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Abstract
Detailed simulations of antihydrogen formation have been performed under the conditions of
the ATHENA experiment, using several densities of the positron plasma in the range ne = 5 ×
1013 m−3 to 1015 m−3. The simulations include only collisional effects, typically resulting in
the formation of weakly bound antihydrogen via the three-body process, e+ + e+ + p → H + e+.
(Radiative processes, which are much slower than collisional effects, are neglected.) The
properties of these weakly bound anti-atoms are affected not only by further collisions in the
plasma but also by the inherent electric fields. The role of field ionization in influencing the
distribution of binding energies of the antihydrogen is clarified and the mechanism for this
process in the strong B-field nested Penning trap used in the experiment is elucidated. The fate
of antihydrogen is explained and the properties of the population detected after having reached
the wall of the Penning trap electrodes, as well as those field ionized, are recorded. We find
that the yield of detected antihydrogen varies with positron density roughly as n1.7

e , rather than
the n2

e expected from the underlying formation process. As ne is increased, antihydrogen
formation is sufficiently rapid that epithermal effects begin to play an important role. In
general, the simulated timescales for antihydrogen formation are much shorter than those
found from the experiment.

1. Introduction and motivation

Cold antihydrogen was formed in pioneering experiments at
CERN, first by the ATHENA collaboration [1] and then by
ATRAP [2], via the controlled mixing of antiprotons and
positrons in specially tailored Penning-type traps. This has
established a new field of atomic physics and triggered a
flurry of theoretical activity aimed at elucidating the basic
physics underlying the antihydrogen experiments in an effort
to interpret several of the observations. This area has recently
been reviewed [3]. Currently, two experiments, ALPHA [4]
and ATRAP [5], are attempting to confine antihydrogen by
forming it inside a magnetic minimum (Ioffe–Pritchard type
[6]) neutral atom trap. Plans for antihydrogen experiments
are also underway within the ASACUSA collaboration [7].
Recently the AEGIS experiment, focusing on the gravitational
interaction of antihydrogen, was formally approved for

operation at CERN [8]. For these ventures to be successful,
and to enable progress to be made towards using antihydrogen
for various tests of fundamental physics (see e.g. [9]), it is
essential that the properties of the anti-atoms upon formation
(for example, binding energies and speeds) are understood
and, if possible, controlled.

Antihydrogen can be formed by a number of routes [9],
including the two mechanisms shown below. These are direct
spontaneous radiative recombination as

p + e+ → H + hν, (1)

with a rate �srr, and three-body recombination given by

p + e+ + e+ → H + e+, (2)

with a rate �tbr. The physics of these reactions is explored
further elsewhere [9–11]. Briefly, however, in the steady
state the reactions have very different dependences upon the
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temperature, Te, and density, ne, of the positron plasma,
with �srr ∝ neT

−0.63
e and �tbr ∝ n2

eT
−4.5

e . Thus, at first
sight, it would appear to be easy to distinguish between
them. Furthermore, the two reactions produce very different
distributions of bound states. The radiative process is a dipole-
allowed free-bound transition which favours capture of the
positron into strongly bound states. By contrast, the three-
body case is expected to favour weakly bound antihydrogen
since the reaction is essentially an elastic encounter of two
positrons in the vicinity of the antiproton. Thus, energy
transfers around kBTe are likely, which sets the scale for the
probable binding energies. Such weakly bound states are
expected to be dramatically influenced by the ambient fields
of the Penning traps.

From the experimental perspective, it was found that
antihydrogen could be formed very efficiently [12] upon
merging positrons and antiprotons in a nested Penning trap
[13]. Here the applied magnetic field was in the Tesla
range, and typical electric fields in the trap were in the
region of tens of V cm−1. In the case of ATHENA, the
trap electrodes were held at a temperature of around 15 K
(to which the positrons cool by the emission of synchrotron
radiation in the strong applied magnetic field), and typical
positron plasma densities were in the 1014–1015 m−3 range
[14, 15]. Furthermore, ATHENA could heat their positrons
by the application of a radio frequency (rf) signal to one
of the electrodes surrounding the plasma; indeed, when the
heating was applied such that positron temperatures of several
thousand kelvin were obtained, it was found that antihydrogen
formation was effectively suppressed [1, 12]. This served as a
convenient background signal [12].

ATHENA also performed some experiments in which
antihydrogen formation was monitored as Te was increased in
a systematic manner [16]. It was found that the antihydrogen
yields, at least at temperatures > 100 K, fell as T −0.7±0.2

e ,
and no dramatic rise was apparent at lower Te, as would have
been expected from the three-body reaction. However, the
rates of detected antihydrogen atoms (sometimes in excess
of 400 s−1) were around an order of magnitude greater than
those characteristic of the radiative process. (Reference [17]
obtained the radiative formation rate 1.55×10−16T −0.63

e ne s−1,
with Te in kelvin and ne in m−3, which with the experimental
parameters in [16] gives 48 s−1.)

In a recent contribution, ATHENA has published
an analysis of an experiment in which they modulated
antihydrogen production by the pulsed application of rf fields
[18]. With the rf on, antihydrogen formation was suppressed.
When the field was removed, antihydrogen formation resumed
with a time constant determined by the cooling rate of the
positrons in the 3 T applied magnetic field, convoluted with
the temperature dependence of the antihydrogen formation
rate. By directly measuring the former, they were able to
extract the latter, finding a dependence as T −1.1±0.5

e , over a
wide range of Te. Despite the fact that these two experiments
found exponents of Te consistent with the radiative process, the
signal rates pointed to a dominance of the three-body reaction.
Clearly, there are inconsistencies here, which so far have not
been resolved.

Various aspects of antihydrogen formation have been
considered in earlier theoretical work. Glinsky and O’Neil
calculated the rate of three-body recombination in the limit of
an infinite magnetic field, assuming a stationary antiproton
[19]. Antihydrogen formation is a multi-step process,
requiring a succession of collisions before the anti-atom is
stable against ionization. Glinsky and O’Neil [19] found that
anti-atoms bound by more than ∼10kBTe are stable against
collisional ionization. Robicheaux and Hanson simulated
the same rate at various magnetic fields and other conditions
relevant for the ATRAP and ATHENA experiments [20]. In
that work, the antiproton was allowed to move freely, and the
drift of the positrons, which is due to the electric field of the
plasma, was included. The results of both these calculations
were consistent with the T

−9/2
e scaling of the three-body

recombination rate, albeit with a pre-factor depending on
the magnetic-field strength. However, [21] found that this
temperature scaling is only valid in a steady-state situation,
where the antiproton is immersed in the positron plasma for
a time longer than the time required for recombination. This
assumption does not hold true in a nested Penning trap, and
the model predictions therefore have limited relevance to the
current antihydrogen experiments. In a nested Penning trap
arrangement, the antiprotons pass to and fro across the positron
plasma, such that the reactions are arrested in nature every time
the antiproton leaves the plasma, having to start anew the next
time it enters the positrons. Since the anti-atom needs time
to build up binding energy, this has the effect of lowering
the mean binding energy of the anti-atom and increasing its
kinetic energy over that expected from Te. Such an observation
is consistent with results from both ATHENA [22] and ATRAP
[23], though the latter has been subject to a re-interpretation
[24]; see also [3].

