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Abstract
We calculate the properties of a two-atom system where an electronic wavepacket on one atom
is transferred to a second atom. We focus on two situations that could be experimentally
accessible. In both situations, the dipole–dipole interaction causes the wavepacket character to
evolve between the two atoms. The effect will only be observable if the atoms preserve their
coherence on the microsecond time scale.

1. Introduction

There has been recent progress in the experimental and
computational study of the interaction between highly excited
(Rydberg) atoms. Rydberg atoms have exaggerated properties
that allow for pairs of atoms to interact even when separated by
large distances. Interesting effects were seen in experiments on
‘frozen Rydberg gases’ [1, 2] where the states could be tuned in
energy to give strong interactions. There was further impetus
for investigating these systems when a theoretical treatment
[3] showed the possibility for dipole blockade. Experiments
have observed the suppressed excitation of atoms so that more
than 1000 atoms can be suppressed by a single excitation. [4]
On the experimental side, there has been the direct observation
of dipole blockade between two Rydberg atoms [5, 6]. The
hopping of an excitation between two atoms has also been
observed. [7] The possibility for interesting effects when a
single type of excited state coherently ‘hopped’ through a
background consisting of a different type of excited state was
simulated in [8]. On the theory side, there has been a plethora
of suggestions for using the interaction between two or more
Rydberg atoms to create interesting systems (for example,
see [9]).

In all of these studies, the atoms are excited to single-atom
eigenstates using narrow bandwidth, cw-lasers or a chirped
laser. The Rydberg atoms start in a single state that later
evolves due to the interaction between pairs (or more) of
atoms. While experiments in the frequency domain give useful
information about many aspects of the interaction between
Rydberg atoms, studies in the time domain can also lead to
interesting behaviour. In complex systems, it can be useful to
initiate a wavepacket in a specific degree of freedom and study
its evolution throughout the coupled system.

In this paper, we will investigate some of the properties
of interacting Rydberg atoms when the Rydberg atoms are

excited to coherent superpositions of states (wavepackets).
We will consider two of the possible geometries in detail.
In both situations, the initial wavepacket will be on one atom
and the other atom will start in a stationary state, or both
atoms will start in a wavepacket whose evolution is changed
due to the atom–atom interaction. In the first geometry, one
atom is in a superposition of two states that have the same
angular momentum (for example, 50s and 51s) which leads to
a wavepacket with radial motion and the second atom is in a
state different from the two states of the first atom and which
interacts with the first through the dipole–dipole potential (for
example, 50p). In the second geometry, one atom is in a
superposition of states with different angular momentum (for
example, 50s and 50p) which leads to a wavepacket with radial
and angular motion and the second atom is in a stationary state
one of which is the same as the first atom (for example, 50s)
or both atoms start in the same wavepacket (for example, a
coherent superposition of 50s and 50p).

We study how the wavepacket evolves. We find that it
can jump from one atom to the other. We also discuss how
the wavepacket disperses and revives. Observation of these
features would give a clear signature of the coherence of the
interaction. Atomic units are used unless stated otherwise.

2. Theory

Before deriving the behaviour of a wavepacket on two
atoms, we will review the treatment of wavepackets for time-
independent Hamiltonians. If the Hamiltonian has no time
dependence, the wavefunction can be represented as the sum
over eigenstates ψα , the eigenenergies Eα and the t = 0
coefficients Cα to give

�(t) =
∑

α

Cαψα e−iEαt , (1)
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where the coefficients are related to the t = 0 projections:

Cα = 〈ψα|�(t = 0)〉. (2)

This decomposition is useful when the eigenstates and
energies can be found. In the situations below, we will be
able to determine these quantities analytically. However,
the eigenstates and energies typically need to be obtained
numerically.

Another important notation used below is that
representing the electronic states of two Rydberg atoms. We
will use the notation ψα(1)ψα′(2) to represent that state where
atom 1 has the Rydberg electron in the state ψα and atom
2 has its Rydberg electron in the state ψα′ . The atoms are
assumed to be separated by a large distance compared to their
physical size. In this situation, there is an interaction between
the atoms that is well approximated by the dipole–dipole term
of the 1/r12 operator:

V � [�r1 · �r2 − 3(�r1 · R̂)(�r2 · R̂)]/R3, (3)

where �r1,2 is the vector dipole operator for atoms 1,2, R is the
distance between the atoms and R̂ is the unit vector that points
from atom 1 to atom 2. The accuracy of this approximation
depends on the states and on the separation between atoms. We
do not use this approximation below but it guides the choice
of which types of states to use. It could also be useful when
calculating the size of some of the matrix elements described
below.

