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Abstract
Following an experimental observation, a recent simulation has shown that efficient population
transfer can be achieved through adiabatic chirping of a microwave pulse through a 10-photon
resonance connecting two Rydberg states with n = 72, � = 1 and n ∼ 82. These simulations
have revealed that this population transfer is essentially a classical transition caused by
separatrix crossing in the classical phase space. Here, we present the results of our fully
three-dimensional quantum and classical simulations of coherent multiphoton population
transfer in a kicked Li atom in a Rydberg state. We were able to achieve ∼76% population
transfer from the 40p to 46p state in Li through a 6-photon resonance and contrast our results
with those when the transition is driven by microwaves. We further discuss the case when the
atom starts out from a Stark state in conjunction with the �-distribution of the transferred
population. We use a one-dimensional classical model to investigate the classical processes
taking place in the phase space and find that the same separatrix crossing mechanism observed
in microwave transitions is also responsible for the transition when the atom is kicked.

1. Introduction

Interest in the kicked Rydberg atoms, i.e. the highly excited
atoms subjected to electric field pulses much shorter than the
Rydberg period of the electron, has been two-fold. From
the basic physics standpoint, the interest stems from the
fact that Rydberg atoms provide perfect test subjects for
studying quantum–classical correspondence. Such studies are
especially fruitful when the classical dynamics of the system
exhibits crossover between different dynamical regimes, for
instance from regular to chaotic dynamics. One of the well
established outcomes of these investigations is the observation
that the survival probability of a unidirectionally kicked
Rydberg atom exhibits a broad maximum with increasing
number of kicks when the kick frequency is near the classical
orbital frequency of the electron [1, 2]. This is termed
dynamical localization and described by a mixed phase space
picture where the atom is stable against ionization on one of
a series of stable islands. In the long time limit, the atom
eventually ionizes due to increased instability in the quantum
mechanics which is absent in the classical picture [3]. Very
different behaviour is observed when the atom is kicked

bidirectionally [4]. In this case, the population gets localized
near continuum prior to ionization [5] and no distinct
signature of localization is observed. Theoretical calculations
supporting experimental observations mostly utilize quasi-
one-dimensional models [2, 6] although three-dimensional
quantum calculations also exist which are in agreement with
these models [7].

From the application standpoint, Rydberg wave packets
can be used in the realization of non-dispersing atomic wave
packets. These wave packets show promise in applications
such as information storage in cavities, as well as precision
spectroscopy [8, 9]. In recent experiments, Dunning et al
achieved a very remarkable level of control in creating very
high-n Rydberg wave packets (n > 300) by exposing atoms
to a series of kicks (see [10] and references therein). They
showed that by manipulating the mixed phase space, they
could change the period of the wave packet by transferring
it between different islands of stability in phase space [11].
They can also focus a wave packet by first loading it onto a
stable island and drag it to a desired region of phase space, and
changing the size of the island they can focus the wave packet
[12]. Their experiments have also been successful in creating
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long-lived Bohr-like circular orbits. To this end, they first
excite potassium atoms to lowest lying states in the n = 306
Stark manifold in the presence of a weak dc field [13].
By suddenly turning on a much stronger dc field in the z-
direction, they mix these states into a non-stationary mixture of
Stark states which beats between highly elliptical and circular
superpositions in time scales of the Stark precession period.
Turning off the dc field at roughly half the Stark precession
period leaves the atom in near-circular orbits with a maximum
value of Lz. They observe the wave packet through the
oscillations of 〈x(t)〉 and 〈z(t)〉 for several periods before its
dephasing due to non-equispaced nature of the energy levels.
They support their results with classical simulations.

In this paper, we aim to achieve population transfer
between Rydberg states using electric field kicks which
we chirp through a multiphoton resonance. Such
population transfer in microwave-driven Li Rydberg atoms
via multiphoton adiabatic rapid passage has recently been
experimentally realized by Maeda et al [14]. In this process,
only a single multiphoton transition is required to coherently
transfer population, as opposed to many concurrent single-
photon transitions by chirping the driving field through a
number of resonances. The advantages of driving the
population through a single-multiphoton resonance as opposed
to through a ladder climbing scheme include a substantially
reduced chirp range and reduced sensitivity to small changes
in the field strength and coupling in experiments. A
recent calculation [15] has shown evidence supporting the
observations of Maeda et al and the claim that this is caused by
an adiabatic passage through a multiphoton resonance. These
calculations further revealed that starting from a field-free
low angular momentum eigenstate of Li atom resulted in a
large spread of final angular momenta, which was explained
in terms of virtual transitions between the ac Stark-shifted
levels. The authors also studied the one-dimensional classical
phase space for this system and found that the physics behind
the population transfer can be explained classically in terms of
the crossing of the separatrix between the islands of stability
formed at an energy between those of the initial and the final
states. The narrow band of populated final states following
the classical transition entirely relies on swinging around this
island of stability. Although the island undergoes a small shift
in action due to driving, chirping the microwaves by a small
amount corrects this and strongly enhances the efficiency of
the transfer. For example, ramping the microwave pulse up
and then down will only give ∼50% transfer on average unless
timing and strength of the pulse is accurately tuned. On the
other hand, introducing a small chirp in a microwave pulse can
result in almost complete population transfer without the need
for fine control.

