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Abstract

We simulate the effect of special excitation pulses on a cold gas of atoms. First, a rotary echo
sequence is used to examine the coherent nature of a frozen Rydberg gas. If collective
excitation and de-excitation is present with little or no source of dephasing, after these pulses
the system should be returned to a state with few excitations, and a strong echo signal should
occur. We investigate systems that should display a perfect echo and systems where the
interaction between atoms reduces the echo signal. A spin echo sequence is also used on a
system of coherent hopping excitations, and we simulate how the strength of a spin echo signal
is affected by thermal motion.

1. Introduction

Advancements in cooling and trapping have opened up new
opportunities for investigating the properties of interacting
many-body systems. In particular, the creation of frozen
Rydberg gases have made it possible to study correlated groups
of atoms [1, 2]. At these low temperatures the motion of the
atoms can be neglected during the time scales of excitation,
and the long-range interactions between atoms can be carefully
studied.

One interesting consequence of the strong interaction
between Rydberg atoms is the suppression of excitation known
as the dipole blockade effect [3, 4]. While the reduction
in excitation has experimentally been seen by several groups
[4–10], it is of recent interest to measure the coherent collective
behaviour of the groups of atoms that have been blocked from
becoming excited [7, 11].

The dipole–dipole interaction between Rydberg atoms can
also lead to a situation where two pairs of states (|AB〉, |B ′A′〉)
are moved into resonance with each other (EA+EB � E′

B+E′
A)

[1, 2, 12, 13]. In this case, the system will oscillate between the
two states at a rate governed by the dipole–dipole interaction
between them. With more than two atoms involved in the
system, the states appear to coherently hop from atom to atom
[14, 15]. If the atoms are placed into regular lattice sites then
a direct observation of the coherent hopping can be detected
[15], but in a random gas the coherent nature of the hopping is
hidden.

In this paper, we simulated the effect of echo sequences
on coherent Rydberg systems by using the many-body
pseudoparticle wavefunction approach outlined in [16, 17] and
the essential states model used in [14] to numerically solve the
Schrödinger equation. In particular, we investigated the rotary
echo of a strongly blocked Rydberg gas and the spin echo of
a system of hopping excitations. The approach taken in [17]
is particularly appropriate to use in the strong dipole blockade
regime because we explicitly correlate groups of nearby
atoms and take into account the spatial correlations between
pseudoparticles that a simple mean-field model cannot. The
hopping dynamics are well described by the essential states
model.

2. Rotary echo of a dense Rydberg gas

When the system is especially dense, the correlations within
a gas can become the dominant factor in the dynamics of
the system. An example of this is the coherent Rydberg
excitation of dense ultracold atoms [7]. In this case, the
van der Walls interaction (V (R) ∝ 1/R6) between excited
states actively suppresses the number of atoms able to be
excited to Rydberg states, thus exhibiting a dipole blockade
[3]. The minimum distance between excited particles, or
blockade radius (Rb), is governed by the distance where
V (R) is comparable to the linewidth of excitation. Only one
excited atom within the blockade region swept out by Rb/2
is allowed, and this single excitation is delocalized across all
Nb atoms contained within this volume. The collective Rabi
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oscillation rate � of this collection, or ‘superatom’ [18], of
Nb atoms is given by � = √

Nb�0, where �0 is the Rabi
frequency of an isolated atom. In the experiment performed
in [7], the dominant contribution to the linewidth of excitation
is power broadening which is proportional to �. Now
the minimum distance between Rydberg atoms is related to
the linewidth by Rb ∝ (

√
Nb�0)

−1/6, but Nb is determined
by the local atomic density, ρ, and the size of the blockade
region: Nb ∝ ρR3

b . After substitution, it becomes clear that
the size of the blockade region and Nb are related to the local
density by Rb ∝ ρ−1/15 and Nb ∝ ρ4/5. Ultimately, the
collective oscillation rate of a superatom is dependent on the
local density by � ∝ ρ2/5 [17]. In a typical magneto-optical
trap (MOT), the density of the gas spans over several orders of
magnitude; therefore, superatoms within the gas will oscillate
over a wide range of frequencies. In fact, by using the MOT
parameters in [7], most of the superatoms in the gas oscillate
about ten times slower than those located near the peak density
[17]. This inhomogeneity in density (and therefore collective
oscillation frequency) makes it very difficult for experimental
studies to directly measure the coherent nature of the system
because the observable is an integration over the entire sample
[11].

Early studies in the field of nuclear magnetic
resonance physics had to overcome similar problems with
inhomogeneities in magnetic fields which led to a wide range
of Larmor precession frequencies and obscured the resonant
absorption of the driving RF field [19, 20]. In 1950, Hahn
demonstrated the effectiveness of a ‘spin echo’ sequence of
pulses that was extremely effective in eliminating noise from
the signal. In 1959, Solomon also demonstrated the successful
use of a ‘rotary echo’ in doped water to overcome the effects
of inhomogeneities in magnetic fields.

More recently, there was an experiment which used a
rotary echo technique to prove the coherence of the excitation
in a strongly blockaded ultracold gas [11]. The experimental
setup in [11] trapped and cooled atoms down to 3.8 μK
and excited them to 43S3/2 for up to 500 ns while keeping
track of the total number of excitations in the gas. At such
a low temperature and short excitation time the atoms are
effectively motionless, so thermal motion can be disregarded
as an outside source of decoherence. In a system of ultracold
Rydberg atoms, a substantial source of inhomogeneity in the
Hamiltonian is the variation in local density across the sample;
the Gaussian shape of the density distribution in [11] certainly
led to an inhomogeneity in �.

