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Abstract
We present simulations of some of the early time properties of ultracold neutral plasmas. We
focus on three aspects of this system. First, we study the earliest electron dynamics when the
initial temperature of the electrons would place them in the strongly coupled regime. We focus
on times out to ∼10 plasma periods of the electron but also present results out to ∼85 plasma
periods. In particular, we study how the formation of Rydberg atoms leads to heating and how
the mass of the ion could enter the dynamics. Second, we study how the ions behave when the
electrons are at high temperatures by comparing simulations that treat the electrons as a fluid
and simulations that simultaneously include the electrons and ions. For light ions, the
electron–ion scattering transfers substantial energy from the electrons to the ions. Finally, we
study the ion motion at early times and at low temperatures where the electron evolution and
ion motion could be at comparable time scales. This allows a test of electron–ion scattering
when the electron plasma is nearly strongly coupled and we find that the recent values for the
electron–ion scattering rate underestimate the ion heating in our calculations.

1. Introduction

Ultracold neutral plasmas can be used to test aspects of plasma
and atomic physics for parameters where some of the simple
concepts at the heart of plasma and atomic physics may no
longer apply [1]. One of the appealing aspects of this system is
that the plasma is initiated from cold atomic or molecular gases
using laser ionization or excitation of the atoms or molecules.
Thus, many aspects of the system are relatively easy to control.
For example, the density can be controlled through the density
of the gas and the laser power that ionizes or excites the atoms.
Another example, the initial temperature of the electrons can
be controlled by changing the wavelength of the laser.

For plasmas, one of the more interesting parameters that
characterizes the plasma behaviour is the Coulomb coupling
parameter

� = e2/(4πε0aws)

kBT
, (1)

where aws is the Wigner–Seitz radius,

aws =
(

3

4πn

)1/3

, (2)

e is the electron charge, kB is Boltzmann’s constant, n is
the number density, and T is the temperature. If � is

larger than ∼1, then the components of the plasma start
displaying correlated motion and that component of the plasma
is considered to be strongly coupled. If � is less than ∼1, then
the plasma is weakly coupled. In the weakly coupled limit,
standard plasma concepts (e.g. Debye screening, electron–ion
scattering, etc) and standard atomic concepts (e.g. three-body
recombination) are expected to be good approximations.

One of the early experiments on ultracold neutral plasmas
probed how the expansion of the plasma varied with the
initial energy of the electron relative to the vacuum threshold
[2]. Since the electrons quickly thermalize, the electron
temperature was expected to be kBTe � (2/3)E, where E
is the initial electron energy relative to threshold. They
found the plasma expanded more quickly than expected at
low initial E. In a later paper [3], a substantial fraction of
Rydberg atoms were shown to form in the plasma although the
time dependence of the atomic properties was non-intuitive.
Several theory papers [4–9] showed that these results could
be explained by the interplay of standard atomic and plasma
physics and were not due to effects from a strongly coupled
plasma.

In recent years, there have been a number of studies of
ultracold neutral plasmas at early times (less than 1 μs). These
studies have demonstrated an oscillation in the average kinetic
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energy of the ions [10–14] due to their motion away from
their random initial placement at t = 0. Again, these results
seem to be understandable using Debye screened interaction
potentials between the ions.

Recently, references [15, 16] reported results in a
molecular beam that seems to contradict the expectations from
standard plasma and atomic physics. In this experiment [16],
the expansion of the plasma seems to be too slow for the
expected electron temperature at their density. The density
of their plasma is ∼103× greater than previous ultracold
neutral plasmas and they have molecular ions instead of
atomic ions. It seems that neither of these changes should
lead to slower plasma expansion so these results remain
unexplained [17].

In this paper, we address three issues. First, we revisit how
a plasma with the electrons launched at the vacuum threshold
energy behaves at early times. Second, we investigate how
the ions behave and whether we can model their motion using
Debye screened potentials plus a Langevin heating to model
electron–ion scattering when the electrons are very weakly
coupled (i.e. �e < 0.1). Third, we investigate the ion motion
at early to intermediate times as a possible test of current
electron–ion collision rates in a plasma.

2. Computational method

We simulated the motion of the ions and electrons using
classical equations of motion. We used an adaptive step-size
fourth-order Runge–Kutta algorithm [18] to move the particles
forward by one time step. This method is not symplectic so
care must be taken to ensure that the results are not affected
by unphysical, numerical drag. The accuracy of the method
was checked by making sure the energy drift per particle was
less than 0.01 K for every run; this upper limit of the error was
never reached and the typical energy drift was approximately
1 mK which is less than 0.05% of the average kinetic energy
of an electron. We also performed runs at differing levels of
accuracy and made sure that the properties of interest were
converged.