For the situations considered below, the dominant effect
of this interaction potential causes a transition on atom 1 from
a state α1 to a state β1 and a transition on atom 2 from a state α2

to a state β2. If the states are such that Eα1 + Eα2 = Eβ1 + Eβ2 ,
then there is no energy cost for the transition. In this case, the
total wavefunction oscillates with a superposition of α1, α2

states and β1, β2 states.
We do not give explicit expressions for the matrix

elements of the dipole–dipole operator, equation (3), and
specific states. The form of the matrix element has been given
in many different papers (for example, see [10, 11]).

Finally, we assume that the atoms are stationary during
the time scales of the simulation. This can be achieved by
starting with cold atoms or holding the atoms in a trap.

2.1. Situation 1

The first geometry we will present is the case where there
is a radial wavepacket on one atom and a stationary state
of a different character on the other atom. In order for
the interaction to be strong enough for interesting physics,
the states should differ by 1 in orbital angular momentum. A
possible situation would be to have a wavepacket consisting of
50s plus 51s states on one atom and the second atom being a
50p. For some alkali atoms, the dipole matrix element between
the ns and np states is similar in size to that between the (n+1)s
and np states.

This situation already has complications that can mar the
wavepacket motion due to different orientations of the states.
One of the problems is that the different total angular momenta
projected along the inter-atomic axes can interact with different
strengths. As a concrete example, examine the case of 50s on

one atom and 50p3/2 on the other. There are 16 states in total.
Taking the z-direction to be along the inter-atomic direction,
there are two states with Jz = 2, four states with Jz = 1, four
states with Jz = 0, four states with Jz = −1 and two states
with Jz = −2.

In order for the wavepacket dynamics to be clearest, the
orientation of the states needs to be chosen such that there are
only two states available for the atom–atom interaction.

We will explore the details of the case where the single
atom wavepacket is constructed from a superposition of states
n1� and n2�. The second atom is prepared in the state ndd, �+1
and the angular momenta are such that Jz is a maximum. In
this situation, the states are mixed due to the dipole–dipole
interaction. The eigenstates are

ψn1,± = 1√
2

[
ψn1�(1)ψndd ,�+1(2) ± ψndd ,�+1(1)ψn1�(2)

]
(4)

with eigenenergies

En1,± = En1� + Endd ,�+1 ± �n1 , (5)

where �n1 is the matrix element of the dipole–dipole operator
which is proportional to the square of the dipole matrix element
between states n1� and ndd, � + 1 and is inversely proportional
to the cube of the separation. Similarly, the other eigenstates
are

ψn2,± = 1√
2

[
ψn2�(1)ψndd ,�+1(2) ± ψndd ,�+1(1)ψn2�(2)

]
(6)

with eigenenergies

En2,± = En2� + Endd ,�+1 ± �n2 . (7)

Now that the eigenstates and energies are determined, we
can make a wavepacket by superposing the four states with the
appropriate coefficients. But to get the coefficients we need to
know the wavefunction at t = 0. An interesting choice is to
make a wavepacket localized only on one atom at t = 0. For
example we can choose

�(t = 0) = 1√
2

[
ψn1�(1) + ψn2�(1)

]
ψndd ,�+1(2) (8)

which gives a radial wavepacket on atom 1. In the absence of
the atom–atom interaction, the time-dependent wavefunction
would be

�(t,� = 0) = 1√
2

[
ψn1�(1) e−iEn1�t + ψn2�(1) e−iEn2�t

]

×ψndd ,�+1(2) e−iEndd ,�+1t (9)

which is the single atom radial wavepacket on atom 1 times
the eigenstate on atom 2. The observables on atom 1 can
have time-dependent behaviour but not those on atom 2. For
example, the expectation value of the radius of atom 1 will
oscillate with a frequency ω = (

En1� − En2�

)
.