We demonstrate that this same process can also be made
to work when the atom is kicked instead of being driven by
microwaves. In the next section, we present results from our
three-dimensional quantum calculations. We start from the
n = 72, � = 1 state in Li and drive the population up to n = 80
by adiabatically chirping the microwave field through an 8-
photon resonance condition. Then we decrease the duration of
the half-cycles of the microwave to get closer to the impulsive

regime while keeping the pulses bidirectional. We try to excite
the n = 40, � = 1 state up to n = 46 through a 6-photon
resonance condition using unidirectional electric field kicks
and discuss that a relatively larger jump in energy prevents
efficient transfer. We also try to increase the efficiency by
starting from Stark states instead of the field-free eigenstates
of Li but do not observe improvement in the transfer efficiency
over the case when the initial state is an eigenstate. We achieve
∼76% transfer from the n = 40, � = 1 state to the n = 46
manifold with little spread in � when we decrease the number
of kicks and the rate by which we chirp the kicks relative to
the microwave-driven case. Then in section 3, we present
three-dimensional classical trajectory Monte Carlo (CTMC)
simulations for the 8-photon transition from n = 72 to n = 80.
We gradually change microwave pulses to narrower cos3(ωt)

impulses and observe the same suppression of excitation as in
quantum calculations. We find large differences in the amount
of transferred population and final state distributions from
the microwave-driven case, which makes this investigation
interesting.

Finally in section 4, we investigate the one-dimensional
classical model for both the 8-photon transition in section 3
and the 6-photon n = 40 to n = 46 and 4-photon n = 40
to n = 46 transitions. We observe that the same separatrix
crossing mechanism is responsible for the classical transition
as in the microwave-driven case. We also demonstrate that
trajectories stick to the edge of the stable surface breaking into
the chaotic sea restricting the population transfer efficiency.
Harder kicks help them to mix into the chaotic sea which also
destroy most of the stable islands in the phase space resulting
in a large spread of final states and ionization.

We use atomic units throughout the paper unless we
specify SI units explicitly.

2. Quantum calculation in three dimensions

Three-dimensional quantum calculations were carried out by
solving the time-dependent Schrödinger equation as described
in [16]. For the sake of completeness, here we briefly recite
the theoretical outline. The time-dependent wavefunction can
be decomposed in spherical harmonics Y�,m(θ, φ) as

�(�r, t) =
∑

�

f�(r, t)Y�,m(θ, φ) (1)

such that the time dependence is captured in the coefficient
f�(r, t). For each angular momentum, f�(r, t) is radially
represented on a square-root mesh which puts roughly the
same number of mesh points between the nodes of the Rydberg
states. A square-root mesh with a radial extent R over N points
has a grid spacing of δr = R/N2 and the radial coordinate of
a point is given by rj = j 2δr . In our simulations, typically δr

around 1/300 au with R = 104 au and 4 × 104 au for 6- and
8-photon resonance transitions yielded converged results. We
have regularly performed convergence checks on the number
of angular momenta we needed to include in our calculations
as we changed physical parameters such as peak field strength
and chirp.

We split the total Hamiltonian into atomic Hamiltonian
plus the interaction Hamiltonian whose contributions on the
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time evolution of the wavefunction are accounted for through
the lowest order split operator technique. In this technique
each split piece is propagated using anO(δt3) implicit scheme.
A detailed account of the O(δt3) implicit method and the split
operator technique employed is given in [16].

The interaction Hamiltonian F(t)r cos(θ) couples � to
� ± 1 with a series of kicks F(t) which we defined as

F(t) = FK exp

[
−

(
t

�t

)6
]

cos2η+1(ωt + ω̇t2). (2)

Here FK is the peak field strength, �t is 1/2 of the 1/e

of the width of the time envelope under which the series
of kicks are turned on and off. The central frequency
of the transition ω is �E/Nphot where �E is the energy
jump targeted by the transition and Nphot is the order of the
multiphoton resonance being traversed. We use a linear chirp
ω̇ which is s/tf where the slew range s is approximately 1%
of ω and time runs from −tf to tf . This choice of time
range centres the carrier envelope at t = 0, which simplifies
the mathematical expression in equation (2). Note that our time
envelope has a flat top as opposed to the Gaussian envelope
employed in [15] which can result in qualitatively different
results. By changing η ∈ Z

+, we can attain microwave
driving (η = 0) or bidirectional impulsive kicks (η � 1).
To simulate unidirectional impulsive kicks, we use η = 175
but only retain the positive part of the kicks. This gives a
train of unidirectional kicks with the same frequency as that of
the corresponding microwaves-driven case. Using narrower
kicks in time requires smaller time steps than in the case
of microwaves (∼1/500 of a Rydberg period in [15]). For
instance, for impulsive kicks we used a factor of 2 smaller δt

than in our microwave calculations, and we have found this to
be sufficiently small for attaining converged results.

We evaluate the probability for finding the atom in a state
with quantum numbers n and � by projecting the wavefunction
onto the field-free eigenstates χn,� of the atom which are
generated on the same radial mesh as f�(r, t) by integrating
the time-independent Schrödinger equation. We choose the
initial wavefunction to be a field-free eigenstate of Li with
principal and angular quantum numbers n and �, and take the
model potential bearing the correct quantum defects:

V = −1 + 2 e−α1r + rα2 e−α3r

r
− α

2r4
[1 − exp(−r3)]2 (3)

with parameters given in [15]. This gives quantum defects of
∼0.40 for � = 0,∼0.048 for � = 1 and negligible defects for
all other � in Li.