As is typical, we did not use a pure Coulomb force for
the particles all of the way to zero separation. We derived the
force from a spherically symmetric potential between particles
i and j that had the form

PEij = qiqj

4πε0

√
r2
ij + (Caws)2

, (3)

where qi is the charge of particle i, rij is the separation of
particles i and j , aws = [3/(4πn)]1/3 is the Wigner–Seitz
radius which is found from the number density n, and C is a
constant substantially less than 1. We performed calculations
for several values of C from 0.01 to 0.05 to determine the
effect that the soft core had on the dynamics. The role that the
constant C plays in the calculation is discussed in the results
of the different simulations below. We emphasize that this
form of the potential is a numerical device for speeding up
the calculation while keeping the physical result the same. In
other contexts, quantum mechanical effects lead to a change
from a pure Coulomb potential but these are typically only

important in plasmas much denser than those considered here;
reference [19] gives this type of potential within the context of
ultracold neutral plasmas. To see that quantum effects are not
important for our parameters, we can compare the de Broglie
wave length for an electron at 5 K (λ � 60 nm) to the Wigner–
Seitz radius at a density of 109 cm−3 (aws � 6200 nm), which
means there are approximately 106 quantum states available
for each particle; another comparison is the Fermi energy
at 109 cm−3 (EF � 4.2 × 10−5 K) compared to the typical
electron kinetic energy of a few K. A final point of comparison
is the distance of closest approach of two electrons at 5 K
(r = e2/(4πε0kBTe) � 3300 nm) compared to the de Broglie
wavelength (λ � 60 nm). All of these comparisons show that
the Pauli exclusion principle and other quantum effects will
have negligibly small effects on our calculations.

In our simulations, we calculate the behaviour for a finite
number of particles so the treatment of the boundary could be
important. As is typical, we used a wrap boundary condition
on a cube when computing the forces. During each time
step, we checked whether the x, y or z position was less
than 0; if yes, we added the length of the cube, L, to that
component of the position keeping the velocity unchanged.
If the x, y or z position was greater than L, we subtracted
L from that component. When we computed the force or
potential energy between two particles, we would use xi − xj

if −L/2 � (xi − xj ) � L/2 but would use xi − xj + L if it
was less than −L/2 and xi −xj −L if it was greater than L/2.
Similar definitions applied to the y- and z-components. As
the number of particles in the simulation increases for a given
density, the size of the cube increases and the effect of the
edges becomes less. We checked convergence with respect to
the cube size by comparing the results from different size runs
and by artificially cutting off the force at a separation less than
L/2. For us it was a surprise that the most difficult calculation
to converge with respect to cube size was the ion motion, in
particular, the average ion kinetic energy as a function of time.
These results will be described below.

Ultracold plasmas are made by photoionizing a cold
atomic gas. To mimic this behaviour, we start our plasma
by placing ‘atoms’ randomly within the cube. We have treated
the atoms as having zero velocity or as having a thermal
velocity distribution given by an ultralow temperature typical
for cooled atomic gases (e.g. 100 μK); for the densities we
investigated, we found that the disorder-induced heating of
the ions tended to be a much larger effect than the initial
velocity distribution and the difference between simulations
with initial 0 K or with 100 μK was negligible. For the
calculations that only treated the ions (electrons included as a
Debye screening effect), this is the only information needed to
start the simulation. For the calculation that explicitly included
ions and electrons, the launch dynamics is somewhat more
complicated. To correctly account for the photoionization,
the electron is started near the ion (typically within 20 Bohr
radii) with a velocity in a random radial direction from
the ion, �ve = vr̂ . To conserve momentum, the ion is given the
opposite momentum of the electron, �vi = −vr̂me/mi , where
me/mi is the ratio of electron to ion masses. The magnitude
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of the velocity is chosen so that the energy of the atom

E = 1
2

(
mev

2
e + miv

2
i

)
+ PE(rij )

= me + mi

mi

mev
2

2
+ PE(rij ) (4)

equals the energy relative to the vacuum threshold of the ‘atom’
after the photon is absorbed.

We introduce a difference from experiment by using this
prescription for starting the simulation. In a real experiment,
there is an energy width from the bandwidth of the laser. We
tested this in our simulations and found that the bandwidth was
not a large effect unless the energy width was substantially
larger than the average energy and the average kinetic energy
from disorder-induced heating. Also in a real experiment,
the laser has a duration which means the photons are not all
absorbed at one time. To include this last effect appropriately,
the electron–ion pairs should be launched with a distribution
of times corresponding to the laser duration. This could be
an important effect in some experiments because at the higher
densities and longer laser pulse lengths the duration could be
many plasma periods. Unfortunately, the variation between
different types of experiments precludes a systematic study of
this effect at this time.