Classical trajectory simulations of single positrons in
the combination of a strong magnetic field and the electric
field from a stationary antiproton have also revealed that
metastable antihydrogen states with negative binding energy
(i.e. unbound) can be formed in two-body collisions [25]. Such
metastable states can be stabilized through a collision with a
second positron, a process that is implicitly included in the
three-body rates calculated in the present paper. Antihydrogen
formation has also been studied using molecular dynamics
calculations [26, 27].

Over the past few years, a number of theoretical studies
have been performed examining different properties of highly
excited antihydrogen as formed from positron plasmas. This
includes calculations of the magnetic moments [28], the
radiative cascade of highly excited antihydrogen [29] and
field ionization [30]. In a very recent paper, the change
of the binding energy in collisions between highly excited
antihydrogen and positrons, assuming a stationary antiproton,
was studied in some detail [31]. The results in [31] confirm
that the time needed to establish a steady state with a T

−9/2
e

scaling of the formation rate is much longer than the actual
time that the antiproton spends in the plasma in experiments.

We have been motivated by the insights provided by the
early simulations to extend them to investigate some of the
aforementioned phenomena in greater detail. In this paper
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we integrate, for the first time, the various aspects of the
antihydrogen formation process into a simulation of the entire
evolution of the experimental events. A detailed description
of the simulation method is given below in section 2. Briefly,
the simulations start with the injection of antiprotons into
the nested Penning trap. We follow the trajectories of the
antiprotons back and forth through the positron plasma. Whilst
traversing the plasma, the antiproton slows due to collisions
with positrons and also undergoes three-body collisions that
potentially lead to the formation of antihydrogen. The
trajectories of any antihydrogen atoms formed are likewise
calculated until they either are ionized or leave the plasma.
Outside the plasma, the trajectory of the antihydrogen atom is
calculated until it either reaches the detector or alternatively
is ionized by the electric fields present in the trap (in the
latter case the antiproton is followed for 0.3 ms to make sure
that it does not return to the positron plasma). No previous
simulations include all these stages of the formation process.
In this way, we obtain distributions of positions, velocities and
binding energies of detected antihydrogen atoms. We also
obtain results for the time dependence of the antihydrogen
formation process.

In the simulations we use a realistic representation of
the trap geometry, the electric and magnetic fields inside the
trap and the positron plasma. Specifically we have chosen to
use parameters characteristic of the ATHENA experiment [1],
i.e. magnetic field B = 3 T, plasma temperature Te = 15 K
and plasma densities ne varying between 5 × 1013 m−3 and
1015 m−3.

Our results establish a number of physical effects that,
at least qualitatively, apply independently of the simulation
parameters used. In section 3.2 we extract rates for
antihydrogen formation. We find that the density scaling of
the antihydrogen detection rate deviates from the simple n2

e
dependence predicted for three-body recombination in steady
state. Other results include a mechanism for field ionization
which has not been considered previously (section 3.3), a
density dependence of the binding energies of antihydrogen
surviving to the detector (section 3.4), a radial drift of
the antiprotons (section 3.5), loss of antiprotons due to
field ionization of antihydrogen formed at large trap radii
(section 3.6) and epithermal formation of antihydrogen
(section 3.7).

2. Simulations and underlying physics

Our simulations are based on classical trajectories of
antiprotons, as previously described in [3, 20, 21, 28, 29].
Quantum mechanical effects are expected to play a role only
at small interparticle distances, characteristic of much more
tightly bound antihydrogen than that considered in this work.
Before we integrate the classical equations of motion we must
determine the electric and magnetic field configuration in the
nested Penning trap. As mentioned above, we use electric
and magnetic fields characteristic of the nested Penning trap
developed by the ATHENA experiment [1]. In a Penning trap,
the radial confinement is provided by a constant magnetic field
directed along the axis of the trap, which in our case has the
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Figure 1. Axial electric potential for various ne and Ne : (——)
ne = 1015 m−3 and Ne = 1.2 × 108; ne = 5 × 1013 m−3 and (· · · · · ·)
Ne = 2.8 × 107, (– – –)Ne = 1.4 × 107 and (— · —)Ne = 7 × 106.

strength B = 3 T. The axial confinement of the plasma comes
from the electric field. This field has two sources, the voltages
set on the cylindrical electrodes surrounding the trap and the
space charge of the positron plasma. Thus, for a given number
of positrons Ne and peak density of the plasma ne, the electric
field and the spatial profile of the plasma are inter-related
and have to be determined by solving Poisson’s equation self-
consistently for both quantities. In addition, the (small) effect
of the finite temperature of the plasma is taken into account
by using a standard Maxwell–Boltzmann distribution. The
procedure for solving these equations is well established and
outlined, e.g., in [32].

The electric field inside the trap is then determined by the
space charge of the positrons and from the voltages applied
to the electrodes. Inside the plasma, the axial electric field
vanishes, while the radial electric field, Er, is given by [32]

Er = neer

2ε0
ρ̂, (3)

where r is the distance from the axis of the system, ρ̂ is the unit
vector directed radially away from the axis of the cylindrical
trap and e and ε0 have their usual meanings. Typical axial
electric potentials in the trap are depicted in figure 1 at some
of the extreme values of ne and Ne used in the simulations. The
positrons are trapped at the flat local minimum of the electric
potential. The side-wells on both sides of this local minimum
provide the necessary confinement of the positrons, but here
antiprotons, as discussed below, may also get trapped.

