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Abstract
We have simulated the motion of a Rydberg hydrogen atom in electric and magnetic fields that
have a strong position dependence. The orientation and strengths of the fields depend strongly
on the spatial position of the atom. The angle between the fields could take on any value. We
use the quantum energy levels for a Rydberg state in electric and magnetic fields to derive a
spatially dependent potential energy for the centre-of-mass motion of the atom. We compute
the radiative decay rate into states with low principal quantum numbers. After the decay, the
atom could be trapped using the magnetic moment of the electron. We present results for a
specific trap geometry which could be experimentally realized.

1. Introduction

There have been several recent studies of the motion of a highly
excited atom or molecule under the influence of spatially
dependent external fields. One avenue of exploration has
focused on the motion in spatially varying electric fields
with no magnetic field present. Reference [1] was an early
proposal to use the Stark acceleration of Rydberg atoms in
an inhomogeneous electric field to decelerate neutral atoms.
There have been several recent studies based on this idea. For
example, reference [2] was an experimental demonstration of
the deflection of krypton Rydberg atoms and reference [3]
was an experimental demonstration that molecular hydrogen
in Rydberg states could be deflected and decelerated in
inhomogeneous electric fields. An extreme example of atomic
control of Rydberg atoms in inhomogeneous electric fields was
the two-dimensional [4] and three-dimensional [5] trapping of
hydrogen atoms. Recently, the deceleration and trapping of
Rydberg molecules has also been demonstrated in [6].

Another avenue of exploration has focused on the motion
in spatially varying magnetic fields with no electric field
present. The experimental push to study the spectroscopy
of the antimatter version of the hydrogen atom has reached the
milestone of trapping anti-hydrogen in the ground state [7].
The anti-hydrogen is formed when an anti-proton is inside
a positron plasma and three-body recombination (an anti-
proton and two positrons) leads to a positron weakly bound

in a Rydberg state to the anti-proton. The recombination
occurs in magnetic fields of approximately 1 T. Spatially
dependent magnetic fields are used to trap the anti-hydrogen in
all three dimensions. Thus, it is important for understanding
the details of anti-matter experiments to comprehend the
centre-of-mass motion and decay of Rydberg atoms moving
through inhomogeneous and strong magnetic fields. Before
the trapping of anti-hydrogen, the authors of [8] demonstrated
the magnetic trapping of cold Rydberg atoms; the atoms were
laser cooled and then excited, by photon absorption, to high
Rydberg states. Motivated by the prospect of trapping anti-
hydrogen, two independent simulations [9, 10] showed that
a trapped anti-hydrogen Rydberg atom moving through the
inhomogeneous magnetic field would have its centre-of-mass
motion cooled during the radiative cascade to the ground
state. There have also been theoretical studies of Rydberg
atom motion for the situation where the atomic centre-of-mass
motion needs to be quantized (for example, see [11]), but these
studies require extremely low kinetic energy, well outside the
range of parameters of interest here.

One of the main features of anti-hydrogen experiments
is that there are both electric and magnetic fields present,
with both fields being inhomogeneous, and with the angle
between the fields depending on the position in the trap. To
our knowledge, how this complication affects the motion of
Rydberg atoms has not been studied theoretically although
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it appears that experiments are underway to quantitatively
address this issue [12].

Since the inhomogeneous electric field case and the
inhomogeneous magnetic field case have been studied, it might
not be clear that adding both fields together leads to a situation
that should be studied theoretically. Motivated by the prospect
of detailed experiments [12], we have investigated this system
using physically relevant parameters. We have found the case
of similar strength electric and magnetic fields with an arbitrary
angle between the fields to be extraordinarily challenging when
the energy shifts of the states are comparable to or larger than
the Rydberg energy spacing. Consequently, we will focus
on the situation where the fields give a generalized Stark–
Zeeman mixing of states within a degenerate manifold. This
restricted case can be solved analytically using degenerate
perturbation theory. Because the energies and coefficients
of mixing are known analytically, we can efficiently solve
for the force on the centre-of-mass motion of the atom and
for the decay rate at each position in the trap. But even
with the simplification of degenerate perturbation theory, the
radiative decay is complicated and we are forced to use further
approximations to obtain the properties of the atoms that have
decayed to the ground state.

Before getting into the details of the calculation, we can
give an estimate of what is meant by similar strength electric
and magnetic fields. For this we can compare the maximum
energy shift in a pure electric field, � n(n − 1)3ea0E/2, to
that in a pure magnetic field, (n − 1)μBB, where e is the
proton charge, a0 is the Bohr radius, and μB is the Bohr
magneton. For n = 30 and E = 10 V cm−1, the comparable
magnetic field is ∼0.04 T. For this strength of the electric
field and this n, the maximum energy shift of the Stark effect
is 1.1 × 10−23 J compared to half of the Rydberg spacing of
8.1 × 10−22 J; thus, the fields could be ∼7× larger without
having to consider the level crossing between n-manifolds.
Note that as the principal quantum number increases, the effect
of the electric field becomes more dominant.

The next section gives the quantum theory for
obtaining the eigenstates and eigenenergies when degenerate
perturbation theory is appropriate. The following section gives
the description of the classical aspects of the calculation. The
final two sections give the results of our simulations and some
of the conclusions we have drawn from them.