3. Low temperature electrons

Reference [7] gave the results of calculations for the free
electron temperature as a function of time when the electrons
start at 0 K. The main interest for us is at very early
times because at later times the temperature rises [5] to
the point where the coupling constant for the electrons
�e = e2/(4πε0awskBTe) ∼ 1/5 with kB being Boltzman’s
constant, Te the free electrons’ temperature and aws the
Wigner–Seitz radius. We were motivated to revisit this
calculation because current computational resources allow us
to lift some of the approximations used although we do not
expect large differences from the results in [7]. In particular,
there were three aspects of the calculation that we revisited:
(1) the starting condition of the electrons was not that of
a photoionized gas (they started the randomly distributed
electrons independent of the ions), (2) the soft core size was
C = 1/31 (smaller values can be used) and (3) the ion mass
mi = 100me (larger values for the ion mass can be used).

The main results we wish to make a comparison with
is their figure 1 which shows 1/�e = kBTe/[e2/(4πε0aws]
starting from 0 and rising to ∼1 on a time scale of ∼1/ωpe,
where ωpe =

√
ne2/(ε0me) is the electron plasma frequency;

the temperature then approximately linearly increases with
time so that 1/�e � 1.4 at the time 70/ωpe.

One of the difficulties of making a direct comparision
with this calculation is deciding what is meant by the
electron temperature. Reference [7] took all electrons that
were not deeply bound to an ion and found their velocity
distribution; they fitted this distribution to a Maxwell–
Boltzman distribution to obtain the temperature. We obtained
the temperature by using the equipartition theorem for
electrons that were further than a specified distance from
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Figure 1. Four calculations of the scaled electron temperature,
�−1

e = kBTe/[e2/(4πε0aws)], are shown as a function of the scaled
time τ = ωpet . The plasma parameters are in the text. The solid
black lines are for a simulation with 100 ions and 100 electrons; the
upper curve is when the electrons closer to an ion than 0.1aws were
excluded from the calculation of the temperature and for the lower
curve the exclusion region was 0.2aws. The dashed grey lines are for
a simulation with 200 ions and 200 electrons; the upper and lower
curves have the same meaning as the 100-atom simulation. The
difference between the 100-atom and 200-atom simulations is
hardly visible on this graph.

every ion; the distance we chose was either aws/10 or aws/5
(comparing the two calculations gives an estimate of the
uncertainty of the temperature as discussed below). We
compared this temperature to a fit to the Maxwell–Boltzman
distribution at different times and found that the agreement
was more accurate than errors from other aspects of the
calculation. Thus, all of the results we present use the
definition of temperature to be 2/3 of the average kinetic energy
for electrons outside of a specified region near any ion.

In [7], 4096 electrons and 4096 ions were used. We were
surprised that the free electron temperature could be converged
with as few as 100 electrons and 100 ions. We repeated the
simulation for approximately 1000 runs with different random
initial conditions and averaged the results together to give the
values that we plot. Figure 1 shows four calculations of the
scaled electron temperature where the ion mass was taken to
be 40 times the mass of the proton, the soft core was taken to
be C = 0.03, and the density was taken to be 109 cm−3. The
electrons are launched from the ion so that the electron plus
ion has 0 energy if it was an isolated atom. For this density,
aws = 6.20 μm, the plasma frequency ωpe = 1.78 × 109 s−1

and the scaled temperature e2/(4πε0awskB) = 2.69 K.
The four different scaled temperatures plotted in figure 1

result from two different simulations; one simulation had
100 electrons and 100 ions and the other simulation had 200
electrons and 200 ions. For each simulation we calculated
the electron temperature in two different ways: in the first,
temperature was only calculated from electrons that were
further than 0.1aws from every ion and in the second, was only
calculated from electrons that were further than 0.2aws from
every ion. It is necessary to exclude some regions around
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the ions because the tightly bound electrons will have high
kinetic energy even though they have negative total energy.
This exclusion is similar to the prescription in [7] although
there is insufficient information for an exact comparison.

There are two important features to note. The first is that
the 100 and 200 electron runs give nearly identical answers
when the temperature is computed in the same way. This
shows that for the free electron temperature we can obtain
accurate results by averaging calculations with as few as 100
electrons and ions. To make sure that the electron temperature
was converged, we also performed this calculation with 400
electrons and ions and with 800 electrons and ions; the runs
with more electrons and ions agreed perfectly with those
presented in figure 1. The second feature to note is that there is
a difference in temperature when using the different regions of
exclusion. The difference is largest for ωpet ∼ 15, where the
ratio of the temperatures is ∼1.08 and the difference decreases
with time becoming about 2% at ωpet ∼ 70.