Figure 1 shows the results of two calculations using
Li with different types of driving when the initial state
n = 72, � = 1 is driven up to n = 80 through the 8-photon
resonance condition. All the calculations presented in figure 1
have been performed with FK = 2.5 V cm−1 and ∼97 ns at the
FWHM. The solid line in the upper panel is the time-dependent
probability for finding the atom in the initial n = 72 manifold
when the 8-photon resonance is driven by microwaves (η = 0
in equation (2)). It is evident from the figure that only ∼12% of
the entire population is left within the initial n = 72 manifold.
The dashed curve shows the probability to find the atom in the

(b)

(a)

Figure 1. (a) Time-dependent evolution of the probability P for
finding the electron in the n = 72 and n = 80 manifolds of Li for
the 8-photon resonance condition. The solid and dashed lines are
initial and final n-states when the atom is microwave driven, and
dot-dashed and dot-dot-dashed lines when it is subjected to
cos3(ωt + ω̇t2) pulses. For all these simulations, the peak field
strength is 2.5 V cm−1 and the time-range runs from −80 ns to
100 ns, during which the carrier envelope peaks at t = 0 ns.
(b) �-distributions after the driving field is turned off for microwave
driven (stars) and cos3(ωt + ω̇t2) ‘kicked’ (triangles) Li. Note that
the population has spread out to the entire �-range and only odd-�s
are substantially populated.

final n = 80 manifold under the same resonance and driving
conditions and shows that ∼83% of the total population ends
up in the n = 80 manifold. About ∼4% ends up in states
adjacent to n = 80, i.e. n = 79 and n = 81. The final
distribution of the angular momenta in the n = 80 manifold is
also depicted in figure 1(b) with stars. As had pointed out in
[16] the entire � range allowed has been populated indicating
that a lot more than eight photons have been absorbed and
emitted during the 8-photon transition.

The probability of finding the atom in the n = 80 manifold
when it is ‘kicked’ by cos3(ωt) pulses (η = 1 in equation (2))
is shown with the dot-dashed curves in the upper panel. Every
other parameter being the same as in the microwave case,
the population transferred into n = 80 has dropped to ∼45%
from ∼83%. The corresponding �-distribution is depicted
by triangles in the lower panel and mimics the distribution
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Figure 2. Probabilities to end up in n = 46 as a function of the peak
field strength FK for the 6-photon transitioning from 40p to n = 46
in Li using unidirectional impulsive kicks.

laid out by the microwave-driven case. In both cases, the
�-distributions are confined to odd-� only because the
interaction Hamiltonian mixes each � with �±1 and the initial
state is a p-state.

We also considered a case where the �E jump caused
by the transition is larger than that in figure 1. In particular,
we considered transitioning from n = 40, � = 1 to n = 46
in Li via a 6-photon resonance condition using unidirectional
impulsive kicks (η = 175 in equation (2) with only positive
part of the pulse retained). We found that the probability to
end up in n = 46 is only a few per cent, and it is maximum
for FK = 57 V cm−1. We have observed that for a given set
of parameters, the peak field strength FK , the chirp ω̇ and the
envelope width �t , there is always an optimum set which gives
the maximum amount of transfer. For instance, while keeping
the chirp and the envelope width constant, we can only increase
the peak field strength up to FK = 57 V cm−1, which gives an
upper cap of ∼5.7% transfer into n = 46. Figure 2 shows the
probability to end up in the final n = 46 manifold as a function
of the peak field strength for this 6-photon transitioning using
unidirectional impulsive kicks. The pulse duration is ∼34 ns,
and the kicks are chirped from 9.0 × 10−8 au below to
9.0 × 10−8 au above the 6-photon resonance. As mentioned,
FK = 57 V cm−1 gives the largest probability for transitioning
to n = 46, and both stronger and weaker peak fields result in
smaller population transfer. Contrary to the large angular
momentum spreads we have seen in microwave-driven and
bidirectional cos3(ωt) ‘kicked’ cases, the final �-distribution
inside the n = 46 manifold shows no change in � whatsoever,
leaving the population in n = 46 entirely in � = 1. In
the impulsively kicked case, we use η = 175 which gives
field impulses a span of ∼0.25% of the Rydberg period of
n = 46. Using a peak field of FK = 57 V cm−1, the impulse
imparted on the electron is ∼1.16 × 10−4 au whereas the
average momentum of the electron in n = 40 is ∼1/n ∼ 2.5×
10−2 au. As a result, by delivering only a half per cent of the
average momentum of the electron in n = 40, impulsive kicks
do not lead to � mixing.

(a)

(b)

Figure 3. (a) Fourier transform of the autocorrelation function
yielding the Stark levels inside the n = 40 manifold in a
FK = 10 V cm−1 static field. The red-most (ωR), central (ωC) and
blue-most (ωB ) Stark states are pointed out on the spectrum.
(b) �-distributions of the red-most (triangles) and central (stars)
Stark states. The red-most Stark state is elongated along the
polarization axis, whereas the central Stark state has spread out in �
with larger emphasis on the high-� end of the manifold.

2.1. Transition from Stark states

Initial states used in figure 1 and in our 6-photon calculations
are all field-free eigenstates of Li. The question arises as to
whether we can achieve larger transfer into final states if we
start from a Stark state.