If the atom–atom interaction is present, then an interesting
two-atom wavepacket ensues. We can get the coefficients of
the eigenstates by projecting onto the t = 0 wavefunction. For
the initial state of equation (8), all of the coefficients are 1/2.
This means the time-dependent wavefunction can be written
as

�(t) = 1
2

[
ψn1,+ e−iEn1 ,+t + ψn1,− e−iEn1 ,−t + ψn2,+ e−iEn2 ,+t

+ ψn2,− e−iEn2 ,−t
]

(10)
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which can be simplified using the expression for the eigenstates
and eigenvalues to

�(t) = [
�(c)(1, t)ψndd ,�+1(2) + �(s)(2, t)ψndd ,�+1(1)

]
× e−iEndd ,�+1t , (11)

where

�(c)(1, t) = 1√
2

[
cos

(
�n1 t

)
e−iEn1�tψn1�(1)

+ cos
(
�n2 t

)
e−iEn2�tψn2�(1)

]
(12)

is the wavepacket on atom 1 and

�(s)(2, t) = i√
2

[
sin

(
�n1 t

)
e−iEn1�tψn1�(2)

+ sin
(
�n2 t

)
e−iEn2�tψn2�(2)

]
(13)

is the wavepacket on atom 2. Note that equation (11) reduces to
equation (9) when the interaction between the atoms is 0. Note
that in all cases of interest, the magnitude of the energy splitting∣∣En1 −En2

∣∣ is much larger than the atom–atom interaction �n1

or �n2 .
A special case occurs when the interaction strength is

the same for both states: �n1 = �n2 . In this case, the
wavepackets on the different atoms have exactly the same
form as the non-interacting atom situation but the amplitude
has on overall factor of cos

(
�n1 t

)
or sin

(
�n1 t

)
. This gives

the effect of having the wavepacket, without any change except
for an overall phase, oscillate from one atom to the other.

There are a few classes of ways to probe the wavefunction.
We will now examine what type of time dependence is
expected for different kinds of probes. One of the important
quantities is the ratio of the interaction strengths. To make
the plots simple, we will choose �n1 = 2π MHz and �n2 to
be a fraction of that value. The two interaction strengths can
be almost the same; for example, we checked the ratio of the
ns–np and (n+1)s–np dipole matrix elements between n = 40
and 60 and found it to be between 0.94–0.95 for np1/2 and
0.97–0.98 for np3/2.

2.1.1. Probe 1. We will first consider a probe that strongly
detects either the probability for atom 1 to be in the state
ndd, � + 1 or for atom 2 to be in that state. The probability for
atom 2 to be in the state ndd, � + 1 is

Pndd ,�+1(2, t) = 〈
�(c)(1, t)|�(c)(1, t)

〉
= 1

2

[
cos2

(
�n1 t

)
+ cos2

(
�n2 t

)]
(14)

and the probability for atom 1 to be in the state ndd, � + 1 is

Pndd ,�+1(1, t) = 〈
�(c)(2, t)|�(c)(2, t)

〉 = 1 − Pndd ,�+1(2, t).

(15)

The probability for atom 2 to be in the state ndd, �+1 is plotted
in figure 1 for the cases where �n2 = �n1 , 0.95�n1 , 0.90�n1 ,
0.85�n1 and 0.80�n1 .

This graph shows the typical features that arise from
beats between the two different frequencies. At a time
corresponding to (π/2)/

∣∣�n1 − �n2

∣∣, the hopping of the two
states between the atoms is exactly out of phase and gives
a non-oscillating probability of ∼ 1/2. The first revival is

Figure 1. The probability for finding atom 2 with the state ndd, � + 1
for five different ratios of the interaction strength. The ratio of
strengths from top to bottom are 1, 0.95, 0.90, 0.85 and 0.80.

at a time of π/
∣∣�n1 − �n2

∣∣. For atoms interacting through
the dipole–dipole potential, the strength of the interaction
depends strongly on the separation distance. However, the
ratio of the interaction strengths, �n1/�n2 , is independent
of the separation so that the number of oscillations between
revivals gives a direct measure of this ratio.

2.1.2. Probe 2. Now we will consider a probe that detects a
coherence property of the wavepacket on atom 1. For example,
the probe might detect the probability for finding the electron
near the nucleus; in this case, the detector will measure the
probability for the atom to be in the combination ψn1�+ψn2�. If
the probe measures the probability to be near the outer turning
point, the combination ψn1� − ψn2� is more relevant. As an
example, the probability for the wavepacket to be in the +
combination on atom 1 is

P1c =
∣∣∣∣ 1√

2

〈
ψn1� + ψn2�|�(c)(1, t)

〉∣∣∣∣
2

= 1

4

∣∣ cos
(
�n1 t

)
e−iEn1�t

+ cos
(
�n2 t

)
e−iEn2�t

∣∣2
(16)

which can be simplified to

P1c(t) = 1
4

[
cos2 (

�n1 t
)

+ cos2 (
�n2 t

)
+ 2 cos

(
�n1 t

)
cos

(
�n2 t

)
cos

([
En1� − En2�

]
t
)]

. (17)

This probability will now depend on the slow time variation
due to � and the fast time variation due to the wavepacket
oscillation on a single atom.