In the experiments, antiprotons are injected into the
plasma by manipulating the voltages on the electrodes, and
thereby temporarily opening up the electric potential on one
side. The antiprotons will therefore initially have an axial
kinetic energy of a few eV. In most of our simulations,
antiprotons are initialized with a kinetic energy of 2 eV
directed along the axis of the trap, whilst in the transverse
direction a thermal distribution at 15 K is assumed. However,
in some simulations, we use antiprotons initialized from a 15 K
distribution both axially and transversely, in order to explicitly
study antihydrogen formation in the equilibrium situation.
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Figure 2. Results using different requirements for the binding energy of a formation event, (+) Eb > kBTe and (×) Eb > 2kBTe, for
ne = 2 × 1014 m−3 and Te = 15 K. (a) The time dependence of antihydrogen detection; (b) the binding energy distributions of the detected
antihydrogen; (c) the antihydrogen speed distributions in the transverse plane and (d) their axial counterparts.

As the antiproton traverses the plasma, it collides with
positrons and may thus form antihydrogen. These collisions
are treat by defining a box of a predefined size (see below)
around the antiproton. For each time step the statistical
probability for a positron to enter through one of the faces of the
box is calculated. Only the motion of the positrons inside this
box is explicitly solved and the rest of the plasma is considered
as a continuous medium. The trajectories of the antiproton and
any positrons present are obtained by integrating Newton’s
equation of motion for the particles subject to the familiar
electromagnetic, or Lorentz, force:

F = q(E + v × B), (4)

where q = ±e for positrons/antiprotons and v is the velocity
of the particle. The electric field is the sum of the trapping field
described above and the field from the Coulomb interaction
between the particles. The equations of motion are integrated
numerically using a Runge–Kutta method with a time step
monitored by the requirement of energy conservation. In
contrast to [20, 21], the guiding centre approximation is not
employed for the motion of the positrons. The trajectories of
positrons are calculated until they leave through one of the
faces of the box. We define an antihydrogen atom simply as a
state with a single positron inside the box, and its lifetime as
the time the positron stays inside the box. Thus, the metastable
states discussed by Correa et al [25] and true bound states with
positive binding energy are treated on an equal footing.

Most collisions between the antiproton and positrons are
not important for antihydrogen formation because the energy
exchange between the particles is small. Only antihydrogen
with binding energy � kBTe can be stable against ionization.
The corresponding classical radius of the anti-atom is then
� rT = e2/(4πε0kBTe), which also gives the maximum

interparticle separation at which formation can occur. The
calculation is therefore divided into two parts: in the first
stage formation events are calculated until a binding energy
of kBTe is reached, and in the second stage these formation
events are used in a simulation including the full motion of
the antiproton. In the first stage a box around the antiproton
(see above) with a side-length equal to 10 rT is used, which
for Te = 15 K gives 1.1 μm. For numerical efficiency this
stage of the collision is treat by approximating the antiproton
to be stationary. This can be justified since the collision time
is short compared to the time the antiproton needs to traverse
the plasma. For binding energies greater than kBTe the full
dynamics of the antiproton is calculated. In this stage, we
use a side-length of the box around the antiproton equal to the
average positron separation in the plasma.

The stationary-antiproton approximation will only cause
errors in the observed time, velocity, position and energy
distributions if it is applied to antihydrogen atoms which
otherwise would have been able to reach the detector without
being field ionized. As is discussed below in section 3.4,
for Te = 15 K antihydrogen with binding energy less than
kBTe cannot survive field ionization. To further check the
effect of this approximation, we compare the distributions
obtained from our standard simulation (stationary antiproton
down to the binding energy kBTe) to those from a simulation
using a more restrictive approximation with the corresponding
binding energy equal to 2kBTe. (Comparing to a less
restrictive approximation would require a considerably larger
computational effort.) The results (at the density ne = 2 ×
1014 m−3) are shown in figure 2. We observe no significant
change in any of the distributions. However, the ratio of
the total number of detected antihydrogen atoms to the total
number of simulated antiproton trajectories increases from
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0.34 to 0.46. This change is understood. The remaining
antiprotons are lost through the formation of very weakly
bound antihydrogen atoms, which ionize outside the plasma,
as will be discussed in section 3.2. When only antihydrogen
atoms bound by 2kBTe are allowed to move outside the plasma,
there will be fewer weakly bound antihydrogens, leading to a
smaller number of lost antiprotons. The properties of more
tightly bound antihydrogen which survive to the detector are,
however, not affected.

The interaction between the antiproton and the positron
plasma also gives a slowing of its velocity. The stopping power
of ions in a strongly magnetized plasma has been investigated
by Nersisyan et al [33]. We use their results to calculate
the velocity-dependent kinetic energy loss of the antiprotons.
The results in [33] were derived under the assumption that
the number of positrons in a sphere with radius equal to the
Debye length λD =

√
ε0kBTe/(nee2) is much larger than 1.

At Te = 15 K this number varies from 11 at ne = 5 ×
1013 m−3 to 2.5 at ne = 1015 m−3. Hence, at the highest
density we are approaching the limit of validity of this theory.
The associated uncertainty will, however, only have a limited
impact on the time needed to slow the antiproton down to
thermal energies—a time which anyway carries an uncertainty
due to the variation of the initial kinetic energy for different
experimental conditions. It will have no impact on the long-
time behaviour of either antihydrogen formation rates or the
time, velocity, position and energy distributions that we use
as observables. A recent study used an alternative method to
calculate the rate of slowing of the antiprotons [34]. Here, the
average momentum transfer in antiproton–positron collisions
was simulated as a function of impact parameter. This gives
a more accurate description of low-energy collisions, but does
not take any plasma effects into account. For the parameter
values in our simulations, the results in [33] and in [34] give
slowing rates of similar magnitude.

The antiproton trajectories are calculated until they either,
in the form of antihydrogen, reach the detector at the
cylindrical electrodes surrounding the trap or are trapped
outside the positron plasma. For anti-atoms reaching the
detector, we record observables such as the time and position
of detection, speeds and binding energies. Also the time
and position distributions of trapped antiprotons are recorded.
Although impossible to observe experimentally, we have found
it instructive to study antiproton properties at intermediate
times, such as when leaving the positron plasma in the form
of antihydrogen.