To generate Stark states, first we start from the n = 40,

� = 1 eigenstate of Li and slowly ramp up a dc electric field
to mix the initial p-state into other �-states inside the n = 40
manifold. The dc field strength we used is 10 V cm−1, and it
is too weak to cause n-mixing for n = 40. We then evaluate
the time-dependent autocorrelation function

A(t) = 〈�(�r,−tf) | �(�r, t)〉. (4)

We let the wavefunction beat for several periods of Stark
oscillation before we Fourier transform A(t) to obtain the
spectral autocorrelation function Ã(ω). This gives us the
energy spectrum of the Stark levels inside the electric field.
Figure 3(a) shows the Stark levels into which the n = 40
manifold splits with the red-most (ωR), central (ωC), and blue-
most (ωB) Stark levels are marked by arrows. We evaluate the
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(a)

(b)

Figure 4. (a) Same as figure 1 but for three different initial states for
a peak field strength of F = 37 V cm−1. The solid line is when the
atom starts from the field-free 40p state, dashed line when it starts
from the red-most Stark state and dotted line when it starts from the
central Stark state. (b) Final �-distributions when the initial state is
the red-most (triangles) and central (stars) Stark states, respectively.
As in figure 3 all � are populated irrespective of their parity.

corresponding Stark states by accumulating amplitude into the
corresponding Fourier component by evaluating∫ tf

−tf

�(�r, t) exp[−(t/�t)2] exp[iωSt] dt (5)

where ωS is either one of ωR,ωC and ωB . The �-distributions
for the red-most (triangles) and central (stars) Stark states
are shown in figure 3(b) where we omitted the blue-most Stark
states since it too aligns along the same direction as the electric
field. Note that the red-most Stark state is made up of small-
� compared to the central stark State and is aligned mostly
along the direction of the electric field. The dominant angular
momenta making up the central Stark state flip between being
odd and even about every 10 units of angular momenta.

Figure 4 compares the probabilities of transitioning into
n = 46 from n = 40 through the 6-photon resonance condition
for a peak field strength of FK = 37 V cm−1 when the Li atom
starts from the atomic n = 40, � = 1 eigenstate (solid), red-
most (dashed) and the central (dotted) Stark states. In this
case, we use a ∼20 ns pulse at the FWHM of unidirectional

Figure 5. Time-dependent probability for finding the atom in the
n = 46 state using envelopes with the FWHM of ∼ 68 ns (black
curve) and ∼36 ns (dashed curve). The time axis for the dashed
curve with shorter envelope has been scaled by 2 in order to contrast
with the result obtained using the longer envelope. In both cases,
FK = 57 V cm−1 and the kicks are chirped through ±1% of the
6-photon resonance connecting n = 40 with n = 46.

impulsive kicks. Starting from this field-free eigenstate, we
achieve about 3.4% transfer, whereas red-most and central
Stark states give 3.8% and 5.5% migration of the population
respectively. Therefore, initially preparing the atom in a Stark
state rather than a field-free eigenstate does not let us transfer
larger fraction of the population by impulsively kicking the
atom. Also note that the behaviour displayed by the the red-
most stark state is most similar to that of the n = 40, � = 1
eigenstate. This would be expected since both have small-
� character, i.e. both are mostly aligned along the electric
field direction in contrast with the central Stark state. The �-
distributions of the final population within the n = 46 manifold
show that starting from the red-most Stark state composed of
low-� states in figure 3(b) maintains the same low-� character,
and the large-� distribution of the central Stark state remains
largely spread over the final n-manifold. This is in parallel
with our previous observation that the angular momentum
remains largely unchanged when the atom in a 40p state is
impulsively kicked using the 6-photon resonance condition
using FK = 57 V cm−1, since figure 4 is for an even more
weakly kicked atom.

2.2. An accidental resonance in the long-time limit

Figure 5 shows time-dependent probability for the 6-photon
resonance excitation of the 40p state of Li up to n = 46
using unidirectional impulsive kicks. The peak field strength
is F = 57 V cm−1. A solid curve is obtained with an ∼68 ns
envelope at the FWHM and a dashed curve using an ∼36 ns
envelope. The time axis for the ∼36 ns curve has been scaled
by a factor of 2 in order to fit both curves in the same time
range. In both cases, the population transferred into n = 46
collapses after some time, more prominently for the longer
envelope. In the case of ∼68 ns envelope, the population
survives for ∼30 ns after the n = 46 manifold is populated up
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to ∼16%. The probabilities rising at early times do not exactly
lie on top of each other due to the fact that the frequency is
chirped within ±1% of the 6-photon resonance in both cases.
This results in about twice as large slew rate for the shorter
envelope compared to the ∼68 ns envelope. The factor of
2 difference in time for the populations to collapse indicates
that this effect is a result of different rates of chirping through
an accidental resonance. We did not observe this transition
in shorter pulses indicating that this transition requires better
energy resolution.

When we analyse the n-distribution of the population after
the kick pulse is turned off, we see that a significant fraction
of the population in the 46p state is excited up to the 52p state.
In the case of the ∼68 ns envelope in figure 5, after the pulse
is turned off, ∼4% of the population is left in the 46p state,
whereas ∼15% ends up in the 52p state. Together with ∼70%
of the population staying in the initial 40p state, this adds up
to the entire fraction of the population that resides in p-states,
which is ∼86%. About 5% of the population ends up in � = 0
states, and the remaining few per cent distributed among the
next few even angular momenta. Also, about 4–5% of the
population ends up in the n = 49 and n = 56 manifolds.
The reason behind the sudden transfer of population from the
46p to 52p state is the accidental 4-photon resonance that is
swept across during the chirping of the kick frequency. The
energy difference between the field-free 46p and 52p states and
4 times the 6-photon resonance frequency differ by ∼0.4%.
Since the chirp range is same for both curves in figure 5 and
the time axis of the twice as shorter pulse is scaled by a factor
of 2, both curves show drop in probability at the same point on
the time axis when the accidental 4-photon resonance is swept
through.