2. Degenerate perturbation theory: non-parallel E
and B fields

It is perhaps not as well known as it should be that the
eigenstates and eigenenergies within an n-manifold can be
found analytically for arbitrary orientation of the electric and
magnetic fields. In this section, we present a short derivation
for the sake of completeness. Unless otherwise explicitly
stated, we will use atomic units in this section of the paper.

As the basic starting point, we need the commutator
relations for the angular momentum and the scaled Runge–
Lenz vector. These relations can be found in many graduate
textbooks (e.g. [13], chapter 12, section 5, on the Coulomb

potential) with the original derivation by Pauli [14, 15]. The
angular momentum operator is given by

�L = �r × �p (1)

and the normalized Runge–Lenz vector is given by

�a = n[(�p × �L − �L × �p)/2 − r̂] (2)

where r̂ = �r/r is the unit vector in the r-direction. These
vectors have the commutation relations

[Li, Lj ] = iεijkLk

[ai, Lj ] = iεijkak

[ai, aj ] = iεijkLk,

(3)

where εijk is 1 for ijk = (123), (312), (231), is −1 for (321),
(132), (213) and is 0 for the other 21 possible combinations of
the indices.

Using these commutation relations, one can show that two
commuting angular momenta can be constructed:

�J1 = 1
2 (�L + �a), �J2 = 1

2 (�L − �a), (4)

that have the commutation properties

[J1i , J1j ] = iεijkJ1k

[J2i , J2j ] = iεijkJ2k

[J1i , J2j ] = 0

(5)

and that both vectors have squared magnitude equal to j (j +1)

with j = (n − 1)/2. The eigenstates of �J1
2

and J1z can
be written as |j1m1〉. Any eigenstate within the n-manifold
can be written as a superposition of all possible products
|j1m1〉|j2m2〉. As with all angular momenta, there are 2j + 1
eigenstates for each of these angular momenta. This means
there are (2j + 1) × (2j + 1) = n × n = n2 states altogether.

Within an n-manifold, the �r operator is proportional to the
scaled Runge–Lenz vector

�r = 3
2n�a = 3

2n( �J1 − �J2) (6)

which will allow us to express the Hamiltonian in terms of the
angular momenta.

Electric field only. If only an electric field is present, then the
z-direction can be taken to be in the direction of the electric
field. For this case, the Hamiltonian, H = Ez, can be written
as

H = 3
2n(J1z − J2z)E (7)

which immediately gives the eigenstates as the product of
the eigenstates of J1z and J2z: |j1m1〉|j2m2〉 with eigenvalues
Em1m2 = 3n(m1 −m2)E/2; the range of m1 and m2 is between
−(n − 1)/2 and (n − 1)/2. The most extreme blue Stark
state is m1 = (n − 1)/2 and m2 = −m1. Because the orbital
angular momentum is the sum of �J1 and �J2, the connection
between the Stark eigenstates and the eigenstates of the orbital
angular momentum, �m, is simply the usual vector coupling
coefficients: 〈�m|j1m1j2m2〉. The properties of the vector
coupling coefficients means that the usual m quantum number
is the sum m = m1 + m2.
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2.1. Electric and magnetic fields

The Hamiltonian when both electric and magnetic fields are
present is given by

H = �E · �r + 1
2
�B · �L, (8)

where the atomic unit of the magnetic field is 2.35 × 105 T.
Using the relations above, the Hamiltonian can be transformed
into

H =
(

3n

2
�E +

1

2
�B
)

· �J1 −
(

3n

2
�E − 1

2
�B
)

· �J2 (9)

from which we can find the eigenenergies and eigenstates using
standard angular momentum manipulations.

2.1.1. Eigenenergies. The Hamiltonian in equation (9) is the
sum of the operator with only �J1 and an operator with only �J2.
The eigenvalues of any operator with the form

H = �ω · �J (10)

can be found by defining �ω to be in the z-direction. This gives
values | �ω|m where m takes the 2j + 1 values from −j to j in
integer steps. Thus, the eigenvalues corresponding to equation
(9) are

Em1m2 =
∣∣∣∣3n

2
�E +

1

2
�B
∣∣∣∣m1 −

∣∣∣∣3n

2
�E − 1

2
�B
∣∣∣∣m2 (11)

with m1 taking the n values from −(n − 1)/2 to (n − 1)/2 in
integer steps and m2 independently taking the n values from
−(n − 1)/2 to (n − 1)/2 in integer steps. In SI units, the
eigenenergies are

Em1m2 =
∣∣∣∣3nea0

2
�E + μB

�B
∣∣∣∣m1 −

∣∣∣∣3nea0

2
�E − μB

�B
∣∣∣∣m2,

(12)

where e is the charge of a proton, a0 is the Bohr radius, and
μB is the Bohr magneton.

From the expression for the eigenenergies in equation
(12), one can obtain the energies for the case �E = 0 or �B = 0
and show that they reduce to the usual result. There is a single
state that has the largest positive energy shift for the general
case of �E and �B. This state corresponds to m1 = (n − 1)/2
and m2 = −(n − 1)/2 and has the value

Eext =
(∣∣∣∣3nea0

2
�E + μB

�B
∣∣∣∣ +

∣∣∣∣3nea0

2
�E − μB

�B
∣∣∣∣
)

n − 1

2
(13)

which is always larger than or equal to the shift from the
electric field alone or the magnetic field alone. As a final
point, for every state m1,m2 there is a state with the sign of
both m1 and m2 flipped which means for every eigenenergy E ,
there is an eigenenergy −E .

