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Abstract
Theory and experiment are compared for the electron-impact double ionization of Mg. Direct
ionization cross sections, involving the simultaneous ionization of both 3s electrons, are
calculated using a non-perturbative time-dependent close-coupling method. Indirect ionization
cross sections, involving the ionization of either a 2p or 2s electron followed by autoionization,
are calculated using a perturbative time-independent distorted-wave method. At low energies
the direct ionization cross sections are found to be in good agreement with experiments, while
at the higher energies the indirect ionization cross sections are also found to be in good
agreement with experiments.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electron-impact double ionization of atoms remains a
challenging computational task for ab initio theory. Cross
sections for light atoms are dominated by a direct process
in which the incident electron stimulates the simultaneous
emission of two electrons, resulting in a four-body Coulomb
breakup problem. Work on the electron-impact double
ionization of helium has found good agreement between
non-perturbative time-dependent close-coupling calculations
[1, 2] and absolute experimental measurements [3] for total
cross sections. Recent reaction microscope experiments have
provided energy and angle differential cross sections for
the electron-impact double ionization of helium at incident
energies just above threshold [4, 5]. Theoretical calculations
based on a six interacting Coulomb waves method [4], a first
Born implementation of the converged close-coupling method
[4] and a time-dependent close-coupling method [6], have
found good agreement between theory and experiment for
pentuple differential cross section shapes, but not absolute
magnitudes.

On the other hand, electron-impact double-ionization
cross sections for medium to heavy atoms are generally
found to be dominated by an indirect process in which the
incident electron ionizes an inner-shell electron, followed by
autoionization of the excited atomic ion. Early theoretical and
experimental studies of the electron-impact double ionization

of inert gas atomic ions found that the indirect ionization–
autoionization mechanism dominates total double-ionization
cross sections [7]. Non-perturbative calculations for the
electron-impact single ionization of loosely bound excited
states of hydrogen [8, 9] and helium [10, 11] have shown that
perturbative distorted-wave calculations are quite inaccurate.
However, for the ionization of the tightly bound inner shell
states in moderate to heavy atoms, the perturbative distorted-
wave method should be reasonably accurate [12].

In this paper, we extend our recent non-perturbative
calculations for the electron-impact single ionization of Mg
[13] to examine the electron-impact double ionization of Mg.
Although early experimental measurements [14, 15] of the
double ionization cross section for Mg differed by a factor
of 3, later experiments [16, 17] are in reasonable agreement
with each other from threshold to 700 eV. From the double-
ionization threshold of 22.7 eV to the 2p inner shell single-
ionization threshold of 57 eV, we carried out calculations for
the double ionization of both 3s electrons using the non-
perturbative time-dependent close-coupling method. Above
the 2p inner shell single-ionization threshold of 57 eV, we
carried out calculations for the single ionization of the 2p and
2s electrons using the perturbative time-independent distorted-
wave method. Comparisons are made with experiments [16,
17] from threshold to 500 eV.

The remainder of the paper is organized as follows. In
section 2, we review the time-independent distorted-wave
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and time-dependent close-coupling methods. In section 3,
we apply the distorted-wave and close-coupling methods to
the calculation of the electron-impact double ionization cross
section of Mg. In section 4, we conclude with a summary
and an outlook for future work. Unless otherwise stated, all
quantities are given in atomic units.

2. Theory

2.1. Time-independent distorted-wave method

The configuration-average distorted-wave expression for the
electron-impact single ionization cross section of the (nt lt )

wt

subshell of any atom is given by [18]

σ = 16wt

k3
i

∫ E

0

dεe

kekf

∑
li ,le,lf

(2li + 1)(2le + 1)(2lf + 1)

×P(nt lt , ki li , kele, kf lf ), (1)

where the linear momentum (ki, ke, kf ) and the angular
momentum (li , le, lf ) quantum numbers correspond to the
incoming, ejected and outgoing electrons, respectively. The
total energy E = εi − I = εe + εf , where I is the subshell
ionization energy and ε = k2

2 . The first-order perturbation
theory expression for the scattering probability P(nt lt , ki li ,

kele, kf lf ) is given in terms of standard 3j and 6j symbols
and radial Slater integrals [18].