Our simulations do not include radiative formation since
at positron temperatures around 15 K, and at relevant densities
for ATHENA, the rate of this process is negligible compared
to that of the three-body recombination [17]. Also, we only
calculate trajectories of single antiprotons, thus neglecting any
effects of antiproton–antiproton or antiproton–antihydrogen
interactions. This is justified since in the experiment the
number of antiprotons injected in each bunch was small
(�104). As a rough estimate for the rate of collisions between
an antihydrogen atom and other antiprotons, we assume a
cross section σ = πr2

T, a relative velocity v � 1000 ms−1

and Np̄ � 4000 antiprotons distributed over a trap volume

Table 1. Radii and lengths of positron plasmas for different Ne and
two different ne. In all cases Te = 15 K.

ne (m−3) Ne Radius (mm) Length (mm)

5 × 1013 7.0 × 106 2.27 13.13
5 × 1013 1.4 × 107 2.87 16.52
5 × 1013 2.8 × 107 3.64 20.70
1 × 1015 6.0 × 107 0.87 38.34
1 × 1015 1.2 × 108 1.11 51.75

V � 10−6 m3. This gives a collision rate σvNp̄/V � 4 s−1

per antihydrogen atom. The maximum life time of an
antihydrogen atom is given by the time it needs to travel from
the centre of the trap to the detector, which is of the order
10−5 s. Thus only about one antihydrogen atom in 10 000
would collide with an antiproton. This is clearly an
unimportant effect. As for antiproton–antiproton collisions,
we expect a similar rate since the Coulomb cross section is
reduced by plasma screening.

To achieve good statistical accuracy, a large number (up to
50 000) of trajectories have been calculated for each parameter
setting. Of these, only a fraction, typically 20–40%, result in
a detected antihydrogen atom. This gives between 10 000
and 20 000 ‘events’, which when grouped, for example, in
100 time bins gives an average of 100–200 events per bin.
Assuming Poisson statistics, this gives a typical statistical
uncertainty around 5–10%, but obviously this may be much
larger when the number of events is lower, or approaches zero.
The remaining trajectories end with the antiproton trapped
outside the positron plasma.

3. Results and discussion

3.1. Varying the total number of positrons

In order to fully explore the density regions of interest to
the experimental programmes, it was necessary to perform
simulations at fixed ne and Te, but with varying total numbers
of positrons, Ne. This would have the effect of changing
the radius and length of the simulated plasma, and hence the
electric field in the plasma (3), such that any quantity which
is influenced by the field at the edge of the plasma will be
sensitive to Ne. Table 1 shows representative values of Ne

(with the consequent plasma radii and lengths) for the extreme
densities simulated of 5 × 1013 m−3 and 1 × 1015 m−3, both
for Te = 15 K.

Figures 3 and 4 show outputs of the simulations, namely
the time dependence of the antihydrogen formation, the
distribution of binding energies and the axial and transverse
antihydrogen speeds, vz and vtr, for the two densities. Whilst
there are clear and important differences in these parameters
for the two densities (discussed below), what is relevant here
is the consistency of the output at each ne for the different
values of Ne. For ne = 5 × 1013 m−3, there are no apparent
differences in any of the parameters for the different values of
Ne. Hence, there is no sensitivity at this density to the radial
field at the edge of the plasma. This implies that, for vz and
vtr, thermal effects dominate in this example.
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Figure 3. Simulation parameters for ne = 5 × 1013 m−3 and Te = 15 K for values of Ne of (+) 7 × 106, (×)1.4 × 107 and (∗) 2.8 × 107.
(a) The time dependence of antihydrogen detection; (b) the binding energy distributions of the detected antihydrogen; (c) the antihydrogen
speed distributions in the transverse plane and (d) their axial counterparts.
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Figure 4. Simulation parameters for ne = 1 × 1015 m−3 and Te = 15 K for values of Ne of (+) 6 × 107 and (×)1.2 × 108. (a) The time
dependence of antihydrogen detection; (b) the binding energy distributions of the detected antihydrogen; (c) the antihydrogen speed
distributions in the transverse plane and (d) their axial counterparts.

However, at 1015 m−3 there is an effect, most notably in
vtr, which shifts to a higher mean value for the plasma with the
largest radius. This effect is due to the fact that vtr is dominated
by the E×B drift speed (see section 3.2) of the antiproton at the
radius where the anti-atom was formed, which, at the higher
density, results in a noticeable effect above thermal. This must
be borne in mind in the discussions below.

3.2. Time dependence of the formation of detected and
ionized antihydrogen and equilibrium rates

Antiprotons can be lost through two mechanisms, both
involving formation of antihydrogen. Either an antihydrogen
atom is detected at the electrodes surrounding the nested
Penning trap or it is field ionized before it reaches the detector.
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Figure 5. Simulated time dependences of the (×) detected and (�) ionized antihydrogen together with the sum of the two (+). The data are
for positron densities, ne, of (a) 5 × 1013 m−3, (b) 1014 m−3, (c) 2 × 1014 m−3, (d) 5 × 1014 m−3 and (e) 1015 m−3.

In this case the antiproton is likely to get trapped in the
potential wells surrounding the positron plasma. We therefore
define two (in general time-dependent) rates: one for detected
antihydrogen λd and one for antiproton loss through field
ionization, λl. These are the ratios of the number of events per
unit time to the number of antiprotons in the trap, i.e.

dNd(t)

dt
= λdN(t), (5)

dN(t)

dt
= −(λd + λl)N(t), (6)

where Nd(t) is the number of antihydrogen atoms detected up
to the time t, while N(t) is the number of antiprotons still in
the trap at time t. At long times (longer than the time for
thermalization of antiprotons with the positron plasma), λd

and λl approach constant values, which can be extracted from
the distributions in figure 5 using equations (5) and (6).

Simulations were performed at five values of ne in the
range 5 × 1013–1015 m−3 at Te = 15 K. The variations of
the antiproton loss to antihydrogen for both the detected and
ionized anti-atoms, together with the sum of the two, are shown
in each case in figures 5(a)–(e). Note that the timescales for
each plot are different, with fully two orders of magnitude
change between 5 × 1013 m−3 and 1015 m−3. In all cases,
the fraction of antiprotons lost due to ionized antihydrogen is
larger than the fraction which escapes the plasma to be detected
via annihilation. The difference increases with increasing
density, as might be expected due to the increased plasma fields
which field ionize a larger fraction of the nascent antihydrogen.

At densities up to and including 2 × 1014 m−3 there is
a definite onset, presumably due to the effect of antiproton
slowing in the plasma. The onset is sharper for the
antihydrogen which is field ionized, probably because these
very weakly bound states exit the plasma first, and extra

time is needed to achieve binding energies sufficient to
survive the plasma and trap fields. In these three cases a
definite equilibrium is reached, with the ionized and detected
antihydrogen displaying a similar (density-dependent) decay
with time which can be characterized (see below) by a single
exponential curve.