In atomic units, the most extreme state when the magnetic
field is 0 has energy E = 3n(n−1)E/2 � 3n2E/2. We can use
this to estimate the electric field where the states of different
n-manifolds cross by setting the shift equal to 1/2 of the
Rydberg spacing � 1/n3. This gives a limit on E equal to
E � 1/(3n5). The most extreme state when the electric field

is 0 has energy E = (n − 1)B/2. Again comparing this
shift to 1/2 of the Rydberg spacing gives B � 1/n4. If the
electric and magnetic field are both present, then the most
extreme energy shift occurs when the electric and magnetic
fields are perpendicular. The most extreme state will have as
its maximum energy shift E =

√
(3nE)2 + B2(n−1)/2. Again

comparing this to 1/2 the spacing gives
√

(3nE)2 + B2 �
1/n4. If the electric and magnetic fields satisfy this condition,
then the perturbative treatment in this paper should be accurate.

2.1.2. Eigenvectors. In order to compute the radiative decay
from an eigenstate, we need to find the transformation from the
m1m2 states to the �m states. The nature of the Hamiltonian
allowed us to write down the eigenenergies in a simple form.
The eigenvectors are somewhat more complicated but can also
be found in terms of standard operations.

Since we only need the eigenvectors to compute the
radiative decay rate, we do not need to worry about the overall
orientation of the vectors. However, the relative direction of
the �E and �B are crucial. Therefore, we will take the electric
field to be in the z-direction and we will take the part of �B that
is not parallel to �E to be in the x-direction. Another way of
thinking about the orientation of �B is that the vector �E × �B is
in the y-direction. With these definitions, the Hamiltonian of
equation (9) is transformed into

H =
[(

3En

2
+

Bz

2

)
J1z +

Bx

2
J1x

]

−
[(

3En

2
− Bz

2

)
J2z − Bx

2
J2x

]
(14)

with Bz = �E · �B/| �E| and Bx =
√

�B2 − B2
z . We can simplify

this Hamiltonian to

H = E1[J1z cos θ1 + J1x sin θ1]

− E2[J2z cos(−θ2) + J2x sin(−θ2)] (15)

where

E1 = 1

2

√
(3En + Bz)2 + B2

x tan θ1 = Bx

3En + Bz

(16)

and

E2 = 1

2

√
(3En − Bz)2 + B2

x tan θ2 = Bx

3En − Bz

(17)

define the energies and angles in equation (15).
With the Hamiltonian in the form of equation (15), we

can use the relation

Jz cos θ + Jx sin θ = e−iθJy Jze
iθJy (18)

and the fact that �J1 commutes with �J2 to obtain

H = e−iθ1J1y eiθ2J2y (E1J1z − E2J2z) eiθ1J1y e−iθ2J2y . (19)

From this form of the Hamiltonian, one can show that the
eigenvectors, H |ψ〉m1m2 = Em1m2 |ψ〉m1m2 , must be equal to

|ψ〉m1m2 = e−iθ1J1y eiθ2J2y |j1m1〉|j2m2〉, (20)

where each rotation matrix only acts on the vector for the
corresponding angular momentum.
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Now that we have the eigenvectors we can project them
onto the �m state to obtain the amplitude to be in a particular
orbital angular momentum state. The amplitude to be in the
state n�m is

〈�m|ψ〉m1m2 =
∑
m̄1m̄2

〈�m|j1m̄1j2m̄2〉〈j1m̄1| e−iθ1J1y |j1m1〉

×〈j2m̄2|eiθ2J2y |j2m2〉, (21)

where the first term after the summation symbol is the usual
vector coupling coefficient and the last two terms are the
unitary rotation matrices d

(j)
m̄m(θ) [16].

There was one technical difficulty we had in computing
the amplitude to be in the state n�m. The large magnitude of
the Jy and the large possible size of the angle led to difficulties
in computing the rotation matrices. Since nθ could be as
large as ∼100, computing the rotation matrices by a power
series expansion leads to cases where the roundoff error was
larger than the result. We solved this problem by computing
the rotation matrix for the angle θ/2k with k an integer large
enough that nθ/2k < 0.1; because the angle was small, a
power series expansion was efficient and stable. We multiplied
the resulting matrix on itself to get the rotation matrix at the
angle θ/2k−1. We repeated this process until we obtained the
rotation matrix for the angle θ . We found this method to be
both efficient and stable for any angle we needed.

2.2. Adiabatic approximation

In computing the motion of the atom, we assumed that m1

and m2 are conserved until a photon is emitted. This is
an approximation that assumes that the state adiabatically
follows the appropriately combined directions of the electric
and magnetic fields. This approximation does not fail when
the eigenenergy Em1m2 goes to 0 because the Hamiltonian is
the sum of two commuting terms: H = �ω1 · �J1 − �ω2 · �J2.
This approximation fails when the atom goes through a region
where either of the two vectors defined by

h̄�ω1,2 = 3nea0

2
�E ± μB

�B (22)

goes to 0; this equation is given in SI units for ease of
calculation. For the adiabatic approximation to fail, the
direction of �ω1 must be changing faster than the magnitude
| �ω1| or the direction of �ω2 must be changing faster than the
magnitude | �ω2|. This can occur in a small volume around the
points where one of the vectors is exactly 0.