The radial distorted-waves, Pkl(r), needed to evaluate
the Slater integrals are solutions to the time-independent non-
relativistic radial Schrödinger equation given by(
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The atomic potential is given by

V (r) = −Z
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+
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[
24ρnl(r)

π
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where Z is the atomic number, r> = max(r, r ′), and α is a
parameter determined by removal energies. The bound radial
orbitals, Pnl(r), and radial probability densities, ρnl(r) =
P 2

nl (r)

4πr2 , are calculated using a Hartree–Fock atomic structure
code [19]. The incident and scattered electron continuum
orbitals are calculated in a VN potential, while the ejected
electron continuum orbitals are calculated in a VN−1 potential,
where N is the number of target electrons. The continuum
normalization for all distorted waves is 1 times a sine function.

2.2. Time-dependent close-coupling method

For electron-impact single and double ionization of an atom
with two active electrons, the time-dependent non-relativistic
Schrödinger equation is given by

i
∂�( �r1, �r2, �r3, t)

∂t
= H( �r1, �r2, �r3)�( �r1, �r2, �r3, t), (4)

where

H( �r1, �r2, �r3) =
3∑
i

(
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2
∇2

i + V (ri)

)
+

3∑
i<j

1

| �ri − �rj | . (5)

The atomic potential is given by

V (r) = −Z

r
+ Ucore(r), (6)

where Ucore(r) is a core pseudo-potential [20].
Expanding the wavefunction in coupled spherical

harmonics:

�( �r1, �r2, �r3, t) =
∑

l1,l2,L,l3

P LS
l1l2Ll3
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×Y((l1,l2)L,l3)L(r̂1, r̂2, r̂3), (7)

and substitution into equation (4) yields the time-dependent
close-coupled equations [1]:
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where
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and WL
l1l2Ll3,l

′
1l

′
2L

′l′3
(ri, rj ) are two-body coupling operators.

The correlated wavefunction for the ground state of an
atom with two active electrons is obtained by relaxation of
the time-dependent non-relativistic Schrödinger equation in
imaginary time (τ = it). The time-dependent close-coupled
equations for the radial wavefunctions are given by

−∂P̄ LS
l1l2
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∂τ
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2
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The initial condition for electron scattering from an atom with
a closed (ns)2 1S outer subshell is given by [1]

P LS
l1l2Ll3

(r1, r2, t = 0) =
∑

l

P̄ 00
ll (r1, r2, τ → ∞)

×Fk0L(r3)δl1,lδl2,lδL,0δl3,L, (11)

where the Gaussian radial wavepacket, Fk0L(r), has a

propagation energy of k2
0
2 .

Following propagation of the time-dependent close-
coupled equations of equation (8), the coupled radial
wavefunctions are projected onto fully antisymmetric products
of one-electron spin orbitals with

(
s1 = s2 = s3 = 1

2

)
to

yield various scattering probability amplitudes. The single-
ionization probability amplitudes:

A0s1l2s2LSl3s3LS(ns, k2l2, k3l3) (12)

are found by weighted sums over permutations of∫ ∞

0
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∫ ∞

0
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2



J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 215204 M S Pindzola et al

where the box normalized continuum orbitals are calculated
in a VN−1 potential. The double-ionization probability
amplitudes:

Al1s1l2s2LSl3s3LS(k1l1, k2l2, k3l3) (14)

are found by weighted sums over permutations of∫ ∞

0
dr1

∫ ∞

0
dr2

∫ ∞

0
dr3Pk1l1(r1)Pk2l2(r2)Pk3l3(r3)

×P LS
l1l2Ll3

(r1, r2, r3, t → ∞), (15)

where the box normalized continuum orbitals are calculated
in a VN−2 potential. We found that a simple restriction of the
radial integrals found in expressions (13) and (15) over a range
from ri = 5.0 to ri = ∞ greatly reduced contamination from
the continuum piece of the two-electron target wavefunction.