Calculations were performed using �n2 = 0.90�n1 with
�n1 = 2π MHz and where En2� − En1� = 2π/20 ps; thus, the
period of the wavepacket motion is 20 ps. Figure 2 shows the
probability for the wavepacket to be in the + state on atom 1
for short time ranges starting at the times of 0, 2.5 μs, 5.0 μs,
7.5 μs and 10.0 μs. There are a few interesting features of this
graph. The first is that at the times 2.5 μs and 7.5 μs there is no
oscillation and the value of the probability is 1/4. In figure 1,
the middle panel shows the times when there is no oscillation.
But, more importantly, these are times where cos(�n1 t) = 0;
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Figure 2. The probability for finding atom 1 with the + state of the
wavepacket for the interaction strength ratio of 0.90. The time is
measured from 0, 2.5 μs, 5.0 μs, 7.5 μs and 10.0 μs.

from equation (17) we find that there will be no fast wavepacket
oscillation whenever cos

(
�n1 t

) = 0 or cos
(
�n2 t

) = 0. At
these two times, the ψn1�(1) amplitude is 0 or the ψn1�(2)

amplitude is 0 so there can be no fast beats between these
states. Another interesting feature is that the middle panel
shows a π phase shift compared to the bottom or top panels;
this is because the dipole–dipole interaction has introduced
a sign difference between the two parts of the wavefunction.
This property probably cannot be measured because it would
require knowing the experimental times relative to the dipole–
dipole interaction strength to roughly one part in 105. Finally,
there is almost no variation of the range of oscillation because
the time shown is short compared to the hop time between
atoms.

These oscillations are extremely short compared to the
time scales so it is not obvious whether coherence can be
maintained for sufficiently long times. A coherent, Rydberg
wavepacket for μs time scales was maintained in [12], which
is a promising result for our proposed studies of wavepackets
and atom–atom interactions.

Equation (17) was for the + character to be on atom 1.
The probability for the + character to be on atom 2 is the same
expression but with all of the cos(�t) terms replaced with
sin(�t):

P2c(t) = 1
4

[
sin2

(
�n1 t

)
+ sin2

(
�n2 t

)
+ 2 sin

(
�n1 t

)
sin

(
�n2 t

)
cos

([
En1� − En2�

]
t
)]

. (18)

This clearly shows that there will be a fast wavepacket motion
on atom 2 except for the times where sin(�n1 t) = 0 or
sin

(
�n2 t

) = 0. If the two � are nearly the same, the earliest
strong wavepacket character will be when t = (π/2)/�n1 .
Measuring the wavepacket motion on atom 2 will be a clear
signature of the coherence of the interaction.

Finally, if we measure the + character on either atom, we
add equations (17) and (18). This gives

P+(t) = 1
2

[
1 + cos

([
�n1 − �n2

]
t
)

cos
([

En1� − En2�

]
t
)]

,

(19)

where a trigonometric identity was used for the last term.
This means that whenever the time is near (π/2)/

∣∣�n1 −�n2

∣∣,
(3π/2)/

∣∣�n1 −�n2

∣∣, etc there will be little wavepacket motion
that is detectable. However, integer multiples of π/

∣∣�n1 −�n2

∣∣
will give the largest wavepacket motion.

2.1.3. Other probes. There are other possible probes of the
coherent properties of this wavefunction. Probably the most
interesting is detecting linear combinations of ndd, � + 1 and
n1� or n2� states. For example, this could be accomplished
by a microwave pulse that was resonant between one of the
transitions. The basic idea is similar to that discussed in the
previous two sections so we will not give explicit expressions
for this case.

2.2. Situation 2

The second situation we will investigate is the case where there
are only two possible states on each atom, instead of three as
in the previous section. For example, a case might be where
one atom has a linear combination of 50s and 50p and the
second atom has a (perhaps) different linear combination of
the same two states. As with the situation above, there can
be complications if there are more than two states that are
accessible so we will assume that the system is such that only
two possible states are involved.