These regions are very small. As an estimate we will
take the rate of change of the direction to be a representative
speed (100 m s−1 corresponds to ∼ 0.6 K) divided by a
representative size for the trap (1 mm) to obtain ∼ 105 rad
s−1. This would correspond to a change in the electric field
of h̄105 rad s−1/(3nea0/2)∼ 0.3 mV cm−1 for n = 30 or a
change in the magnetic field of h̄105 rad s−1/μB ∼ 10−6 T.
Our magnetic field has a variation of ∼100 T m−1 which
gives a corresponding distance of ∼ 10−6 T/(100 T m−1) =
10−8 m. The electric field has a variation of order
∼ 30 V cm−1 mm−1 which gives a corresponding distance
of ∼ 0.3 mV cm−1/(30 V cm−1 mm−1) = 10−8 m. To be

safe, we considered the motion to be adiabatic if the atoms did
not pass within 10−7 m of the non-adiabatic points.

For the electric and magnetic fields given below, these
vectors only go to zero at a few points near the edge of
the trapping region. We found that these regions did not
affect any of the trajectories in section 4. Thus, the adiabatic
approximation works well for the fields below. It should be
noted that a different choice of fields could lead to zeros in the
middle of the regions that the atoms traverse multiple times.

2.3. Radiative decay rates

For the correct quantum calculation of decay rates, we need to
solve for the dipole matrix elements for a state nm1m2 to all
states with principal quantum number less than n. To correctly
simulate the atom motion after a radiative transition, we need
to know all of the final state quantum numbers. Because of
the large multiplicity of states, this is not feasible for the high
quantum numbers we studied. The difficulty is that every time
step will give a new θ1 and θ2 in the eigenfunction which leads
to a position-dependent decay rate and a position-dependent
branching ratio to final n′m′

1m
′
2. To understand the radiative

cascade process, we solved for the transitions at different
positions within the trap for several different initial states.
We found that the most rapid decay path is usually a single
photon to n � 10 with a subsequent fast decay to the ground
state. When there is no electric field, the atom goes to a
circular state so that the only possible decay is the sequence
n → n − 1 → n − 2 . . . . Because there is usually an angle
between the electric and magnetic field, the �m mixing is such
that there are often low � components in the wavefunction
which will allow decay to smallish ns in one step.

The decay from a specific nm1m2 state to a state with
n′m′

1m
′
2 is difficult because both the initial and final state

coefficients are needed to compute the three-dipole matrix
elements: 〈nm1m2|x|n′m′

1m
′
2〉 and similar for y and z.

There are approximately n3/3 states with n′ < n giving
approximately n3 matrix elements that need to be calculated.
(If black body radiation is an important issue, the matrix
elements to states with n′ > n also need to be calculated.)
It is much easier to obtain the decay rate from a state nm1m2

into all of the states in an n-manifold. The rate to decay from
the state nm1m2 into all states of the n′ manifold only depends
on the sum of the angles θ1, θ2 and is given by

�nm1m2→n′ =
∑
�m

�n�→n′ |〈�m|ψ〉m1m2 |2, (23)

where 〈�m|ψ〉m1m2 is defined in equation (21), �n�→n′ is the
decay rate in the 0 field from a state with quantum numbers
n� into all states of the n′ manifold.

Figure 1 shows the total radiative decay rate for the
n = 30, m1 = 29/2 and m2 = −29/2 as a function of
θ = θ1 + θ2. The different lines show decay into all final
states with n � 10, 15, 20, 25 and 29. There are a couple of
important features of this graph to be noted. The first is that
the peak decay rate is when θ is small; the reason for this is
that the case of θ ∼ 0 is the case of the blue Stark state with
m = 0 which has a large composition of low angular momenta
which radiate quickly. Another important feature is that most
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Figure 1. The total radiative decay rate for n = 30, m1 = 29/2, and
m2 = −29/2 as a function of θ = θ1 + θ2. The different lines show
decay into all final states with n � 10 (solid line), 15 (dotted line),
20 (dashed line), 25 (dash-dot line) and 29 (dash-dot-dot-dot line).

of the decay goes directly into states with n � 10; states with
n � 10 account for 90% of the decay rate at θ = 0. Finally,
at large angles, the decay rate is small and it is almost all into
states with n > 25. This is because when θ ∼ π this state is
essentially the circular state with � = n − 1 and m = �; this
state can only decay by going from n → n − 1. Although
decay into high n is important for θ ∼ π , the rate is only
∼1–2% of the peak rate.

Below we will describe how we compute the motion of
the hydrogen atom. It is important to realize that the motion
of the hydrogen atom means that the decay rate changes with
time because the angle θ = θ1 + θ2 is changing. While it
is possible to compute all of the decay rates from nm1m2

into n′m′
1m

′
2 from a quantum treatment of the hydrogenic

energy levels, the number of times that this calculation
will be necessary as the hydrogen moves through the fields
precludes accounting for all of the states. We resorted
to the approximation of limiting the decay from the initial
state into states with n � 10 and then assuming that the
subsequent decay occurs quickly enough that the hydrogen
atom hardly moves during the transition to the ground state.
This approximation will underestimate the decay rate by a
factor of roughly 10%. This approximation will also cause
our centre-of-mass kinetic energy distribution for ground state
atoms to be somewhat hotter than that which would result from
a full calculation; the reason is that some atoms move during
the last parts of the cascade and that motion will provide some
centre-of-mass cooling as in [9, 10].