The behaviour of the temperature dependence when only
counting electrons outside of 0.1aws, compared to when we
only count electrons outside of 0.2aws, is due to understandable
physics principles. When the electrons are in thermal
equilibrium, the average kinetic energy in any region of space
should be (3/2)kBT . This system does not start in thermal
equilibrium and evolves toward equilibrium with time. The
region of space near the ions is the last to reach thermal
equilibrium. Since the calculation, where we only count
electrons outside of 0.2aws, excludes more of the problematic
region, we expect this to be a more accurate estimate of the free
electron temperature. The calculation, where we only exclude
the region outside of 0.1aws, overestimates the temperature
because there are not enough electrons from the deeply bound
states that enter the region 0.1aws < r < 0.2aws with low
velocity. In all that follows, the temperatures of the electrons
are presented for those outside of 0.2aws.

The general trend of the temperature is nicely explained
in [7]. At the earliest times, the disorder-induced heating of
the electrons occurs over a time range of the order of one
plasma period. At later times, the free electron temperature
increases due to the formation of Rydberg atoms. The electron
in an atom is at negative energy. To conserve energy, the free
electron temperature should increase. We find that the number
of electrons in the excluded region increases with time which
is the result of the formation of atoms. In [7], the electron
temperature rises from 0 to 1 because they start the electrons
randomly placed with zero velocity; in our calculation, the
electron temperature rapidly decreases to 1 because we launch
the electrons from near the nucleus where they must have high
velocity to escape.

In figure 2, we show the effect of the ion mass on the free
electron temperature. In all calculations, the density was 109

cm−3, the soft core parameter C = 0.03, and the simulations
used 100 ions and electrons. The temperature was found
from only the electrons outside of 0.2aws from every ion. The
electron temperature is shown for the cases where the ion mass
is mi = 100me which is the value used in [7], the proton mass,
40 times the proton mass, and 400 times the proton mass. Our
calculation of the temperature for mi = 100me is in decent,
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Figure 2. Same as figure 1, but all calculations are for 100 ions and
electrons. We vary the mass of the ion for this plot. The solid line is
for a mass of 100me, the dashed line is for a mass of 1mp , the dotted
line is for a mass of 40mp and the dash-dotted line is for a mass of
400mp , where me and mp are the masses of the electron and proton,
respectively.
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Figure 3. Same as figure 2, but all calculations are for the mass of
the ion being 40mp . We vary the soft core parameter for this plot.
The solid line is for C = 0.03, the dashed line is for C = 0.02 and
the dotted line is for C = 0.01.

but not perfect, agreement with [7]; their scaled temperature
was 1.40 at tωpe = 70 whereas our value is 1.44; this 3%
difference could be due to the slight difference in how we
compute the temperature or could be due to how we start the
electrons at t = 0.

There is perhaps a surprising difference between the
calculations with different masses. The main physical effect is
the heating of the ions through electron–ion collisions. As will
be seen below, there is a substantial amount of energy transfer
from the electrons to the ions and the energy transfer is more
effective when the ion mass is smaller. Thus, for the case
with mi = 100me, the electrons transfer much more energy to
the ions than when the ion has one proton mass, etc. Typical
experiments are performed with ions that have tens of proton
mass. Thus, the scaled temperature in experiments will be at
∼1.7 at tωpe = 70.
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Figure 4. Same as figure 3, but we compute the temperature from
the average kinetic energy of all electrons. We vary the soft core
parameter for this plot. The solid line is for C = 0.03, the dashed
line is for C = 0.02 and the dotted line is for C = 0.01.

In figure 3, we show the effect of the soft core parameter
C on the free electron temperature. The three curves are for
C = 0.03, 0.02 and 0.01. The trend is for the smaller value of C
to correspond to a higher free electron temperature. This figure
shows that the free electron temperature does not strongly
depend on the soft core parameter at these low values; there is
only a 3% difference between the C = 0.03 and 0.01 results.
An interesting feature is what little difference exists between
the calculations becomes apparent only at later times as the
number of Rydberg atoms formed in the plasma increases.