At ne = 5 × 1014 m−3 the onset is less evident and is
not really visible for the detected species. Instead a large
shoulder-type feature is apparent, which totally dominates the
distribution at 1015 m−3. The beginnings of this feature can
also be seen in the distribution for ne = 2×1014 m−3. It is clear
that as the density increases epithermal effects dominate and
equilibrium may not be reached. However, it is noticeable
that the detected antihydrogen rate seems to approach an
equilibrium before the ionized signal.

At the higher densities and longer times, the distributions
are dominated by ionized antihydrogen events. This is
consistent with the observations in section 3.5 that the
antiprotons quickly migrate to the plasma edge, where they
are most likely to form weakly bound anti-atoms which are
susceptible to ionization.

The timescales for the simulations of antihydrogen can be
compared with those from the ATHENA experiment, which
typically operated at positron densities just above 1014 m−3.
ATHENA found that the antihydrogen detection rate rose to
a maximum after about 40 ms of mixing, and persisted for
many seconds thereafter [35]. Using more dense plasmas [36],
ATHENA were able to shorten the effective time over which
the bulk of their antihydrogen signal was produced to a fraction
of a second. However, we find that the simulated timescales
are an order of magnitude, or more, shorter. Although we can
offer no definitive explanation for this difference, it is likely
that the discrepancy, at least in part, is due to the effects of the
separation of antiprotons from the positrons due to drift-field
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Figure 6. Equilibrium rates for the antihydrogen atoms at Te =
15 K versus positron density for detected antihydrogen λd (+)
together with the total rate of antiproton loss λtot (×). The lines
show theoretical predictions for the steady-state formation rate
for B = 0 (dotted) [10], B = 3 T (dashed) [20] and B → ∞
(dash-dotted) [19].

ionization of weakly bound anti-atoms, as reported here, and as
observed by ATHENA [35]. The positron plasma in ATHENA
was slowly (on a timescale of many seconds [15]) expanding
with time during mixing, such that those antiprotons on the
periphery of the cloud would eventually come into overlap
with the positrons again. The effects of this were evident in a
study employing a dense positron plasma [36], with a diameter
smaller than that of its accompanying antiprotons.

The equilibrium rates, calculated according to
equations (5) and (6), are plotted versus ne in figure 6 and
exhibit power law behaviour, λd ∝ nn

e , with n a constant. Fits
yield n = 1.67 ± 0.01. For the data displayed in figure 6,
the antiprotons were launched into the positron plasma with
a speed of 2 × 104 ms−1, equivalent to a kinetic energy of
2 eV. Comparisons were also made with runs starting with
an assumed thermal distribution, for which the fitted value
of n was 1.61 ± 0.04. Thus the simulations predict that the
antihydrogen detection rate should scale roughly as n

5/3
e , rather

than the value of n2
e as expected from the basic three-body

process.
We also include the total loss rate λtot = λd + λl

in figure 6. As discussed above, this rate comprises
antihydrogen formation leading either to a detected anti-atom
or to antiproton loss due to field ionization. Its density
dependence is fitted by the power law n1.93±0.05

e , although the
fit is slightly worse than that for the detection rate. Thus, it is
close to the n2

e scaling expected for three-body recombination
in steady state. The reduced power of the detection rate must
therefore mainly be due to a density-dependent selection of
the antihydrogen atoms which survive to the detector.

Although the magnitude of λtot we obtain agrees better
with the steady-state prediction at B = 3 T [20] than the
predictions at B = 0 [10] or B = ∞ [19], our result is
still significantly larger. This can be understood since in
[20] a recombined anti-atom was defined as an anti-atom with
binding energy larger than 8kBTe (the calculations at B = 0

[10] and B = ∞ [19] used similar definitions). The rate λtot

on the other hand represents the rate of anti-atoms leaving the
plasma, irrespective of their binding energy. Since almost all
anti-atoms have a binding energy less than 8kBTe when they
leave the plasma, this rate has to be larger. The rate λd for
detected antihydrogen, i.e. with the field-ionized anti-atoms
removed, is on the other hand smaller than the result in [20] at
all plasma densities.

3.3. Field ionization through azimuthal drift

The difference in density scaling between the total formation
rate and the detection rate shows that some density-dependent
mechanism for ionization of weakly bound antihydrogen must
be operating. The radial electric field equation (3) inside
the plasma is indeed proportional to the plasma density and
reaches its maximum at the surface of the plasma. This
field can, however, not directly cause field ionization. This
is because this field is radial and, according to the simulations,
and intuitively, this cannot lead to break-up of the pair due to
the presence of the strong axial magnetic field. On the other
hand, it is also unlikely that the density-dependent selection
of detected antihydrogen is due to field ionization by the
axial electric field since its strength only has a weak density
dependence, giving for higher densities smaller fields close to
the plasma (see the axial potential in figure 1).

The simulations have revealed that ionization at the edge
of the plasma proceeds via an azimuthal separation of the pair
due to a small difference between the drift velocities of the
positron and antiproton. The drift velocity, vd, of charged
particles in crossed electric and magnetic fields (which is the
situation here with the plasma electric field E = Erρ̂ and the
solenoidal magnetic field B = Bzẑ) can be shown to be (see
e.g. [37])

vd =
(

−Er

Bz

+
mE2

r

eB3
z r

)
φ̂ = (vd0 + �vd)φ̂, (7)

with m the mass of the particle and {ρ̂, φ̂, ẑ} the standard
cylindrical coordinate system of the particle in the trap. The
first term in (7) is the ‘normal’ drift of the pair, but a mass-
dependent term, �vd, is introduced at the second order, and it
is this that eventually results in the separation of the pair.

