similar to
that used recently in the TDCC method for the electron-impact
ionization of Li2 [25].

For TDCC relaxation and propagation using a
pseudopotential method, the radial mesh spacing �r can be
fairly sizeable. On the other hand, the radial mesh spacing
�r becomes much smaller to represent the inner closed
subshell orbitals needed for the core orthogonalization method.
Therefore, we make use of a variable radial mesh [26] which is
continuously changing from a small �r value near the origin to
a larger �r value at some distance outside the closed subshell
orbitals, after which �r remains constant.

Single and double photoionization probability functions
are given by
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and T is the final propagation time. The total cross section for
single ionization is given by

σ1(nl) = ω

I

∂

∂T
[P1(nl, T ) + P2(nl, T )] (13)

and the total cross section for double ionization is given by

σ2 = ω

I

∂

∂T
P(T ) , (14)

where ω is the radiation frequency and I is the radiation field
intensity. The double to single photoionization ratio is given
by

R = σ2

/∑
nl

σ1(nl) . (15)

3. Results

The TDCC method was first used to calculate photoionization
cross sections for the Be atom. A variable mesh of 648 points
with a starting value of �r = 0.01 and a total radius of
R = 111.5 was used in all of the calculations. Diagonalization
of the one-electron Hamiltonian of equation (2) on the radial
lattice yielded a complete set of bound and continuum radial
orbitals needed to evaluate the photoionization probability
functions of equations (10)–(12). Tuning of the αl coefficient
in equation (7) yielded binding energies for the 2s radial orbital
of 18.2 eV and the 2p radial orbital of 14.2 eV, in agreement
with Be+ experimental values [27].

Relaxation of the TDCC equations in imaginary time, τ ,
on the 648 × 648 point lattice with 7 l1l2 coupled channels
was used to obtain the correlated initial state wavefunctions,
P̄L0S

l1l2
(r1, r2). We used an implicit propagator with �τ = 0.025.

At each time step the P00
00 (r1, r2, τ ) coupled channel was

orthogonalized to the 1s orbital. The correlated initial state
wavefunctions were found to have an energy E0 = −27.5 eV,
in agreement with the experimental double ionization potential
of 27.5 eV for Be [27].

Propagation of the TDCC equations in real time, t, on
the 648 × 648 point lattice with 12 l1l2 coupled channels
was used to obtain the correlated final state wavefunctions,
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Figure 1. Double to single photoionization cross section ratio for
the Be atom. Solid (red) squares: TDCC calculations, solid (violet)
triangles: CCC calculations [17], solid (green) diamonds: RMPS
calculations [14], solid (blue) circles with error bars: experiment
[16].

Table 1. Single photoionization cross sections for Be at an incident
photon energy of 40 eV leaving Be+ in the ground state (1.0 Kb =
1.0 × 10−21 cm2).

RRPA [28] MCTD [28] CCC [17] RMPS [14] TDCC

630 Kb 440 Kb 545 Kb 490 Kb 528 Kb

PLS
l1l2

(r1, r2, t). We used an implicit propagator with �t = 0.01.
Calculations were made at photon energies of 30 eV, 35 eV,
40 eV, and 45 eV. At each time step the P10

01 (r1, r2, t) and
P10

10 (r1, r2, t) coupled channels were orthogonalized to the 1s
orbital. The photoionization probability functions of equations
(10)–(12) were then calculated at a final time T corresponding
to 15 radiation field periods.

The TDCC double to single photoionization cross section
ratios, obtained using equations (13)–(15), are presented in
figure 1 in comparison with CCC calculations [17], RMPS
calculations [14], and experiment [16]. There is good overall
agreement between theory and experiment. We note that no
absolute experimental cross sections are currently available
for the single or double photoionization of the Be atom. The
TDCC absolute single photoionization cross section leaving
Be+ in the ground state, σ (2s) of equation (13), is also
found to be in reasonable agreement at a photon energy of
40 eV with calculations using the relativistic random phase
approximation (RRPA) [28], the multi-configuration Tamm–
Dancoff (MCTD) [28], the CCC [17], and the RMPS [14]
methods, as presented in table 1.