However, this does not mean that the dynamics is
unaffected by the soft core parameter. As noted in [7], the
soft core parameter affects the population of bound atoms
and it affects the lowest possible energy for an electron: for
C = 0.03, the lowest possible energy is � 33.3e2/(4πε0aws)

while for C = 0.01, the lowest possible energy is
� 100e2/(4πε0aws). Figure 4 shows the scaled temperature
defined from 2/3 of the average kinetic energy of all of the
electrons for the soft core parameters of figure 3. In this
figure, there is approximately a 12% difference between the
C = 0.03 and 0.01 results. Perhaps it is more disturbing that
there is not a clear convergence as C decreases. We found that
the calculated fraction of free electrons differed by less than 1%
for the three different soft core parameters. At the final time
in this figure, the fraction of free electrons is approximately
0.84; the excluded volume times the density gives 0.992 free
electrons just due to random probability of electrons being in
that volume. This suggests that approximately 15% of the
electrons have become reattached to an atom at the latest time.
The calculations with smaller C have higher average kinetic
energy because there are slightly more deeply bound electrons
when C is smaller, and these electrons have an average kinetic
energy approximately equal to their binding energy.

Taking into account the effects of larger ion mass and
smaller soft core parameter C, we suggest that the experimental
electron temperature is approximately 25% hotter than the
result from [7], figure 1. The final time tωpe = 70

corresponds to ∼11 plasma periods; at this time, we have the
electron Coulomb coupling parameter �e � 0.56 compared
to 0.71 from [7] figure 1. The results of figures 1–3
can be scaled to apply to any cold plasma where quantum
mechanical effects are not important. The typical effects that
would not allow scaling could include populating quantized
energy levels of the atom, photon emission from bound
states, dielectronic recombination, dissociative recombination,
scattering of electrons or ions off of background neutrals, etc.

We have also performed calculations to final times
approximately eight times longer than the results presented
in this section. These results are given below in section 5.

4. Ion motion

There have been several calculations that have modelled the
ion motion when the electrons are at high temperature using
a screened Coulomb potential. We took the ion–ion potential
energy to have the form

PE = e2

4πε0

e−rij /λDe

rij

(5)

where λDe =
√

ε0kBTe/(ne2) is the Debye length and rij is the
separation of the ions i and j . If the ions start essentially at
rest in random positions, their average kinetic energy oscillates
[10–12] due to the initial fluctuation in the density of the ions.
We have performed calculations for somewhat longer times in
order to understand the role that electron scattering plays in the
ion motion. We chose the ion to have the mass of one proton
in order for the ion plasma period and the electron scattering
time scale to be somewhat comparable.

To first understand how the properties depend on the
number of particles, we performed a calculation using the
screened potentials for an electron temperature of 100 K and a
density of 109 cm−3. For these parameters, the Debye length
is 21.8 μm. The ion temperature is defined as 2/3 of the
average kinetic energy. In figure 5, we show the average
ion temperature versus time for the first few oscillations of
the ions. Our results are for 100 ions (average of 960 runs),
400 ions (average of 240 runs), 1500 ions (average of 64 runs)
and 6000 ions (average of 16 runs). The ion oscillation in
an ultracold neutral plasma was studied theoretically in [12]
and experimentally in [10, 11]. For us, the interesting aspect
of figure 5 is the extremely slow convergence with respect to
the number of particles. The cube length in the simulation
is L = (N/n)1/3, where N is the number of particles in the
simulation. For N = 100, L = 46.4 μm which is slightly
more than twice the Debye length so it is understandable that
the 100 ion run is problematic. However, N = 400 gives
L = 73.7 μm, N = 1500 gives L = 114 μm and N = 6000
gives L = 182 μm. Even though the N = 1500 case gives a
cube length that is more than five times the Debye length, the
results are not quite converged. The reason is that the range of
wavelengths of the density fluctuations that can be supported in
different cube sizes determines the convergence. The smaller
cubes can support only shorter wavelength waves which are
at higher frequency (i.e. smaller period). If we had simulated
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Figure 5. The ion temperature (defined as 2/3 the average ion
kinetic energy) versus time after the plasma is started for a
calculation using Debye screened potentials for the ions. The
electron temperature is 100 K, the density is 109 cm−3, and the ion
mass is mp . The solid line is for a 100-ion calculation, the dashed
line is for a 400-ion calculation, the dotted line is for a 1500-ion
calculation and the dash-dotted line is for a 6000-ion calculation.
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Figure 6. Same as figure 5 for 200 ions. The solid line is from an
ion-only calculation that uses the Debye screened Coulomb
interaction for the ion–ion force and the dashed line is from a full
simulation using 200 ions and 200 electrons. The increasing
temperature in the full simulation is from electron–ion scattering
which transfers energy from the 100 K electrons to the ions.

a much lower temperature (e.g. 25 K), the ion motion would
have converged with fewer particles.