2.3. Narrow pulse envelope and slower chirp

Another thing to notice in figure 5 is that the largest population
transfer is attained right after the kick pulse peaks. Keeping
the pulse on after this point by using a flat top envelope as in
equation (2) does not result in any net population transfer in or
out of the 46p state until the accidental 4-photon resonance is
swept through. This prompted us to turn off the kick envelope
after it reaches its peak strength. In this way, the population
would have no time to transition out of the n = 46 manifold,
resulting in larger probability to end up in the final state after
the pulse is turned off.

To demonstrate this, we use the same case presented
in figure 5 with the ∼38 ns pulse envelope. The inset in
figure 6 shows the flat-top envelope of equation (2) versus the
envelope turned off right after it reaches its peak. The final
populations that end up in the 46p state of Li in both cases
are plotted with corresponding line styles. The case with
the shorter pulse envelope yields ∼16% population transfer,
which is approximately a factor of 2 larger than the highest
probability achieved before the population collapsed, using
the longer flat-top envelope. For the flat-top envelope the
frequency is chirped from ∼1% below to ∼1% above the
6-photon resonance frequency. The same rate of chirp was
also in order for the shorter envelope. When the envelope was

Figure 6. Time-dependent P to find the atom in n = 46 for the
dashed curve of figure 5. When the envelope is modified such that it
falls off right after it peaks (inset), the final P settles to ∼16%
compared to ∼7% using the flat-top envelope.

cut short by turning it off after reaching its peak, the frequency
has reached only ∼0.4% above the 6-photon resonance at the
end of the narrower pulse. The reason for the faster and larger
accumulation of population in the case of the narrow envelope
is that the probability starts to rise up after the peak of the
pulse is reached. Therefore, the improvement comes from the
falling edge of the narrow envelope.

Using the same type of narrow envelope as in figure 6
(solid curve) and slowing down the rate at which the kick
frequency is chirped, we were able to achieve a large
population transfer from the n = 40, � = 1 state into the
n = 46, � = 1 state of Li. We used an ∼300 ns envelope
at the FWHM with FK = 70 V cm−1, and we impulsively
kicked the atom with unidirectional pulses. Figure 7 shows
the time-dependent probabilities for the atom to be found in
the 40p state, n = 46 and n = 50 manifolds. The initial state
40p has been practically depleted (solid curve) and ∼74% of
it ends up in the n = 46 manifold with � < 5 (dashed curve).
Note that the transition takes place over a rather short period
of time near ∼100 ns after the pulse envelope peaks. The
distribution of population in n and � are shown in insets at
t = −104.6 ns and t = −92 ns, just before and after the
transition. About ∼12% of the total population ends up in the
n = 50 manifold. This comes from an accidental 4-photon
resonance: the 6-photon resonance frequency is 1/4 times
the transition frequency from n = 46 to n = 50 to within
∼5%. This transition is possible because of the cos(3ωt)

component in the impulsive kicks. Through the trigonometric
identity cos3(ωt) = (3/4) cos(ωt) + (1/4) cos(3ωt) and the
fact that our impulsive kicks can be written as an integer
power of cos3(ωt), the kicking pulse bears this cos(3ωt)

component. Since the cos(3ωt) component cannot take
a p-state into another p-state, the transition into n = 50
results in population with a large � spread (see the inset at
t = 173.6 ns).

One concern raised by Dunning et al [10] regarding
experiments to study impulsively kicked Rydberg atoms with
moderate n (n ∼ 30) is that electric field pulses which can be
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Figure 7. Similar to the solid curve in figure 6 but using an envelope
with the FWHM of ∼300 ns and FK = 70 V cm−1. The initial 40p
state is almost completely depleted (solid curve) and ∼74% of the
population ends up in the n = 46 manifold with � < 5 (dashed
curve). The n, �-distributions just before and after the transition
takes place are seen in the insets. Probability to end up in n = 50 is
also shown (dotted curve) with its final large �-distribution.

considered impulses for this n regime can only be generated
as unipolar pulses which are followed by a weaker and much
longer pulse of opposite polarity. They argue that this weaker
long half-cycle pulse (HCP) can complicate the level dynamics
involved. In the case of figure 7, the Rydberg period for
n = 40 is ∼9.7 ps and the energy separation between adjacent
n-manifolds is roughly 1/n3 ∼ 1.6 × 10−5 au. Therefore,
in order for n-mixing to occur, one needs to apply a dc field
of at least ∼17 V cm−1. We kick the 40p state of Li with
an impulsive kick of FK = 70 V cm−1. Typical amplitude
asymmetry between the short and long half-cycles in unipolar
pulses is roughly 13:1 [17]. This means the the long half-cycle
of the kick would have a typical amplitude of ∼5.4 V cm−1,
which is well below the n-mixing regime for the n = 40
manifold. The energy separation �Er,b between the red-most
and the blue-most Stark states inside the n = 40 manifold in
this field is ∼3Fn(n − 1) ∼ 4.8 × 10−6 au and this is less
than the energy spacing between the adjacent n-manifolds.
Hence, we can conclude that kicking the 40p state with a
realistic unipolar impulse of FK = 70 V cm−1 as in figure 7
will not give rise to n-mixing that is not a result of the shorter
trailing half-cycle. On the other hand, the typical duration ratio
between the short and long half-cycles in realistic unipolar
pulses is however 1:140 [17]. Given that our kicks take up
∼4% of the Rydberg period, the long half-cycle would last
about 54 ps. This is about 1/23 of the Stark beating period
2π/(3Fn) ∼1220 ps in n = 40 when Fdc = 5.4 V cm−1. As
a result, �-mixing will be induced by the long half-cycle, but
only in such a way that starting from � = 1, the mixing is not
likely to exceed � ∼ 5.