We will explore details of the case where the states are
n1� and n2, � + 1. There are four eigenstates and eigenvalues:

ψn1,n1 = ψn1�(1)ψn1�(2) (20)

with eigenenergy En1,n1 = 2En1�,

ψn2,n2 = ψn2,�+1(1)ψn2,�+1(2) (21)

with eigenenergy En2,n2 = 2En2,�+1 and

ψ± = 1√
2

[
ψn1�(1)ψn2,�+1(2) ± ψn2,�+1(1)ψn1�(2)

]
(22)

with eigenergies E± = En1� + En2,�+1 ± � where � is the
matrix element of the dipole–dipole operator.

Now that the eigenstates and energies are determined we
can make a wavepacket by superposing the four states with
the appropriate coefficients. As with the derivation above,
we need to know the wavefunction at t = 0. An interesting
choice is to imagine that the wavepacket is made by starting
with both atoms in the state n1, �. A microwave pulse then
gives an equal admixture of n1, � and n2, �+1 on each atom. If
this occurs by acting with an operator such as exp(±iσxπ/4)

(with σx the formal Pauli spinor in this two-state space), then
the wavefunction would have the form

�(t = 0) = 1
2

[
ψn1�(1) ± iψn2,�+1(1)

][
ψn1�(2) ± iψn2,�+1(2)

]
.

(23)

To achieve this form, the operation that causes the mixing
ψn1� ± iψn2,�+1 needs to be fast compared to the time ∼ 1/�;
it does not need to be fast compared to ∼ 1/

∣∣En1�−En2,�+1

∣∣. In
the absence of the atom–atom interaction, the time-dependent
wavefunction would be

�(t,� = 0) = 1
2

[
ψn1�(1) e−iEn1�t ± iψn2,�+1(1) e−iEn2 ,�+1t

]
× [

ψn1�(2) e−iEn1�t ± iψn2,�+1(2) e−iEn2 ,�+1t
]

(24)

which is both atoms having a single-electron wavepacket.
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If the atom–atom interaction is present, then a more
interesting wavepacket evolves. For the initial condition of
equation (23), there is no overlap with the ψ− eigenstate. The
time-dependent wavefunction can be written as

�(t) = 1
2

[
ψn1n1 e−iEn1n1 t − ψn2n2 e−iEn2n2 t ± i

√
2ψ+ e−iE+t

]
.

(25)

Another possible initial state is to start with a wavepacket
only on atom 1 and have atom 2 in the eigenstate ψn1,�(2).
This initial state is

�(t = 0) = 1√
2

[
ψn1�(1) ± iψn2,�+1(1)

]
ψn1�(2). (26)

We chose the state on atom 2 arbitrarily to be ψn1,�(2), but the
other eigenstate could have been chosen and will give similar
results. Projecting on the eigenstates gives the time-dependent
wavefunction

�(t) = 1√
2

[
ψn1n1 e−iEn1n1 t ± i√

2
ψ+ e−iE+t ∓ i√

2
ψ− e−iE−t

]
.

(27)

2.2.1. Probe 1. One possible probe of the system is to
perform an operation that effectively projects the initial state
on the time-dependent state. This can be accomplished by
performing operations at time t that undo the formation of the
initial state. For the situation of equation (25), this projection
gives

P(t) = |〈�(0)|�(t)〉|2 = 1
16

∣∣e−iEn1n1 t + e−iEn2n2 t + 2 e−iE+t
∣∣2

(28)

which has both a fast wavepacket oscillation and a slower
oscillation due to the atom–atom interaction. If we use the
notation ωwp = En1 − En2 , this can be simplified to

P(t) = 1
4 | cos(ωwpt) + e−i�t |2

= 1
4 [1 + cos2(ωwpt) + 2 cos(ωwpt) cos(�t)] (29)

which clearly shows the time dependence from the fast
wavepacket motion, ωwp, and the slower oscillation from the
atom–atom interaction, �.