In the calculations below, we will start in several different
initial states. Figure 2 shows the decay rate into states with
n � 10 for five of the most blue-shifted states with n = 30:
(m1,m2) equal to (29/2,−29/2), (27/2,−27/2), (25/2,−25/2),
(29/2,−27/2) and (29/2,−25/2). The decay rate for the state
(29/2,−27/2) is the same as that for the state (27/2,−29/2)
and for the state (−29/2,27/2). All of the states radiate most
strongly for θ < 1 but the most extreme state radiates most
strongly.

We chose to investigate these states because they are
probably of most interest for trapping atoms. These states
are the ones that are most strongly trapped by the fields. If
the signs of both m1 and m2 are flipped, the resulting state has
electric and magnetic dipole moments that give a force that

Figure 2. The decay rate into states with n � 10 for five states with
n = 30: (m1, m2) equal to (29/2,−29/2) (dash-dot-dot-dot line),
(27/2,−27/2) (dash-dot line), (25/2,−25/2) (dashed line),
(29/2,−27/2) (dotted line) and (29/2,−25/2) (solid line).

repels the atom from the trap. Thus, requiring strong trapping
leads to an investigation of states with large, positive values
for m1–m2. In the experiments of Rydberg atoms in static
electric fields, the atoms are excited from very deeply bound
states into the Rydberg states with one or two photons. This
method of excitation means that the m is small which implies
that |m1 + m2| is a small integer (less than 3).

For the calculations below, we only include the
spontaneous radiative decay rate. The recent results in [17]
showed that black body radiation can play an important role
if the temperature is high. The authors of [17] saw strong
effects at 300 K but weak effects at 125 K. In the anti-matter
experiments, the black body radiation will not be an issue if
the radiation field is at the temperature of the trap (less than
∼10 K). The black body transitions are dominant for small
changes in n. Unfortunately, the calculation of dipole matrix
elements for states separated by small n are those which are
too time consuming to compute (as explained earlier in this
section). Thus, our calculations are limited to low temperature
for the black body radiation.

We note that there are several papers that have
given compact expressions for radiative decay based on
semiclassical approximations. Unfortunately, these results are
not useful for us because they are for the total decay rate
of states. We need the transition rate from a specific initial
state nm1m2 to a specific final state n′m′

1m
′
2 because all three

quantum numbers determine the force that the atom feels after
the decay. It is possible that there is a way of obtaining these
rates using a semiclassical approximation, but none of the
existing methods seem to be applicable to our situation.

3. Classical motion

This section describes the parameters that went into computing
the motion of the hydrogen atom.

3.1. Electric field

We needed to choose a form for the electric field. The authors
of [5] demonstrated three-dimensional trapping of hydrogen
Rydberg atoms using only electrostatic fields. In figure 1 of
[5], they show two cuts of the electric field. We used this data
to fit a simple form for the electrostatic potential. The strategy
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Table 1. The coefficients of the electrostatic potential used in this
calculation.

c1 −1.08553E03 c2 −2.07143E07 c3 −1.20814E11
c4 7.50741E04 c5 2.53946E06 c6 −1.13210E09
c7 −9.25872E08 c8 −1.28327E09 c9 −8.60316E10

was to have an electrostatic potential which was the sum of
several terms, each of which satisfies Laplace’s equation and
approximated the symmetry of their electrodes. We chose

V = c1x + c2[2x3 − 3x(y2 + z2)] + c3[8x5 − 40x3(y2 + z2)

+ 15x(y2 + z2)2] + c4
1
2 (z2 − y2) + c5zy

+ c6
1
2 (z2 − y2)[6x2 − (y2 + z2)]

+ c7[6x2 − (y2 + z2)]yz + c8(y
4 − 6y2z2 + z4)

+ c9(yz3 − y3z), (24)

where the coefficients in SI units are given in table 1. Using
these coefficients, we were able to fit the data in their figure 1
when |x| < 5 mm, |y| < 2.3 mm and |z| < 3 mm. Whenever
a hydrogen atom went beyond this region, we counted it as
leaving the trap.

The electric field was obtained by the usual expression
�E = −�∇V . Because we have the potential in a smooth
polynomial form, the calculation of the electric field was fast
enough for the classical calculation of the motion of the atom
described below.

3.2. Magnetic field

For the magnetic field, we took a simple linear form which
would approximate the magnetic field near the 0 in an anti-
Helmholtz configuration. In some of the calculations below,
we allow the axis of symmetry to change. Taking the unit
vector ŝ to be along the axis of symmetry, we defined our
magnetic field to be

Bx = B 1
2 [3ŝx(ŝ · �r) − x]

By = B 1
2 [3ŝy(ŝ · �r) − y]

Bz = B 1
2 [3ŝz(ŝ · �r) − z],

(25)

where B = 120 T m−1. As with the electric field, the
calculation of the magnetic field was fast enough for our
simulations of the atom motion.