3. Classical calculations in three dimensions

We also investigate classical probability distribution in
effective n for the 8-photon resonance transitioning from

Figure 8. Probability as a function of effective n from 3D CTMC
calculations for 8-photon resonance transitioning from n = 72 to
n = 80 for various values of a ranging from 1 to 0. The peak field
strength is 2.5 V cm−1 as in figure 1 for all cases. The progression
from cos3(ωt + ω̇t2) (a = 1) to cos(ωt + ω̇t2) (a = 0) displays
vindication of the efficient population transfer into n = 80 as the
microwave driving of the atom is achieved. Panels for a = 1 and
a = 0 also show the n-distributions from the full three-dimensional
quantum simulations of figure 1.

n = 72 to n = 80. We use a driving field of the form

F(t) = FK exp

[
−

(
t

�t

)6
]

×
[
a

4
cos{3(ωt + ω̇t2)} +

4 − a

4
cos(ωt + ω̇t2)

]
where we vary a from 1 to 0. When a = 1, this gives
bidirectional cos3(ωt + ω̇t2) pulses, and when a = 0, it reverts
back to microwave driving. Results of three-dimensional
CTMC simulations including three more intermediate values
of a are shown in figure 8 where we use a flat-top pulse
envelope of ∼36 ns at the FWHM and FK = 2.5 V cm−1.
For cos3(ωt + ω̇t2) pulses (a = 1), only about 5% transfer into
n = 80 is achieved with a total of 40% of the population
spreading over the n = 79–85 band. Larger and larger
fraction of the population is transferred into n = 80 with
narrower spread in final n as a is decreased. When a = 0,
the bidirectional pulses become microwaves, which result
in almost ∼60% transfer into the n = 80 state. Final
n-distributions from the quantum simulations are shown as
triangles for the corresponding a = 1 and a = 0 cases in
figure 8. For the microwave-driven case with a = 0, neither
classical nor quantum distributions show a substantial n spread
with a high efficiency of population transfer. In the a = 1
case, the quantum results do not display a large spread in n
compared to those from the classical simulations. Almost the
entire population stays in states with n = 72 and 80 with a
smaller fraction transitioning into n = 80 compared to the
microwave-driven case. Classical population transfers with
similar efficiencies for microwaves were previously reported
in 3D classical simulations [15].

Driving n = 40 to n = 46 via the 6-photon resonance
condition using microwaves, we observe no transition out
of n = 40 until we reach FK = 42 V cm−1. When we
start to exceed this threshold of microwave driving strength,
significant fractions of the population start to ionize and a
wide band of states with n > 44 is excited. Roughly 20%
of the trajectories ionize and ∼40% are exited to states with
n > 44.
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Figure 9. Angular distribution of the launched trajectories which
transition to n > 76 using kicks with FK = 2.5 V cm−1 under the
8-photon resonance condition discussed in the text. Probability
peaks around π/2 as would be expected and shows the irregular
structure as displayed by the inset for a smaller angular range.

Angular distribution of the trajectories which end up with
n > 76 when a = 1 in figure 8 is seen in figure 9. The
angle φ is the angle which the r-coordinate of the trajectory
makes with the z-axis when it is launched. For example, when
φ = π/2, the trajectory is launched along the direction of the
bidirectional cos3(ωt + ω̇t2) pulses. All the trajectories are
launched perpendicular to the x-axis from within the xz-plane.
There are 200 trajectories for 100 angular bins, each spanning a
range of δφ ∼ 10−2 rad. When a trajectory starts from a point
along the pulse axis, the ionization probability is maximum
as expected. As the angle φ deviates from π/2 by ±π/3,
the probability to end up with an energy corresponding to
n > 76 drops quickly and becomes zero when φ becomes π/6
or 5π/6. The inset in figure 9 zooms into a smaller φ range
around φ ∼ 1.7 with narrower angular bins to resolve any
underlying structure in the distribution. There are 100 angular
bins in the inset spanning δφ = 1.6 × 10−3 rad each. They
have 200 trajectories in each with launch times randomized
over one Rydberg period of the initial n = 72 state. Note
that there are two narrow ranges of φ on both the rising and
falling edges of the distribution which display noticeably larger
statistical fluctuations compared to the rest of the distribution.
This points out to a structure in the angular distribution. We
speculate this to be similar to those observed in the numerical
simulations of ionization from a hydrogen atom in parallel
electric and magnetic fields. In [18], Mitchell et al observed
self-similar fractal structures in the time it takes for an escaping
trajectory to hit the detector as a function of the launch angle.
Their system is an example of an open system which is
known to display classical chaos, whereas our problem is
an example of a closed system with a mixed phase space
structure.

4. Classical calculations in one dimension

The classical mechanism behind the population transfer
using microwaves has been explained in [15] using a one-

(a)

(b)

(c)

Figure 10. Phase space positions of the trajectories from the 1D
classical model at the rising edge (upper panel), peak (middle panel)
and falling edge (bottom panel) of the envelope for the 8-photon
transitioning with FK = 1.1, 2.5 and 1.1 V cm−1 respectively. The
large points overlayed on top of the Poincarè surfaces of section are
actual trajectories at these instances during the pulse. The dotted
line marks I = 76 and the centre of the island does not move very
much. Note that a large fraction of the trajectories linger at the
border where I = 72 mixes into the chaotic sea.

dimensional classical model and tracing the trajectories in
phase space. In this model, the authors used action-angle
variables as the conjugate coordinates to plot surfaces of
sections. Field-dependent action-angle variables are derived in
[19] for a hydrogen atom interacting with microwaves and are
given by I = 1/

√−2E, θ = 2π−2[sin−1(
√

β)−√
β(1 − β)]

for v < 0 and θ = 2[sin−1(
√

β) − √
β(1 − β)] for v > 0.