Finally, the single-ionization cross section is given by

σion = π

2k2
0

∫ ∞

0
dk2

∫ ∞

0
dk3

∑
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×
∑
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∣∣2

, (16)

while the double-ionization cross section is given by

σdion = π

2k2
0
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0
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. (17)

3. Results

Electron-impact single-ionization cross sections for the
1s22s22p63s2 ground configuration of Mg were carried out
for the 3s, 2p and 2s subshells using the perturbative
time-independent distorted-wave (DW) method described in
section 2.1. The Hartree–Fock ionization potentials are found
to be I3s = 7.3 eV, I2p = 57 eV and I2s = 99 eV, while the
peak cross sections are found to be σ3s = 600 Mb, σ2p =
22 Mb and σ2s = 2.0 Mb, where 1.0 Mb = 1.0 × 10−18 cm2.
The 3s subshell cross section contributes to the single
ionization of Mg, while the 2p and 2s subshell cross sections,
through the indirect process of ionization–autoionization,
contribute to the double ionization of Mg. We note that the
branching ratio for autoionization in the neutral Mg atom is
assumed to be 1. In figure 1 of our previous work [13], the
perturbative distorted-wave results for the single ionization of
Mg were found to be 50% above the non-perturbative R-matrix
and close-coupling results at the peak of the cross section. In
figure 1 of this work, the perturbative distorted-wave results for
the double ionization of Mg are found to be in good agreement
with experimental measurements [16, 17] at the peak of the
cross section.

Electron-impact single- and double-ionization cross
sections for the 3s2 outer subshell of ground-state Mg were
carried out using the non-perturbative time-dependent close-
coupling (TDCC) method described in section 2.2. Using
a 192 × 192 point numerical lattice with a uniform mesh
spacing of �r = 0.20 and a core pseudo-potential for the
1s22s22p6 ground configuration of Mg2+ [20], relaxation of the
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Figure 1. Electron-impact double ionization of Mg. Solid line:
perturbative DW calculations for indirect 2s and 2p ionization–
autoionization, dashed line: perturbative DW calculations for
indirect 2p ionization–autoionization, solid circles: experiment [16],
solid diamonds: experiment [17] (1.0 Mb = 1.0 × 10−18 cm2).

Table 1. Electron-impact single-ionization partial wave cross
sections (in Mb) for Mg at an incident energy of 35 eV. TDCC-3D:
present calculations, DW: past calculations [13], TDCC-2D: past
calculations [13] (1 Mb = 1.0 × 10−18 cm2).

TDCC- TDCC-
L 3D Channels Projections DW 2D Channels

0 3.9 11 6 6.1 3.0 9
1 14.2 21 4 31.7 13.3 16
2 30.0 23 6 65.2 37.3 22
3 42.3 49 6 64.9 48.9 26
4 43.5 60 8 52.1 43.7 29
5 43.6 81 8 50.4 42.7 30

TDCC equations of equation (10) in imaginary time yielded a
correlated 3s2 radial wavefunction with an ionization potential
of Id = 22.3 eV, compared to the experimental value of Id =
22.7 eV [21]. The initial condition of equation (11) uses the
correlated 3s2 radial wavefunctions for l = 0–3 and radial
wavepackets with initial energies ε0 = 35 eV, 45 eV and
55 eV.