3.3. Classical motion

We solved for the centre-of-mass motion of the hydrogen atom
using the classical equations of motion

d �R
dt

= �V d �V
dt

=
�F
M

, (26)

where �R is the position of the atom in the trap, �V is the velocity
of the atom, �F is the force on the atom and M is the mass of
the atom. The force is obtained by taking the gradient of the
potential energy

�F = −�∇Em1m2 , (27)

where the Em1m2 is from equation (12). The position
dependence of the electric and magnetic fields are as described

above. We did not analytically compute the gradient. Instead,
we computed the potential energy at points slightly separated
in space and computed the central difference, for example,
the points (X + δX, Y,Z) and (X − δX, Y,Z) were used to
compute the x-component of the force at the point (X, Y,Z).
We checked the convergence with respect to the spacing of
points by checking that energy was conserved during the
motion. We also checked convergence by performing runs
with the spacing decreased by a factor of 2; since the central
difference has error proportional to the cube of the spacing,
obtaining the same trajectory with a decreased spacing shows
that the error from the finite difference was negligible.

To somewhat mimic the initial conditions that might be
obtained in an experiment, we started our atoms with random
positions and velocities. The velocity components were
chosen from a thermal distribution with a different temperature
in each direction: the x-component was a temperature of 75
mK, the y-component was 2 mK and the z-component was
300 mK. The distribution of positions was chosen from a
distribution proportional to exp(−PE/[0.2 K kB]) with the
PE calculated only using the electric field. We chose this
spatial distribution because launching the atoms exactly from
the origin would give an unphysically biased distribution of
trajectories. We know from experiments that the temperature
of the atoms in the trap with only an electric field is
approximately 150 mK. These temperatures were chosen to
be relevant for recent experiments [5].

We solved the classical equations of motion using an
adaptive step-size fourth order Runge–Kutta algorithm [18].
We could check the convergence of the trajectory by changing
the accuracy parameter and making sure that the same
trajectory resulted from the same initial conditions.

To give an idea of the structure of the trap, figure 3 shows
the potential energy of the atom as a contour for two orthogonal
cuts through the trap. The potential energy is for the state
n = 30, m1 = 29/2 and m2 = −29/2. For the magnetic
field, we chose ŝ = x̂. The potential energy has a depth of
several kelvin from the origin to the edge where we count the
atom as having escaped. For this state, there are comparable
contributions to the potential from the electric and magnetic
field which leads to a greater potential depth and also a change
in the shape of the potential.

The radiative decay was included using a statistical
procedure. The radiative decay rate was computed in each
time step and the probability for decay was computed: P =
1− exp(−�nm1m2δt), where δt was the time step and �nm1m2 is
the decay rate into all states with n � 10. A random number
with a flat distribution between 0 and 1 is then generated. If
the random number is less than P, then the atom is counted as
having decayed. If the random number is greater than P, then
we continue to propagate the classical motion of the atom for
another time step.

To give an idea of where the atom preferentially decays
as a function of position, figure 4 shows the decay rate as
a contour for two orthogonal cuts through the trap shown in
figure 3. The decay rate is for the state used in figure 3:
n = 30, m1 = 29/2 and m2 = −29/2. In the xz-plane, the
emission rate is high only near the centre of the trap because
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Figure 3. The potential energy for the (29/2,−29/2) for two different cuts through the three-dimensional trap: (a) the xz-plane and (b) the
yz-plane. The plots are for the range of values of figure 1 of [5]. The contour levels are the same for both graphs and correspond to steps by
2 K. White corresponds to 0–2 K, lightest grey corresponds to 2–4 K, etc.

Figure 4. The radiative decay rate into states with n � 10 for the (29/2,−29/2) for two different cuts through the three-dimensional trap: (a)
the xz-plane and (b) the yz-plane. The contour levels are the same for both graphs and corresponds to steps by 5 × 103 s−1. White
corresponds to 0–5 × 103 s−1, lightest grey corresponds to 5 × 103–10 × 103 s−1 . . . , black corresponds to 35 × 103–40 × 103 s−1.

near the centre of the trap the magnetic field is small and the
state is like a Stark state. In the yz-plane, the magnetic field
points radially outward. The angles at multiples of 45◦ give
magnetic fields essentially parallel to the electric field. This
gives a small value of θ1 + θ2 which leads to a high decay
rate.

4. Results

In this section, we present some of the results from our
calculations.

4.1. Decay rate

Figure 5 shows the number of decays per unit time which is the
decreasing function of time because the number of Rydberg
atoms is getting smaller with time. The slope in the inset
gives an indication of the decay rate of the remaining Rydberg
atoms. The plots are on an arbitrary scale on the y-axis but the
time integral from t = 0 to ∞ is the same for all curves.
In all of the calculations, the magnetic field has been set
to have ŝ = x̂. The decay rate is for five different initial
quantum states with n = 30: (29/2,−29/2) dash-dot-dot-
dot line, (27/2,−27/2) dash-dot line, (25/2,−25/2) dashed
line, (29/2,−27/2) dotted line and (29/2,−25/2) solid line.
Over the main part of the decay, the different initial states have

similar decay rates compared to the disparity in the rates of
figure 2. The state with the fastest decay is the (29/2,−29/2)

state as in figure 2 but it is only a factor of ∼1.5 faster than
the slowest state; the peak decay rate for this state in figure 2
is a factor of ∼4 larger than the peak of the slowest decay rate.
The reason for the smaller spread in actual decay rates will
be discussed in the next section. The time to reach 1/e of the
initial rate is between approximately 0.2 and 0.4 ms. This is a
decay rate that is a factor of 5–10 higher than the rate at large
angles shown in figure 1. We think that ignoring the decay
through the high n states will change the quantitative values
we obtain but probably will not affect the general conclusions
because the actual decay rate seen in figure 5 is much larger
than the correction.