Here, v is the velocity of the electron and β = −xE. Note
that I is the effective quantum number n. In our simulations,
we use hydrogen as described in [15] and do not chirp either
the microwaves or the kicks.

In figure 10, we plot phase space positions of an ensemble
of trajectories which start with I = 72 and are ‘kicked’
with bidirectional cos3(ωt) pulses with FK = 2.5 V cm−1

for the 8-photon resonance condition. The positions of these
trajectories are plotted on the top of the Poincarè surfaces
of section during the rising (top panel), at peak (middle
panel) and falling edge (bottom panel) of the pulse envelope.
The field strengths at these instances are 1.1, 2.5 and 1.1
V cm−1 respectively. As the peak field strength rises,
islands of stability are formed before the I = 72 KAM
surface is destroyed (figure 10(a)). When the peak field
strength reaches 2.5 V cm−1, most of the stable structure of
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the phase space is destroyed and mixed into the chaotic sea
(figure 10(b)). Some of the trajectories that were initially
on the I = 72 surface mix into the chaotic sea but most of
them stay near I = 72. The reason for this is that small
islands of stability are formed near the interface between the
stable and the chaotic manifolds, where the I = 72 manifold
is mixing into the chaotic sea. This makes the edge of the
I = 72 surface sticky and results in most of the trajectories
getting trapped in this region. As the field strength falls off to
1.1 V cm−1 again, most of these trajectories are captured back
onto the I = 72 surface and a relatively small fraction of
the trajectories that made into the chaotic sea are spread over
an n-range spanning from n = 80 to 84 (figure 10(c)). This
behaviour is different than that observed for microwaves in
[15] in that here we have a relatively wider spread over the final
n, and most of the trajectories stick to the interface between the
initial I = 72 surface and the chaotic sea. The stickiness of
the KAM surface bordering the chaotic sea makes it difficult
to mix all the trajectories into the chaotic sea in contrast with
the microwave case as depicted in figure 7 in [15]. This is
the reason why a large fraction of the trajectories does not
transition. Furthermore, due to relatively large peak field
strength, most of the stable phase space structure above the
main island is destroyed and the chaotic sea extends high up in
I. This is the reason as to why we observe a larger spread in final
n compared to the microwave case. To drive the multiphoton
transition with microwaves, one does not need to drive the
system too hard to the point where the stable structures near
and above the final n are destroyed. Driving the system too
hard results in dissolution of these stable structures into the
chaotic sea, letting trajectories drift further up in I. Larger
fraction of the trajectories can be mixed into the chaotic sea if
the atom is kicked harder, but this further destroys the stable
island structures in the phase space resulting in the larger
spread in final n and eventually gives rise to ionization.

For the 6-photon transitioning from I = 40 to 46, we also
observe large probability to stay in the initial state and large
spread around final n. In figure 11, we consider microwave
transitioning from I = 40 to 46 with 6-photon (left column)
and I = 40 to 44 with 4-photon (right column) resonance
conditions. Top panels in both columns show the probability
binned in action. Three panels underneath these are the same
phase space plots described above for figure 10. In the 6-
photon case (left column), FK = 42 V cm−1 at the peak (B1)
and FK = 15 V cm−1 on the rising (A1) and falling (C1)
edges of the pulse. In the same manner, in the 4-photon
case (right column), FK = 26 V cm−1 at the peak (B2) and
F = 15 V cm−1 at the rising (A2) and falling (C2) edges.
Roughly 70% of the population transitions into I = 44 for the
4-photon resonance condition with virtually no spread in final
n. This is in contrast with the 6-photon transition case as the
top-left panel in figure 11 shows little population transferred
into n = 46. Furthermore, we observe ∼52% trajectories
ionize. This large probability of ionization is again due to
the fact that at the peak of the microwave pulse, the entire
region of phase space above the main island is dissolved into
the chaotic sea. Trajectories that mix into the chaotic sea
freely drift to higher I and eventually ionize. Still about half

Figure 11. Similar to figure 10 but for the 6-photon and 4-photon
resonance conditions for microwave driving of n = 40 discussed in
the text. The top panels show probabilities binned in action. For the
6-photon resonance condition, the transitioning out of I = 40 only
results in ionization, whereas for the 4-photon transition ∼64% of
the population is transferred to I = 44. The larger driving field in
the 6-photon case results in complete destruction of the regular
structures above the island, whereas the 4-photon case retains these
structures, constricting the chaotic sea into a narrow band.

of the population sticks to the initial I = 40 KAM surface
as in the 8-photon transition depicted in figure 10(b). Higher
rate of transition with no spread in final n in the 4-photon
resonance condition results from the fact that at the peak of
the microwave pulse, FK = 26 V cm−1 and the chaotic sea
straddling the main island does not extend above the final I that
we target. This shows that the mechanism discussed in [15]
still works, but in this case the atom can only make smaller
�n transitions. From the right column, it is evident that as
the initial I = 40 surface is destroyed, the trajectories mix
into the chaotic sea which only spans a region big enough for
the trajectories to swing around the main island as in [15].
Comparison between figures 11(B1) and (B2) clearly shows
that extent of the chaotic sea is increased when the system
is driven harder resulting in the ionization of the wandering
trajectories in the chaotic sea.