Because of the fast wavepacket oscillation, it may not
be clear how to use this measurement. One possibility is to
take the difference between the maximum of P2(t) minus the
minimum of P2(t) during one wavepacket oscillation (that is,
during a time interval of ∼2π/ωwp). When cos(�t) = ±1,
the maximum is 1 and the minimum is 0 giving a difference of
1. When cos(�t) = 0, the maximum is 1/2 and the minimum
is 1/4 giving a difference of 1/4. Thus, the difference
oscillates with a period equal to π/�. This oscillation should
be detectable and will only be present if the interaction is
coherent. Figure 3 shows the difference, δP , between the
maximum and minimum for the case where ωwp = 2π/20 ps
and � = 2π MHz.

Figure 3 is a classic case of dispersion and revival of
the wavepacket. If decohering interactions are present, then
the oscillatory property of the wavepacket will be destroyed
with time and will not revive. Only for the case of coherent
interactions will the revivals occur.

Figure 3. Shows the difference between the maximum of P2 and the
minimum of P2 during one wavepacket period (20 ps) as a function
of time. The atom–atom interaction strength is � = 2π MHz.

2.2.2. Probe 2. In this section, we will present results when
the initial state is given by equation (26). Two interesting ways
to probe the behaviour of this state is to either measure the
wavepacket on atom 1 or the wavepacket on atom 2. A simple
test of the wavepacket character is to project onto the initial
wavepacket. For the wavepacket on atom 1, the projection is
equivalent to projecting onto the initial state:

P1(t) = |〈�(0)|�(t)〉|2 = 1
4

∣∣e−iEn1n1 t + 1
2 e−iE+t + 1

2 e−iE−t
∣∣2

(30)

which can be simplified to

P1(t) = 1
4 |1 + eiωwpt cos(�t)|2

= 1
4 [1 + cos2(�t) + 2 cos(ωwpt) cos(�t)], (31)

where ωwp = En1 − En2 . As above, there is both a fast
oscillation from the wavepacket and a slow oscillation from
the atom–atom interaction. Whenever cos(�t) = 0, the fast
oscillation from the wavepacket has 0 amplitude.

For the wavepacket on atom 2, the projection is onto the
state

�2 = ψn1�(1)
1√
2

[
ψn1�(2) ± iψn2,�+1(2)

]
. (32)

For this case, the probability is given by

P2(t) = |〈�2|�(t)〉|2 = 1
4

∣∣e−iEn1n1 t + 1
2 e−iE+t − 1

2 e−iE−t
∣∣2

(33)

which can be simplified to

P2(t) = 1
4 |1 − i eiωwpt sin(�t)|2

= 1
4 [1 + sin2(�t) + 2 sin(ωwpt) sin(�t)]. (34)

This probability also shows a fast wavepacket oscillation and
a slow oscillation from the atom–atom interactions. Thus,
the wavepacket behaviour can hop from atom 1 to atom 2.
For this atom, the fast wavepacket oscillation has 0 amplitude
when sin(�t) = 0 and has a maximum in the oscillation when
sin(�t) = ±1.

5
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2.2.3. Other probes. There are other possible probes of
the coherent properties of the wavefunction. Probably the
most interesting would be simultaneously projecting both
atoms onto the initial wavepacket state. This projection gives
(1/2) cos2[(ωwp − �)t/2]; except for a slow shifting of phase
due to �, the atom–atom interaction does not have any effect
on this measurement. This probe of the wavepacket does not
show any effect of dispersion, revivals, etc.

3. Conclusion

We have presented four possible situations where time-
dependent wavepackets and atom–atom interactions lead to
interesting measurable effects. We presented results where
the wavepacket character of the atom could hop to a different
atom as well as cases where the atom–atom interaction caused
dispersion and then revival of the wavepackets. The few
cases discussed in this paper do not exhaust the possibility for
combining wavepackets and atom–atom interactions. These
studies seem to be within the range of current experiments.

Acknowledgments

The basic question of how Rydberg wavepackets on atoms
behave when interacting with a second Rydberg atom arose

during conversations with R R Jones. This work was supported
in part by the NSF (grant no 0969530).

References

[1] Anderson W R, Veale J R and Gallagher T F 1998 Phys. Rev.
Lett. 80 249

[2] Mourachko I, Comparat D, de Tomasi F, Fioretti A,
Nosbaum P, Akulin V M and Pillet P 1998 Phys. Rev. Lett.
80 253

[3] Jaksch D, Cirac J I, Zoller P, Rolston S L, Cote R and Lukin M
2000 Phys. Rev. Lett. 85 2208

[4] Heidemann R, Raitzsch U, Bendkowsky V, Butscher B,
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