On the log-scale shown in the inset, the behaviour of the
decay rate at longer times can be seen. For all of the initial
states, the decay rate at early time is higher than the decay rate
at later times. This is because there are a range of average
decay rates depending on the motion of the atom; some atoms
spend a larger time in regions of space where the decay rate
is smaller and these are more likely to survive to longer times.
Another interesting feature is that the (29/2,−29/2) state
starts out with the fastest decay rate, but it becomes somewhat
slower than the others at later times although it is difficult to
see because of the statistical noise. This seems due to the
decay rate in figure 2 which shows that if the atom spends a
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Figure 5. The number of decays per unit time for the states of
figure 2. The line types are the same as in figure 2.

Figure 6. The probability, P, for a radiative decay to occur during a
small interval at the angle θ = θ1 + θ2. The states and the line types
are the same as in figure 2.

large fraction of the time in regions where θ > 0.2, then this
is the state with the smallest decay rate.

The results in this and the next three sections depend on
the distribution of the initial population. If the population
substantially changes, then the results can be different. We
also performed calculations with a temperature about 10×
higher than that presented here. For this population, we found
that the decay rates were smaller because the atoms spent more
time in regions of space where the θ1 +θ2 was larger. However,
we found that two of the general features were the same: (1)
the decay rates are more similar than those which might be
expected by figure 2 and (2) the (29/2,−29/2) state starts
with the largest decay rate but has the smallest decay rate at
later times.

4.2. Distribution of θ = θ1 + θ2

We stored the relative angle θ = θ1 +θ2 when the atom decayed
and binned the result. Figure 6 shows the distribution of θ

when the atom decayed for the five different states used in
figure 5. The line types in figure 6 are the same as those of
figure 5. This figure should be compared to the decay rate
versus θ which is plotted in figure 2. Both plots show that the
majority of the decays occur for angles less than ∼1.2 rad; this
makes sense in that the decay will mainly occur when the rate
is high.

However, although the distributions in figure 6 are related
to the plots of figure 2, they differ in a fundamental way. The

Figure 7. The probability, P, for the atom to be in a small interval at
the energy, Etot, after the radiative decay. The states and the line
types are the same as in figure 2 and kB is Boltzman’s constant.

main feature is that the plots in figure 6 go to 0 as θ → 0
whereas the decay rates in figure 2 go to finite values. The
reason for the difference is simply due to the relative size of
phase space. The region of space where θ is in a small range
of size dθ is proportional to sin θdθ . We plotted the decay
rate of figure 2 times sin θ and scaled to the size of the data
shown in figure 6 and found that there was good reproduction
of the binned data out to θ ∼ 0.7 rad, but the agreement is not
perfect because the actual time distribution of θ is not exactly
statistical.

Figure 6 helps to explain why the decay rates in figure 5 are
more similar than those that might be expected from figure 2.
In figure 6, we see that the peak of the decays versus θ occurs
at ∼0.1 rad for the (29/2,−29/2) state and there are many
decays for angles larger than this. By θ ∼ 0.1 rad, the decay
rate for the (29/2,−29/2) has dropped by a factor of ∼2 and
is similar in value to the other states. Also, the atoms do spend
time at even larger θ where the (29/2,−29/2) state has the
smallest decay rate.

4.3. Energy distribution

In [9, 10], it was found that the centre-of-mass kinetic energy
of the atoms cooled during a radiative cascade. Figure 7
shows the energy distribution of the atoms when they reach
their ground state with the focus being on the low energy part
of the distribution. The states and line types are the same as
in figures 5 and 6. The energy is computed as the kinetic
energy plus the magnetic potential energy assuming the atom
cascaded to the state with the appropriate spin

Etot = (KE + | �B|μB) (28)

where μB is the Bohr magneton. The overall normalization of
the y-axis is arbitrary but the integral of the distribution from
0 to ∞ is the same for all states.

The states start with the same initial energy distribution
but the final distributions depend on which is the initial state
of the atom although there are not large differences between
these states. The (25/2,−25/2) and (29/2,−25/2) states
end up with the most low energy atoms after the decay and
the (29/2,−29/2) state has the least number of low energy
atoms. Since the Bohr magneton is approximately 2/3 K T−1,
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Figure 8. The probability, P, for the atom to have a total energy less than 0.1 K × kB after the radiative decay (solid line) as a function of the
orientation of the magnetic field; atoms in a magnetic well with a depth of ∼0.15 T would trap these atoms. The dotted line is the
probability times a factor of 2 for the atom to start with an energy less than 0.1 K × kB. (a) The orientation of the magnetic field is defined
by ŝ = (cos φ, sin φ, 0). (b) The orientation of the magnetic field is defined by ŝ = (sin φ, 0, cos φ). (c) The orientation of the magnetic
field is defined by ŝ = (0, cos φ, sin φ).

atoms with an energy of 1 K will need to be in a magnetic well
depth of 1.5 T to remain bound.