We do not have the computer resources needed for a full
electron and ion run with 6000 particles so we will compare
the full electron–ion run with 200 electrons and 200 ions to
the screened ion run with 200 ions. The ion temperature
from these two types of calculations is compared in figure 6.
The two results give a similar period for the ion oscillation
but the full calculation shows an increasing temperature as a
function of time. The electron temperature shows a decrease
of approximately 0.3 K between 20 and 300 ns while the
difference between the ion temperature in the full calculation
and the screened ion calculation is approximately 0.4 K at

300 ns. This comparison is similar in spirit to that performed
in [19], where Murillo compared the evolution of the ion
kinetic energy using a Yukawa model and full electron–ion
dynamics; the main difference is that [19] used a larger ion
mass so the electron–ion scattering was not so important.

Reference [20] gives an expression for the heating rate of
ions due to collisions with electrons as

dTi

dt
= −νie(Ti − Te), (6)

where Ti and Te are the ion and electron temperatures,
respectively, and

νie = ne4
√

2πmemi

6π2ε2
0(mikBTe)3/2

ln(1 + 0.7λDe/rL), (7)

where rL = e2/(4πε0kBTe) is the distance of the closest
approach and the term in the logarithm comes from a fit
to their molecular dynamics data shown in figure 3 of [20].
In their molecular dynamics simulation, the sign of the
electrons’ charge is reversed to prevent recombination at low
temperatures; they argue that reversing the sign of the electron
should not affect the results since the exact scattering cross
section depends on the square of the charge. Evaluating
the collision rate for an electron temperature of 100 K,
density of 109 cm−3 and mi equalling the proton mass gives
νie = 1.8 × 104 s−1. Using Te − Ti = 99 K, we find that the
change in ion temperature due to scattering is 0.53 K after 300
ns. This is not too far from the result seen in figure 6.

We attempted to include the electron scattering in our
screened ion simulation by using a Langevin heating scheme
in an attempt to quantitatively reproduce the full ion–electron
simulation. This idea uses the fluctuation dissipation theorem
and is similar in spirit to the treatment in [23] (but they
only include the fluctuation because they have ion cooling
from an external laser). During a time step of duration δt ,
every component of the velocity is decreased by the factor
exp(−νieδt/2) and a random velocity is added to it from a
Gaussian distribution proportional to exp(−v2/
v2) with


v2 = 2kBTe

mi

[1 − exp(−νieδt)], (8)

where the fluctuations and dissipation are chosen to lead to
the equipartition theorem at long times. Because there is
some transfer of energy from the electrons to the ions due
to the collisions, we should have a time-dependent electron
temperature which will lead to a time-dependent Debye
screening length and to a time-dependent scattering rate. For
times less than 300 ns, we found that the electron temperature
did not change by more than 2% for Te from 10 to 100 K so it
was not necessary to take this effect into account. However, we
found that the electron temperature was noticeably different
from the input temperature; the 100 K simulation actually
gave 100.6 K electrons and the 10 K simulation actually gave
11.6 K electrons. When we included the electron scattering in
the Debye screened code for the ion motion, we found good
agreement with the heating rate using equation (7) for 100 K
but there was increasing disagreement at low temperatures.

In figure 7, we show the comparison between the full
electron–ion run, screened ions without electron heating,
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Figure 7. Same as figure 6 for initial electron temperatures of 25, 10 and 5 K. The solid line is from an ion-only calculation that uses the
Debye screened Coulomb interaction for the ion–ion force, the dashed line is from a full simulation using ions and electrons (C = 0.02) and
the dotted line includes a Langevin heating in the ion-only calculation. The dash-dotted line on the 10 and 5 K plots are Langevin heating
calculations at the average electron temperatures of 11.6 and 7.5 K, respectively. We increased the number of ions and electrons until
convergence was achieved. The 25 K run used 400 ions and electrons, and both the 5 and 10 K run used 200 ions and electrons.

and screened ions with electron heating. We used lower
temperatures where interesting behaviour is expected and
where it is easier to converge the full electron–ion calculation
with respect to the number of particles because the electron
Debye length is smaller. Figure 7(a) shows the Te = 25
K results; for this calculation, the length of the cube is
73.7 μm and the Debye length is 10.9 μm. The full
electron–ion run clearly shows the effect of heating. The
screened ion calculation without heating clearly shows the
effect of the ion oscillation with approximately the same
period as the full calculation, but the temperature plateaus
since there is a conserved energy. Including the heating
gives very good agreement although the period is slightly
shifted. Figure 7(b) shows the Te = 10 K results. Including
the electron heating gives better agreement although the
amount of heating underestimates the actual heating rate by
a factor of ∼1.38 (actual increase in temperature ∼0.55 K
but the screened ion calculation with heating has an increase
in temperature of ∼0.40 K). One possible cause for the
discrepancy is that the actual electron temperature in the full
calculation is approximately 11.6 K from disorder-induced
heating of the electrons and approximately 3% recombined
atoms; this temperature corresponds to �e � 0.23. The result
of using this electron temperature is shown as a dot-dashed
line; while using the actual electron temperature improves
the agreement, the heating is underestimated by a factor of
∼ 0.55/0.45 = 1.22.