9



J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 115003 T Topçu and F Robicheaux

Figure 12. Same as figure 11 but for two different peak field
strengths of FK = 26 V cm−1 and FK = 39 V cm−1 for sin3(ωt)
‘kicked’ atom using the 4-photon resonance condition. As in
figure 11, driving the system harder destroys the stable structures
above the main island creating a chaotic sea that extends high up in
action.

For the kicked atom, we use bidirectional sin3(ωt) pulses
as the trajectories start from t = 0. Figure 12 is for 4-photon
transitioning from I = 40 to 44 with FK = 26 V cm−1 (right
column) and FK = 39 V cm−1 (left column). The top panels
again show probabilities binned in action, and underneath each
are shown the phase space plots as in figure 11. For the
weaker kicked case with FK = 26 V cm−1, roughly 25% of
the population transitions into I = 44 with ∼20% spread over
adjacent I. About 45% of the populations stays in I = 44. In
the corresponding phase space plots A1, B1 and C1, the peak
field strengths are F = 15, 26 and 15 V cm−1 respectively.
Note that although the chaotic sea extends high in action,
there are still small bands of stable islands above I = 46
which act as a barrier preventing the trajectories to drift up
freely. This results in a small band of final I around I = 44
and hinders ionization for the duration of the pulse envelope.
When the atom is kicked harder using FK = 39 V cm−1 in the
right column, the stable structures above the main island are

destroyed and now the chaotic sea extends high up in I (B2)
without any barriers. This results in a high rate of ionization
and a large spread of population above the main island of
stability. From the top-right panel in figure 12, roughly 55%
of the population is spread over in I = 43 and higher, whereas
∼25% show a small spread near the initial I. The remaining
∼35% ionizes by drifting up in I once mixed into the chaotic
sea (B2 and C2). This also points out to the importance of
the duration of the pulse at its peak strength. Longer the pulse
remains on, higher up in I the trajectories can drift giving
larger spread in final I. On the other hand, if the pulse is turned
off, short after the trajectories are mixed into the chaotic sea,
they can be trapped in a much narrower band near the intended
final I.

Comparing the 4-photon microwave case in figure 11 with
the 4-photon transitioning in the kicked atom in figure 12, we
note that when the microwave was driven, larger fraction of
the population transitions into I = 44 with virtually no spread
over final I. The probability for transitioning out of I = 40
is relatively decreased when the atom is kicked and the final
population has a spread over I near I = 44. The reason behind
this discrepancy can be seen when the surfaces of the sections
shown in figures 11(B1) and 12(B1) are compared for both of
which FK = 26 V cm−1. In the microwave-driven case, the
chaotic sea is only large enough for the trajectories to swing
around the main island, whereas in the kicked atom, its extent
is much larger giving rise to diffusion of the trajectories in a
much larger region of the phase space.

5. Conclusions

Using a flat-top pulse of bidirectional kicks, we compared
microwave driving to cases where microwave HCPs are
replaced by narrower HCPs whose extreme limit gives
impulsive kicks. We have found that achieving efficient
population transfer gets harder as the microwave HCPs start
to become narrower kicks as we demonstrated by driving the
8-photon resonance condition to excite the n = 72, � = 1 state
up to the n = 80 manifold. We also observed very poor transfer
efficiency when we kicked atoms in the n = 40, � = 1 state
up to the n = 46 manifold through the 6-photon resonance
condition using unidirectional kicks. In the long time limit,
most of the population transferred into the n = 46 manifold is
excited further up to n = 52 by chirping through an accidental
4-photon resonance that connects n = 46 with n = 52.
Besides initially preparing the atom in a field-free atomic
eigenstate, we also tried to start from Stark states. This did
not particularly improve the transfer efficiency over the cases
when the atom was initially in a field-free eigenstate. We
tried starting from both the red-most and the central Stark
states. Both initial states resulted in � distributions in the final
n-manifold largely imitating that in the corresponding initial
Stark state.

By turning off the flat-top envelope as soon as it peaks,
we were able to achieve efficient population transfer through
a 6-photon resonance condition by subjecting 40p Li atoms
to unidirectional electric field impulses of durations much less
than the classical orbital period of the Rydberg electron. Using
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unidirectional kicks, we were able to transfer ∼76% of the
population into the n = 46 manifold with angular momenta
confined to � < 5. Such multiphoton transitions have been
shown to yield a final population with large � spread when
microwaves are used [15].

Our three-dimensional CTMC simulations for the
population transfer through an 8-photon resonance condition
yielded similar efficiencies as our quantum calculations. We
progressively reduced the width of the microwave HCPs into
bidirectional cos3(ωt) kicks. To investigate this suppression of
transfer efficiency, we used a one-dimensional classical model
where we ‘kicked’ hydrogen atoms by bidirectional sin3(ωt)

kicks to peek into the mechanisms taking place inside the
classical phase space. As in the microwave-driven case, the
trajectories starting on a stable surface just below the main
island of stability need to mix into the chaotic sea to swing
around the island to reach the final state. For the final state
distribution to be sharp, the extent of the chaotic sea should
go just above the main island. We did not see this happen in
the kicked atom, with chaotic sea reaching high up in effective
n. On the other hand, small islands of stability are formed
above the main island and near the initial stable surface which
prevents trajectories from freely drifting high up in n. This
results in a wider spread of final states after the kicks are turned
off when compared with the microwave-driven case. Kicking
the atom even harder results in the destruction of these stable
structures above the main island which leads to both very
large spreads of final state distributions and ionization. The
same problem also occurs for weaker kicked but higher order
multiphoton transitions.
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[15] Topçu T and Robicheaux F 2009 J. Phys. B: At. Mol. Opt.
Phys. 42 044014
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