Using a 192 × 192 × 192 point numerical lattice with
a uniform mesh spacing of �r = 0.20, the TDCC equations
of equation (8) were propagated in real time for L = 0–
5 and S = 1

2 total symmetries. Electron-impact single-
ionization partial wave cross sections for Mg at an incident
energy of 35 eV are given in column 2 of table 1. The third
column of table 1 is the number of l1l2Ll3 coupled channels,
while the fourth column is the number of 0s1l2s2LSl3s3

projection states needed to calculate the single-ionization
probability amplitudes found in the cross section expression of
equation (16). For comparison, we also present in table 1 the
3s subshell distorted-wave partial wave cross sections, the
TDCC-2D partial wave cross sections and the number of l1l2
coupled channels used in previous work [13] for the electron-
impact single ionization of Mg in columns 5–7. The TDCC-
3D and TDCC-2D partial cross sections are found to be in
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Figure 2. Electron-impact double ionization of Mg near threshold.
Solid squares: non-perturbative TDCC calculations for direct
double ionization, solid line: perturbative DW calculations for
indirect 2s and 2p ionization–autoionization, solid triangles
connected by dashed line: binary encounter calculations for direct
double ionization [22], solid circles: experiment [16], solid
diamonds: experiment [17] (1.0 Mb = 1.0 × 10−18 cm2).

reasonable agreement, while the TDCC and DW cross sections
begin to achieve agreement for the higher partial waves.

The same 192 × 192 × 192 point numerical lattice
propagated TDCC equations of equation (8), with projection
states l1s1l2s2LSl3s3 ranging from 10 for L = 0 to 46
for L = 5, were used to calculate the double-ionization
probability amplitudes found in the cross section expression of
equation (17). The total L = 0–5 electron-impact double-
ionization cross sections were found to be 2.2 Mb at an incident
energy of 35 eV, 2.1 Mb at an incident energy of 45 eV and
2.0 Mb at an incident energy of 55 eV. The cross sections were
extrapolated to higher L using a nonlinear angular momentum
fitting expression given by

σ(L) = c1Lc2 e− 2Id
E

L, (18)

where Id is the double ionization potential, E is the incident
energy and c1, c2 are fitting coefficients. The fitting expression
was tested using DW partial cross sections, known from li = 0
to 50. The total double-ionization cross sections are found to
be 2.9 Mb at an incident energy of 35 eV, 2.8 Mb at an incident
energy of 45 eV and 2.7 Mb at an incident energy of 55 eV. In
figure 2, the non-perturbative time-dependent close-coupling
results for the double ionization of Mg are found to be in good
agreement with experimental measurements [16, 17] between
the double-ionization threshold at Id = 22.7 eV and the onset
of indirect ionization–autoionization contributions at I2p =
57 eV.

Semi-empirical binary encounter (BE) calculations [22]
for direct double ionization of the 3s2 subshell, also shown in
figure 2, are found to be a factor of 2.5 times higher at the
peak of the cross section than the TDCC results. Additional
BE calculations [22] for direct simultaneous ionization of 3s
and 2p electrons, starting at 80 eV, report a peak cross section
of 9.1 Mb at an incident energy of 140 eV. The BE cross

sections for the direct double ionization of Mg, when added to
our DW cross sections for indirect ionization–autoionization,
would produce a total cross section well above the more recent
experimental measurements [16, 17].

4. Summary

In conclusion, we have carried out non-perturbative TDCC
and perturbative DW calculations for the electron-impact
double ionization of the magnesium atom. The perturbative
DW calculations for indirect ionization–autoionization
contributions, coming from single ionization of the 2p and
2s inner subshells, are found to be in good agreement with
experimental measurements [16, 17] near the peak of the
cross section at 300 eV incident energy. The non-perturbative
TDCC calculations for direct contributions, coming from
simultaneous ionization of the 3s2 subshell, are also found
to be in good agreement with experimental measurements [16,
17] at low incident energies. In the future, we plan to apply the
TDCC method to investigate the strength of the direct double-
ionization mechanism for other atoms, like Be and Ca. We
also plan to continue our work [6] on the TDCC calculation
of pentuple energy and angle differential cross sections for the
electron-impact double ionization of helium and the alkaline
earth atoms.
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