The TDCC method was then used to calculate
photoionization cross sections for the Mg atom. A variable
mesh of 720 points with a starting value of � = 0.005
and a total radius of R = 105.9 was used in all the
calculations. Diagonalization of the one-electron Hamiltonian
of equation (2) and tuning of the αl coefficient in equation (7)
yielded binding energies for the 3s radial orbital of 15.0 eV,
the 3p radial orbital of 10.6 eV, and the 3d radial orbital of
6.2 eV, in agreement with Mg+ experimental values [27].
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Figure 2. Double to single photoionization cross section ratio for
the Mg atom. Solid (red) squares: TDCC calculations, solid (violet)
triangles: CCC calculations [17], solid (green) diamonds: RMPS
calculations [14], solid (blue) circles with error bars: experiment
[18].

Relaxation of the TDCC equations in imaginary time on
the 720 × 720 point lattice with 7 l1l2 coupled channels was
used to obtain the correlated initial state wavefunctions. We
used an implicit propagator with �τ = 0.025. At each time
step the P00

00 (r1, r2, τ ) coupled channel was orthogonalized to
the 1s and 2s orbitals and the P00

11 (r1, r2, τ ) coupled channel
was orthogonalized to the 2p orbital. The correlated initial state
wavefunctions were found to have an energy E0 = −22.8 eV,
in close agreement with the experimental double ionization
potential of 22.7 eV for Mg [27].

Propagation of the TDCC equations in real time on the
720 × 720 point lattice with 12 l1l2 coupled channels was used
to obtain the correlated final state wavefunctions. We used an
implicit propagator with �t = 0.01. Calculations were made
at 25, 30, 35, 40, and 45 eV. At each time step the P10

01 (r1, r2, t)
and P10

10 (r1, r2, t) coupled channels were orthogonalized to the
1s, 2s, and 2p orbitals and the P10

12 (r1, r2, t) and P10
21 (r1, r2, t)

coupled channels were orthogonalized to the 2p orbital. The
photoionization probability functions of equations (10)–(12)
were then calculated at a final time T corresponding to 15
radiation field periods.

The TDCC double to single photoionization cross section
ratios, obtained using equations (13)–(15) are presented in
figure 2 in comparison with CCC calculations [17], RMPS
calculations [14], and experiment [18]. There is again good
overall agreement between theory and experiment. We note
that no absolute experimental cross sections are currently
available for the single or double photoionization of the Mg
atom. The TDCC absolute single photoionization cross section
leaving Mg+ in the ground state, σ (3s) of equation (13),
is also found to be in reasonable agreement at a photon
energy of 30 eV with RRPA [28], MCTD [28], CCC [17], and
RMPS [14] calculations, as presented in table 2. TDCC single
photoionization cross sections leaving Mg+ in the ground state
at a photon energy of 30 eV are also presented in table 3. The
cross section obtained using an implicit time propagator with
a core orthogonalization method on a variable radial mesh is
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Table 2. Single photoionization cross sections for Mg at an incident
photon energy of 30 eV leaving Mg+ in the ground state (1.0 Kb =
1.0 × 10−21 cm2).

RRPA [28] MCTD [28] CCC [17] RMPS [14] TDCC

195 Kb 200 Kb 200 Kb 185 Kb 217 Kb

Table 3. Single photoionization cross sections for Mg at an incident
photon energy of 30 eV leaving Mg+ in the ground state (1.0 Kb =
1.0 × 10−21 cm2).

TDCC method Cross section

Implicit, core orthogonalization, variable mesh 217 Kb
Explicit, node removal pseudopotential, fixed mesh 105 Kb
Explicit, effective pseudopotential, fixed mesh 136 Kb

found to be considerably larger than the cross sections obtained
using an explicit time propagator on a fixed �r = 0.10
radial mesh with either an inner node removal pseudopotential
method (see equation (8)) or an effective pseudopotential
method [21].

4. Summary

In this paper, we have used a new version of the time-dependent
close-coupling method (TDCC) to calculate the single and
double photoionization of the Be and Mg atoms. An implicit
time propagation of the close-coupling equations allows us
to easily replace a core pseudopotential method on a coarse
fixed radial mesh with a core orthogonalization method on a
fine variable radial mesh. We find that the new version of the
TDCC method yields double to single photoionization cross
section ratios in good agreement with experiment for both
Be and Mg. In the future, we plan to use the new version
of the TDCC method to study a variety of photon, electron,
and heavy particle collisions with atoms and their ions. For
example, atomic collision processes that involve the ejection
of an inner subshell electron need a fine radial mesh for which
the implicit time propagator is ideal.
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