In order to get a clearer picture of field ionization, we
have studied it isolated from the effect of collisional ionization.
Therefore we make a simulation solely for propagation in the
fields, i.e. no collisions are included. In the full simulations
both ionization mechanisms of course operate simultaneously.
Figure 7 shows plots of the time variation of various properties
of an antihydrogen atom moving in a radial field, Erρ̂
(corresponding to that of a plasma of density 1015 m−3) and
with Bz = 3 T. In all panels there is an abrupt change in
the behaviour at the time marked by the green line, which
seems to indicate the break-up of the pair. Panels (a) and (b)
in figure 7 show the relative positron–antiproton coordinate
r separated into its components along the azimuthal (i.e. the
φ̂-component) and the radial (ρ̂) directions of the trap. (The ẑ
component is not displayed. For the two-particle system, the
cylindrical coordinate system is defined relative to their centre
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Figure 7. (a) Simulation of the time dependence of the φ̂-component (the component along the azimuthal coordinate of the trap) of the
position of the positron relative to the antiproton. The positron is undergoing azimuthal drift in the crossed electric and magnetic fields. The
dashed line is a fit based upon (7) and the dotted line is the location of the minimum of the outer potential well, y0 = −Kr/(eB); see the
text. (b) The corresponding relative position along the radial coordinate of the trap (ρ̂ component). (c) The simulated time dependence of
the centre-of-mass velocity along ρ̂. (d) The binding energy of the pair. The significance of the vertical lines is discussed in the text.

of mass.) Figure 7(a) clearly illustrates how the anti-atom is
torn apart in the azimuthal direction of the trap. The dashed
line is the separation given by �vd from (7), plus some initial
separation, denoted here as x0. Figure 7(b) shows that the
radial electric field of the trap can induce an electric dipole
moment (which after the break-up time becomes large since
the Coulomb attraction between the particles is small) but
because of the magnetic field the anti-atom cannot be ionized
in this direction. The oscillations in both panels are due to the
cyclotron motion of the antiproton.

Figure 7(c) shows the centre-of-mass velocity in the radial
direction of the trap. While the anti-atom is tightly bound it
accelerates away from the trap centre due to the centrifugal
force. Once the pair separates, the radial centre-of-mass speed
abruptly starts to oscillate around zero. This behaviour is
characteristic of two separated charged particles, undergoing
cyclotron oscillations around a constant trap radius.
Figure 7(d) shows the binding energy of the atom. It should be
remembered that in the presence of external fields the binding
energy is not a conserved quantity. Here we chose to define it
without including any contributions from the external fields,
i.e. as the sum of the attractive Coulomb potential between the
particles and the kinetic energy associated with the positron
motion relative to the antiproton. Before the break-up, the
binding energy oscillates around ∼23 K showing that the
system is indeed a loosely bound anti-atom. After the break-
up, the binding energy gradually drops to zero.

Our interpretation of this is as follows. The
internal dynamics, given by the positron–antiproton relative
coordinate, r, of an antihydrogen atom in static electric and
magnetic fields can be described by the effective potential
[30, 38]

V (r) = 1

2M
(K − eB × r)2 − e2

4πε0r
− eE · r, (8)

where M is the mass of the anti-atom. The pseudo-momentum
K = MṘ + eB × r gives a coupling to the centre-of-mass
coordinate R. For static fields, K is a conserved quantity,
facilitating a ‘pseudo-separation’ between centre-of-mass and
internal motion. The first term in V (r) will thus create a
shallow outer potential well, located at r = −B × K/(eB2).
Atoms bound in this outer well are called giant dipole states.

Inside the positron plasma the magnetic field is static, but
the electric field grows radially according to (3). The pseudo-
momentum is therefore not a conserved quantity. As described
above, this combination of electric and magnetic fields makes
charged particles rotate around the axis of the trap with a
speed given by (7). The pseudo-momentum is separated into
its radial and azimuthal components, K = Krρ̂ + Kφφ̂ in a
coordinate system rotating with the centre of mass. One finds

K̇r = MRφ̇2 + (eBzφ̇ + eEr/R)x, (9)

where φ̇ is the angular speed of the centre of mass, Er is
evaluated at the radius R and r = xρ̂ + yφ̂. When the
Coulomb potential is negligible compared to interaction with
the external fields, as when the anti-atom is bound in a
giant dipole state, both particles will drift as free charged
particles, giving φ̇ � −Er/(BzR). Hence, to first order
K̇r = ME2

r

/(
RB2

z

)
, that is, the radial component of the

pseudo-momentum grows due to the centrifugal force. Thus
the minimum of the outer potential well will drift away with
a speed ∼ K̇r/(eBz) = ME2

r

/(
eB3

z R
)
. Neglecting terms of

order electron mass divided by proton mass, this is the same
as the difference �vd in the drift speed between the antiproton
and the positron in (7). Hence, the slight difference in drift
speed will cause any antihydrogen atoms bound in a giant
dipole state to grow in the azimuthal direction.

At the time corresponding to the vertical line shown in
all panels of figure 7, around 350 ns, the atom goes from a
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Figure 8. The binding energy distributions at positron densities of
(×) 1015 m−3 and (+) 5 × 1013 m−3 as extracted from the
simulations at the point at which the antihydrogen atoms leave the
plasma. These results were obtained using antiprotons initialized in
thermal equilibrium with the 15 K plasma.

‘normal’ state to a giant dipole state. Panel (a) of figure 7
includes a fit of the azimuthal separation after the transition to
the speed �vd, along with the location y0 = −Kr/(eBz) of the
minimum of the outer potential well. This dipole continues
to grow because of the difference in the drift speed. The
simulation ends when the positron leaves a pre-defined box
with the side of length 10 μm around the antiproton. In
the simulation, this marks the anti-atom as ionized. However,
the anti-atom is certain to be ionized already at the time of the
start of the breakup marked by the green line in figure 7.

3.4. Antihydrogen-binding energies

The binding energy, Eb, of the antihydrogen, defined as in
section 3.3, is also an output of the program. Figure 8
shows the simulated binding energy distributions just outside
the positron plasma at the highest and lowest densities
investigated, namely 5×1013 m−3 and 1015 m−3. Interestingly,
there is very little difference between the two, with perhaps
a slight preponderance of more tightly bound states at the
higher ne. The distributions peak around 25 K and very few
antihydrogen atoms seem to be bound by more than 100 K.
As described above in section 2, the initial condition for the
anti-atoms requires a binding energy of at least kBTe, which
explains the reduced yield above this binding energy. The
distributions each have a small tail of states extending to
binding energies below zero, i.e. states which in the absence of
external fields are unbound. (Such states have been discussed
previously in [25].) The binding energy of these atoms have
been reduced due to collisions with positrons. They can briefly
be held together by the external fields, but will eventually
dissociate, usually through the mechanism involving transition
to a giant dipole state described in section 3.2. As shown
below, none of these very loosely bound anti-atoms survive to
the detector. The details of their distribution is therefore of
limited interest to us.
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Figure 9. The binding energy distribution of the antihydrogen on
detection at positron densities of (×) 5 × 1013 m−3, (�) 1014 m−3,
(�) 2 × 1014 m−3, (◦) 5 × 1014 m−3 and (+) 1015 m−3. Te was 15 K
in each case.