Figure 7(c) shows the Te = 5 K results. In the full ion–
electron calculation, the electron temperature starts at ∼7 K
after 1 ns and rises to ∼7.9 K at 300 ns. Approximately
8% of the ions have captured an electron and become atoms
by 300 ns. None of the screened ion calculations match the
full calculation very well. The screened ion with Langevin
heating for 5 K electrons reproduces the initial slope of the ion
temperature (good agreement to ∼30 ns) but underestimates
the heating rate by a factor of ∼2. The screened ion with
Langevin heating for 7.5 K electrons does not reproduce the
initial slope and overshoots the temperature at early times
and is too cold at later times; this temperature corresponds to
�e � 0.35. The heating rate from 150 to 300 ns is too small
by a factor of ∼1.7. The results in figures 7(b) and (c) indicate
that the scattering formula in [20] may not be accurate for
�e >∼ 0.2.

There have been other recent studies of electron–ion
scattering. The authors of [21] performed calculations
for densities of 1020–1024 cm−3 and found that the
parameterization in [22] worked well; in these studies, the
electrons and ions had opposite sign charges unlike reference
[20] and, therefore, might more accurately apply to our results.
However, they are at densities a factor of 1011–1015 higher than
ours so that quantum effects are more important and might
affect how they weight the fitting of the scattering logarithm.
Their expression for the logarithm is

L = 1

2
ln

(
1 +

λ2
De + a2

ws

r2
L

)
, (9)

where we have dropped the thermal de Broglie wavelength
from their expression because it had negligible effect on the
results. The logarithms in equation (7) and equation (9)
look different, but they have the high-temperature limits of
ln(λDe/rL) + ln(0.7) and ln(λDe/rL), respectively. At 25 K,
the result in equation (9) is 16% higher than the result used in
figure 7(a), which means it will give a scattering rate that
is approximately 16% too high. At 11.6 K, the result in
equation (9) is 25% higher than the result used in figure 7(b),
which means it will give an almost perfect scattering rate. At
7.5 K, the result in equation (9) is 31% higher than the result
used in figure 7(c), which means it will give a scattering
rate that is approximately 25% too low compared to the full
ion–electron calculation. Thus, neither of the expressions for
electron–ion scattering ([20] or [22]) give perfect input to our
Langevin modelling of the ion heating. It could be that the
defect in [20] uses the same charge for the electron and ion
and the defect in [22] is the extrapolation from high density.
However, we cannot rule out that the defect is in the simple
Langevin scattering model of the ion heating.

The results of figures 7(b) and (c) indicate that the heating
of ions due to electron scattering may be underestimating the
heating rate for Coulomb coupling parameters that are relevant
for ultracold plasmas at early times and at late times when the
plasma is expanding. If ion heating due to electron scattering
is underestimated by the current formulas, the interesting
proposals [24, 25] about strong coupling in ions could be
affected.

For the calculations of figure 7, we tested how the soft
core parameter C affected the long-time behaviour of the ion
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Figure 8. Four calculations of the scaled electron temperature,
�−1

e = kBTe/[e2/(4πε0aws)], are shown as a function of the scaled
time τ = ωpet when the electrons are launched at zero energy
relative to the vacuum threshold. The simulation is for 100 ions and
100 electrons. The screening parameter C = 0.02 was used and the
initial electron density was 109 cm−3. The solid line is for an ion
mass of 40mp , the dashed line is for an ion mass of 16mp , the dotted
line is for an ion mass of 4mp , and the dash-dotted line is for an ion
mass of 1mp .

temperature. From figure 3, we showed that most of the
convergence occurred when going from C = 0.03 to 0.02.
All of the results in figure 7 used C = 0.02. We found that
changing C from 0.03 to 0.02 changed the electron temperature
for the final time of figure 7 by approximately 1% and
approximately 5% for the 10 and 5 K calculations, respectively.
The change for the ion temperature was approximately 2% for
both the 10 and 5 K calculations. Thus, these calculations are
converged with respect to C.