There is cooling that occurs because of the decay, but the
effect is not as big as in [9]. This result was a surprise to us
because the change in quantum number is larger in the current
calculation. We think there are two reasons for the smaller
effect in our calculation. First, the spontaneous decay rate in
[9, 10] only weakly depended on the position of the atom in
the trap; thus, from simple phase space arguments, the atom is
most likely to decay where the speed is small in [9, 10]. In the
present calculations, the decay rate is enhanced at the centre
of the trap where the speed is highest which means the atom
is more likely to emit a photon when it has substantial kinetic
energy. Second, the potential energy function after the decay is
| �B|μB which is linear in the distance from the origin but before
the decay it is given by equation (12) which is quadratic in the
distance from the origin. In [9, 10], the potential energy before
and after the photon emission was proportional to | �B|. This can
have an effect because a lower final energy is achieved if the
potential energy before the photon emission is approximately
proportional to the potential energy after the emission. To
see how this works, suppose the atom emits the photon when
its speed is 0. If the potential energy before and after the
emission are proportional to each other, the final energy is
the initial energy times the ratio of final magnetic moment
to initial magnetic moment. In the present calculation, the
ratio of final to initial potential energy will depend strongly on
position; because the final potential energy is proportional to

the distance from the centre of the trap, the ratio is not nearly
as small as in [9, 10].

4.4. Low energy versus magnetic field orientation

We investigated whether the orientation of the magnetic field
would affect the fraction of the atoms that finished with a small
energy after the decay. We arbitrarily chose the small energy
to be 0.1 K × kB. The results are shown as solid lines in
figure 8 for rotation of the magnetic field orientation about
three different axes: (a) shows rotation in the xy-plane, (b)
shows rotation in the zx-plane and (c) shows rotation in the
yz-plane. Half of the range plotted is redundant because the
same magnetic field results when ŝ → −ŝ.

It is clear from the figure that the orientation of the
magnetic field with respect to the electrostatic trap can play a
large role in the fraction of atoms that have low energy after the
decay. This graph shows that the fraction of atoms trapped in a
shallow well could depend in a crucial way on the orientation
of the magnetic field. The ratio of max(P )/ min(P )∼2 which
is probably large enough to worry about. We did not test for
arbitrary orientations of the magnetic field so there could be
some directions where the number of low energy atoms is very
strongly enhanced or suppressed.

One possible source of this change could be that the initial
potential energy of the atom is changing with the orientation.
The dotted line shows the fraction of atoms with initial energy
less than 0.1 K×kB; this fraction has been multiplied by 2 so it
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is roughly the same size as that of the final fraction. While the
initial energy does depend on the orientation of the magnetic
field axis, there is no direct correlation between how the initial
low energy fraction and the final low energy fraction behave
with angle. This shows that it is the effect of the orientation
of the fields on how the atom decays and the final potential
energy at that point which affects the final energy.

We performed calculations where the initial energy of
the atoms was higher than that for the calculations presented
here. We found that there was a larger effect when the
energy was higher; for a case where the initial energy was
approximately 10× higher than that presented here, we found
that max(P )/min(P ) ∼ 4. Higher initial energy leads to a
larger variation with orientation because higher energy atoms
can move through a larger part of the trap volume which can
lead to complex decay rates as a function of position like in
figure 4(b).

5. Conclusions

We have presented a method for calculating the motion of
a hydrogenic Rydberg atom in spatially varying electric and
magnetic fields. The spatial dependence of the internal energy
can be converted to a force and thus determines how the atom
moves through a region with varying fields. This treatment
should be accurate as long as the electric and magnetic fields
are too weak to cause n-mixing of the levels. We also gave
an approximation for how the atom decays into low principal
quantum number; the treatment allows a simple calculation of
the decay into all states of an n-manifold. In our treatment
of the radiation, we assumed the atom decayed into a state
with low-n so that the subsequent cascade was fast. We did
not treat the case where the atom decays through a sequence
of small �n transitions each of which is on a long time
scale.

We used this basic formulation to investigate how Rydberg
hydrogen atoms move and radiatively decay in a magnetic and
electric field trap. We presented results on how the decay
depends on the generalized angle θ = θ1 + θ2. We chose
a trap configuration that should be experimentally realizable
and we chose reasonable initial conditions for the atoms. We
presented results on how the decays occur versus time and
the resulting energy distribution of atoms after the decay. We
also showed that the orientation of the magnetic field could
strongly affect the fraction of atoms at very low energies.

The authors of [9, 10] found that antihydrogen cooled
during the radiative cascade when only the magnetic field was

present. The antihydrogen traps have substantial electric fields
during the formation of the antihydrogen. Our results indicate
that it might be unwise to ignore the interplay between electric
and magnetic fields on the motion and decay of the Rydberg
atoms. For the antihydrogen traps, some of the approximations
in this paper will need to be revisited because many of the
atoms start in high energy states where the effect from the
electric and magnetic fields is too strong for perturbative
methods.
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