The situation shown in figure 8 should be contrasted with
the distribution of binding energies of the antihydrogen when
detected, shown in figure 9 for all five values of ne investigated
here. There is a clear shift to deeper Eb with increasing
density. This is qualitatively in accord with expectations since
the electric field (and induced separation as described above)
will increase with ne, causing the more weakly bound states
to be field ionized. An estimate of the onset of the binding
energy distribution can be obtained by assigning this energy to
one half of the value at the peak for each ne. This reveals that
the onset is well described by a power law, scaling as n0.35

e .

3.5. Evolution of antihydrogen formation positions
in the plasma

The fraction of time that an antiproton spends bound to a
positron as an antihydrogen atom is usually small; even at
ne = 1015 m−3 this is less than 1% of the total time. Thus the
frequency of destruction is much faster than that for formation,
which might be expected given that collisions between the
nascent antihydrogen atoms and the positrons in the plasma
are likely to proceed with very large cross sections. The same
physics underlying the trends of collisions of Rydberg species
with charged projectiles, which results in the cross sections
scaling with the geometric area of the atoms [39], can be
applied here. For instance if the destruction cross section is
∼10−14 m2 [39] with ne = 1015 m−3 and antihydrogen speeds
>103ms−1 (see figures 12 and 13) then the destruction rate
will be greater than 104 s−1 per anti-atom. The fraction of
time a typical antiproton spends as antihydrogen seems to
increase roughly as ne. This is to be expected if the destruction
rate is much larger than the formation rate. In this case, the
equilibrium number of antihydrogens is proportional to the
ratio of the three-body formation rate, proportional to n2

e , and
to the destruction rate, proportional to ne, which gives an
overall proportionality to ne.

However, the formation and destruction of antihydrogen
does have a profound influence upon the time dependence of

10



J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 215002 S Jonsell et al

0 0.5 1 1.5 2 2.5 3
radius [mm]

yi
el

d/
ra

di
us

s 
[a

rb
itr

ar
y 

un
its

]

0 0.5 1
radius [mm]

yi
el

d/
ra

di
us

 [
ar

bi
tr

ar
y 

un
its

]
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Figure 10. The radial dependence of the distribution of antihydrogen formation positions (including both detected and ionized
antihydrogen): (a) ne = 1015 m−3 integrated over time intervals (×) < 0.1 ms; (	) 0.4–0.5 ms and (�) > 1.0 ms. (b) ne = 5 × 1013 m−3 for
the two time intervals, (×) < 25 ms and (	) > 100 ms. These results were obtained using antiprotons initialized in thermal equilibrium
with the 15 K plasma.

the radial distribution of the antiprotons. If an antiproton does
not form antihydrogen, it stays at a fixed radial position as the
simulation proceeds, due to the presence of the 3 T magnetic
field. However, when it neutralizes it may drift across the
field to a larger radius, where it can be field ionized. The nett
effect of this is most obvious at the higher positron densities.
Figure 10(a) shows the radial distribution (1/r) dNp/dr of
antiprotons versus radial position in the plasma in three
different time intervals for the positron density of 1015 m−3.
It is clear that as time proceeds, the antiprotons move to the
outer edge of the plasma, and more-or-less none remain in the
central region. At the lower density of 5 × 1013 m−3, shown
in figure 10(b), this effect is not present due to the much lower
frequency with which the antihydrogen is destroyed.

This effect is important for efforts to trap antihydrogen
since the overall kinetic energy of the antihydrogen will
unavoidably contain a component from the E × B drift of the
antiproton prior to formation. From (3), this is proportional
to the radial position of formation. If the antiprotons reside
close to the outskirts of the positron plasma, as suggested
by our data, the kinetic energy of the antihydrogen is likely
to be in excess of the realizable magnetic trap depths. The
latter are about 1 K for ground-state antihydrogen [4, 5], but
scale with the orbital angular momentum if excited states are
involved.

3.6. Radii of antihydrogen formation and transverse speeds

At high densities, the ionizations just outside the plasma seem
to be delayed events resulting from the collisional creation
of unstable states inside the plasma, but with the positron
and the antiproton separating on the outskirts of the plasma.
Once this occurs, the antiproton may become trapped in a side
well of the nested trap, or may be returned to the plasma. The
antiprotons which become field ionized and trapped result from
antihydrogen atoms which formed very close to the edge of

the plasma. The difference in radius, �r , between the point of
antihydrogen formation and where it left the plasma is shown
in figure 11. Figure 11(a) shows the case for ne = 1015 m−3,
whilst figure 11(b) is for 5 × 1013 m−3. Whilst both graphs
are of similar form, showing that the antihydrogen atoms
which end up being ionized have usually travelled a very short
distance inside the plasma, the effect is much more pronounced
at the higher density. By contrast, the antihydrogen atoms
which escape the plasma and are detected are formed much
more uniformly throughout the plasma.

These observations are understandable since the
antihydrogen atoms which are field ionized are the more
weakly bound cohort, which we see are formed preferentially
towards the edge of the plasma. Less time is spent in the
plasma for those anti-atoms formed nearer the edge, and hence
they will undergo fewer collisions (which can either ionize the
anti-atom, or drive it to a more deeply bound state). Thus,
these atoms are more likely to be field ionized as they exit
the plasma. The antihydrogen which typically survives the
plasma field is formed over a broad range of positions within
the plasma and is already deeply enough bound on formation
to survive. This could explain the fact that there is no peak in
these distributions at larger �r .

A related observation is as follows. The transverse speed,
vtr, distributions for the antihydrogen atoms which are detected
and for those which are eventually field ionized are shown in
figures 12(a) and (b) (for ne = 1015 m−3 and 5 × 1013 m−3,
respectively). In this plane the speed of the antiprotons will be
thermal, plus that due to the E × B drift. Since, from (3) and
(7), the latter depends upon the radius, the transverse speed of
the antihydrogen leaving the plasma may, depending upon the
relative size of the drift and thermal speeds, be characteristic
of the radius at which it was formed. Figure 12(a) shows,
that at the highest ne, the antihydrogen atoms which field
ionize have a larger vtr than those which survive. This is
because the former are predominantly formed at larger radii,
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Figure 11. The distribution of the difference in radius between the point of formation of antihydrogen atoms and the point at which they left
the positron plasma, for (×) detected and (�) ionized antihydrogen, (a) ne = 1015 m−3, (b) ne = 5 × 1013 m−3. These results were obtained
using antiprotons initialized in thermal equilibrium with the 15 K plasma.
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Figure 12. Simulated distribution of transverse speeds of the detected (+) and field ionized (×) antihydrogen atoms. The solid lines are
Maxwell–Boltzmann speed distributions corresponding to a temperature of 15 K. (a) ne = 1015 m−3, (b) ne = 5 × 1013 m−3. These results
were obtained using antiprotons initialized in thermal equilibrium with the 15 K plasma.

and therefore have a higher drift speed. At ne = 5×1013 m−3,
however, there is no noticeable difference between the two
vtr distributions, which are dominated by thermal effects. A
15 K Maxwell–Boltzmann distribution is shown in figure 12
for comparison and is nearly coincident with the simulated
distribution at ne = 5 × 1013 m−3.