5. T = 0, longer times

One of the interesting aspects of the ultracold plasmas is the
question of how this system behaves when the electrons are
launched exactly at the vacuum threshold. In section 3, we
gave the electron motion for times out to ωpetfin � 70 which
corresponds to 40 ns. The calculations in this section extend
to 300 ns which is (τ = ωpetfin � 535). We investigated both
the electron and ion behaviour for four different ion masses,
1mp, 4mp, 16mp and 40mp. We investigated the role of the
different ion masses because the rate of energy transfer into
the ions by electron scattering is different and the period for
any ion oscillation will be different. In all of the calculations,
C = 0.02 and the density was 109 cm−3.

Figure 8 shows 1/�e as a function of time; multiply
this result by 2.69 K to get the actual electron temperature.
Figure 9 shows the fraction of free electrons as a function of
time. For these two parameters, there is not a large effect
due to the ion mass. The fraction of free electrons (defined
by electrons outside of 0.2aws from any ion) quickly drops to
0.86 by scaled time τ � 44 and then slowly decreases to 0.82
by τ ∼ 200. From scaled time 300 to 535, the number of
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 0  100  200  300  400  500

P

τ
Figure 9. The same physical situation and line types of figure 8 but
plotting the fraction of free electrons, P, as a function of the scaled
time. An electron is counted as free if it is more than 0.2aws from
every ion.
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Figure 10. The same physical situation and line types of figure 8
but plotting the ion temperature (defined as 2/3 of the average ion
kinetic energy) as a function of time. The time range shown is the
same as in figures 8 and 9.

free electron decreases by less than 0.5% when the ion mass is
1mp which means that net recombination almost stops. The net
recombination comes from the interplay of the recombination
at that time and the electron impact ionization of previously
formed atoms. For the heavier ion masses, the number of
free electrons slightly increases which indicates that more
atoms are being ionized than are forming from recombination.
Although the net recombination has essentially stopped or even
slightly reversed, the temperature continues to substantially
increase over this time range. The scaled temperature �−1

e

increases from � 1.7 at scaled time τ = 80 to � 2.3 at
τ = 300. From scaled time 300 to 535, the scaled temperature
increases to 2.7. The temperature continues to increase even
though atom formation almost stops because the electron
collisions with the already formed atoms cause the bound
electrons to go to deeper binding (lower energy) and thus the
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free electrons’ kinetic energy must increase. The final scaled
temperature of ∼2.7 corresponds to an electron Coulomb
coupling of 1/2.7 = 0.37 if the density were unchanged.
Since the density of free electrons decreases by the factor 0.82,
the actual electron Coulomb coupling parameter is slightly
decreased to 0.821/3/2.7 = 0.35.

Figure 10 shows the ion temperature as a function of time
(this is the same time range as in figures 8 and 9). Here, there is
a clear difference between the calculations with the different
ion mass. The smaller ion masses clearly show the effect
of electron scattering because there is a rising temperature at
the later times. The early time slope of the temperature is
proportional to m

−1/2
i . There are few oscillations of the ion

temperature for the 1mp case because the electron temperature
is low which leads to a small Debye length.

6. Conclusions

We have investigated some of the early time properties of
ultracold neutral plasmas. We have found that the time
development of the electron temperature when starting with
electrons launched from near the ions is similar to that in a
previous study [7] after a time ∼1/ωpe. If the electrons are
launched at zero energy relative to the vacuum threshold, the
temperature will increase to give �e � 0.56 after only ∼11
electron plasma periods; this �e is somewhat lower than in [7]
because electron–ion scattering transferred energy from the
electrons to the ions in their calculation because of the small
ion mass (mi = 100me) they used. We found that the early
time electron temperature depends on the ion mass because
electron scattering can transfer energy from the electrons to
the ions.

We investigated how the ion temperature (defined to be
2/3 of the average kinetic energy) evolved as a function of
time. We found that we could get good agreement between a
full calculation of the ion–electron motion and a calculation
using the Debye screening plus a Langevin heating if the
electron temperature was larger than ∼25 K corresponding to
�e � 0.11. We found increasing disagreement as the Coulomb
coupling parameter changed from �e � 0.23 to �e � 0.35.
Our results are suggestive, not definitive, that the electron–
ion thermalization rate is not accurate at low temperature.
There is a proposal to laser cool ions to reach the strongly
coupled regime [24] which will be affected by the ion–electron
scattering rate; thus, a more detailed study of this issue seems
to be warranted.

Finally, we showed results when the electrons are
launched at threshold for times out to 300 ns. We found
that the mass of the ion did not have a strong effect on the
electron properties of the plasma but did have an effect on
the ion motion in ways that would be expected from simple
arguments. We found that approximately 17% of the ions

captured electrons to become Rydberg atoms and that there
was no need to invoke exotic effects for this system because
the electrons almost immediately evolve out of the strongly
coupled regime and become more weakly coupled with time.
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