3.7. Kinetic energies

We have computed the axial speeds, vz, and the overall kinetic
energies for the antihydrogen atoms which survive the plasma
and are detected at each density and are shown in figure 13
(see also figures 3 and 4). Recall that in the simulation
the antiprotons are injected into the positron plasma with an
axial speed of 2 × 104 ms−1. There are marked changes in

vz with density. The more rapid formation of antihydrogen
by epithermal antiprotons at the higher densities results in a
wide spread of axial speeds, extending right up to that of the
antiproton on injection. At 5 × 1013 m−3, the kinetic energy
distribution peaks just above 15 K and is very close to the
thermal distribution. At the higher densities, the kinetic energy
peaks at progressively higher energies with, at ne = 1015 m−3,
the distribution extending up to the injection energy.

3.8. Axial distribution of antihydrogen annihilations

The z-distribution (i.e. the distribution along the axis) of the
antihydrogen annihilations is shown in figure 14 at each ne.
The data have been convoluted with a Gaussian with 4 mm
width to allow for the finite resolution of the detectors in
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Figure 13. (a) Simulated antihydrogen axial speeds at (×) ne = 5 × 1013 m−3, (�) ne = 1014 m−3, (	) ne = 2 × 1014 m−3, (◦)
ne = 5 × 1014 m−3 and (+) ne = 1015 m−3. The inset details the behaviour at low speeds. (b) Antihydrogen kinetic energies, expressed in
units of kelvin. Here the inset shows the behaviour at low energies, which is mainly of relevance for the three lower densities. In both insets,
a 15 K distribution is included for comparison.
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Figure 14. The axial distribution of antihydrogen annihilation at
each density: (×) ne = 5 × 1013 m−3, (�) ne = 1014 m−3, (	)
ne = 2 × 1014 m−3, (◦) ne = 5 × 1014 m−3 (+) ne = 1015 m−3 and
(•) experimental data at ne = 1.7 × 1014 m−3 [22].

the experiment. These plots are striking in their density
dependence, as is the notable difference between them and
the distribution extracted by the ATHENA collaboration [22],
which is also included in figure 14. The simulated z-
distribution at ne = 2 × 1014 m−3 is narrower than the
experimental result from [22], where a similar density, ne =
1.7 × 1014 m−3, is quoted. In [22], the broad axial distribution
was attributed to the epithermal formation of antihydrogen.
Our simulations indicate that at ne = 1.7 × 1014 m−3 and
Te = 15 K the epithermal formation rate is not high enough to
explain the axial distribution measured in [22].

At the higher densities at Te = 15 K, the antihydrogen is,
as discussed in section 3.7, formed promptly and mostly by
epithermal antiprotons with significant axial speeds. Thus, the

distributions are very broad, with few anti-atoms annihilating
near z = 0. The peaks present at z = ±0.12 m are an artefact in
that these positions are the outer axial borders of the simulated
cylindrical volume. Nevertheless, this indicates that at low
positron temperatures and high densities, the antihydrogen is
strongly axially peaked.

As the density is lowered and antihydrogen formation via
the three-body mechanism slows preferentially with respect
to antiproton slowing down in the positrons, the distribution
becomes more centred around z = 0, as would be expected
for a thermal ensemble. At ne = 5 × 1013 m−3, 94% of the
distribution is contained in the central peak. The side wings
on the central distribution, extending from z � ± 0.02 m,
are positioned at electrodes which adjoin the central electrode
of the trap. The transition between electrodes coincide with
regions of high electric field. This will result in additional field
ionization of antihydrogen atoms and hence a reduced number
of antihydrogen atoms reaching the next electrode.

4. Conclusions

Detailed simulations of antihydrogen formation have been
performed for varying ne at Te = 15 K, including the
populations of antihydrogen detected after reaching the wall
of the Penning trap, and those field ionized.

We find the time dependence of the rates for both detected
and ionized species to be increasingly influenced by epithermal
effects as ne is increased. (The latter arises due to the manner of
p injection into the positron plasma as applied in the ATHENA
experiment.) Equilibrium rates could be isolated for the
detected antihydrogen atoms and were found to vary as ∼ n1.7

e ,
compared to the underlying n2

e dependence of reaction (2). The
difference was attributed to field ionization due to the inherent
radial electric field of the plasma. The field ionization of
weakly bound antihydrogen which occurs in the Penning traps
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used (which typically have magnetic fields in the tesla region)
was found to be due to a second-order effect which induces a
mass-dependent azimuthal drift which separates the pair. The
distribution of the binding energy of the detected antihydrogen
atoms was investigated at various ne, revealing a shift towards
deeper levels as the density is increased. This is caused by the
removal of weakly bound states due to the increase of the radial
plasma electric field with ne. The role of the field ionization
of nascent antihydrogen atoms in causing cross-plasma drift
was highlighted. At the higher ne, this resulted in preferential
formation of very weakly bound antihydrogen near the plasma
edge, which is subsequently broken up as it leaves the plasma.

The influence of the positron density on the transverse
(to the magnetic field) and axial speeds and kinetic energies
was deduced. As ne is increased epithermal effects, due to
the residual kinetic energy of the p, dominate the axial speeds,
whilst the effect of the E × B rotation of the positron plasma
has an increasing effect on the transverse speeds. Only at the
lowest density simulated (at Te = 15 K) does the kinetic
energy distribution of the antihydrogen approach thermal.
Similarly, the axial distribution of antihydrogen annihilation is
dramatically dependent upon ne, with the axial speed dominant
at high ne. The simulated rates of antihydrogen formation and
detection are far higher than those found in the ATHENA
experiment. At the moment we have no explanation for the
discrepancy though we note that the three-body reaction is
strongly dependent upon Te, and that ATHENA could not
directly measure the base temperature of the positron plasmas
used in their experiment.
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