2.1. Rotary echo

In simplest terms a rotary echo sequence flips the sign of the
excitation amplitude in the Hamiltonian after a certain time τp.
The Hamiltonian describing the excitation of a dense ultracold
gas using the many-body pseudoparticle approach is

Ĥ (t) =
∑

j

Ĥ
(1)
j (t) +

∑
j<k

Vjk|njnk〉〈njnk|

Ĥ
(1)
j (t) = − [�ω(t) + ε(t)] |nj 〉〈nj |

+F(t)
�0

2

√
Nj(|gj 〉〈nj | + |nj 〉〈gj |), (1)

where the number of atoms associated with pseudoparticle
j is given by Nj , and Vjk is the interaction between two
pseudoparticles j and k. One way the interaction Vjk can be
calculated is by averaging over the interactions V between all
of the pairs of associated atoms,

Vjk = 1

NjNk

∑
n∈j

∑
m∈k

Vnm(Rnm), (2)

where Rnm is the distance between atoms n and m, which
belong to pseudoparticles j and k respectively. Another way to
calculate the interaction would be to simply use the positions of
the pseudoparticles themselves. Now Vjk = V (Rjk). Clearly
as the number of pseudoparticles is increased the two different
methods will give the same interaction energies. We used
the latter approach in our calculations because it converged
faster with respect to random geometries as long as enough
pseudoparticles were used. The detuning of the laser is
�ω(t), and ε(t) is a mean-field energy shift due to excited
atoms outside of the simulated volume. The kets |gj 〉 and |nj 〉
correspond to atom j being in the ground state and excited to
the n manifold respectively, and |njnk〉 is the state where atoms
j and k are both excited. In [11], the rotary echo sequence
was accomplished by using an RF field to flip the sign of �0

after the time τp � τ , where τ is the total excitation time. In
our simulations, we used the following to model the excitation
profile:

F(t)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e−5(t−tr )
2/t2

r for t � tr
1 for tr < t � τp − tr

e−2(t−(τp−tr ))
2/t2

r

− e−2(t−(τp+tr ))
2/t2

r for τp − tr < t � τp + tr
−1 for τp + tr < t � τ − tr

−e−5(t−(τ−tr ))
2/t2

r for τ − tr < t � τ.

(3)

In equation (3), tr is the ramping time for the laser. A Gaussian
is used during ramp on time, between sign changes, and ramp
down time as a smooth transition to avoid an instantaneous
switch which could lead to unphysical, and therefore undesired
high- frequency effects. Figure 1 illustrates an example of this
type sequence.

When the system is sufficiently sparse, the energy shift
due to the van der Waals interaction (Vjk) between atoms j

and k becomes negligibly small compared to the width of the
excitation amplitude, and the ground-state atoms are excited
for a time τp and de-excited for a time τ − τp. This system of
isolated atoms will be returned to zero excitations if τp = τ/2.
A measurement of zero excitations is the perfect rotary echo
case. Figure 2 is the result of simulating the excitation of a
diffuse system of five atoms using a rotary echo sequence. The
excitation amplitude �0 was chosen so the maximum number
would be excited at 500 ns. These echo simulations compare
the number of excited atoms to the timing of the sign flip τp.
As expected, when τp = τ/2 a perfect echo was recorded.

If the system is so dense that the van der Waals interactions
are much greater than the excitation amplitude then the system
is in the strong blockade limit. In the extreme case where all
of the atoms are within a blockade radius the system has been
reduced down to a single superatom. This single isolated
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Figure 1. An illustration of a rotary echo sequence. The sign of the
excitation amplitude F is smoothly flipped after time τp . In this
case τp = 350 ns, and is indicated by the dashed line.
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Figure 2. Number excited versus the timing of the sign change of
the excitation amplitude. This echo signal is for five isolated atoms.
Note that there are zero excitations when τp = 250 ns, exactly half
of the total excitation time.

superatom will also be excited and de-excited for the same
amount of time, thus returning the system to a state of zero
excitations. In figure 3, we plot the number excited versus
τp for a perfectly blocked system of ten atoms (all ten atoms
lie within a region defined by Rb/2). A perfect echo can be
seen when τp = τ/2 and the maximum number excited is
exactly 1.

A more interesting situation arises when the system is
dense enough to create blockades, yet large numbers of
excitations are allowed to occur. Now the energy shift
due to the van der Waals interaction is comparable to
the width of the excitation amplitude. In this case, the
pseudoparticle approach used in [16, 17] is especially useful
in describing the spatial correlations between pseudoparticles
which represent groups of blockaded atoms. In this model, the
van der Waals interaction is between pseudoparticles and not
between individual atoms themselves, so the inhomogeneity in
collective oscillations is explicitly included in the simulation.
We simulated a rotary echo sequence of excitation for two
different peak densities. In each case, we simulated the
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Figure 3. Number excited versus the timing of the sign change of
the excitation amplitude. This echo signal is for ten atoms in the
perfect blockade regime which means that the maximum number of
excited atoms in the collection is exactly 1. Note the perfect echo
signal at 250 ns.

fraction excited at specific density points and convolved the
results over the Gaussian density distribution given in [7]

Nexc(τ ) = 2πσ 2�z

∫
Pe(ρ, τ )

√
ln(ρ0/ρ) dρ, (4)

where σ = 12 μm is the width of the excitation region
in the radial direction, �z = 220 μm is the width in the
axial direction, ρ0 is the peak density and Pe(ρ, τ ) is the
fraction excited at a given fixed density, ρ, after an excitation
time τ . The other parameters used in the following three
simulations were chosen to match those used in [11]. Plotted in
figure 4(a) is the echo signal as a function of τp for a peak
density of 5 × 1012 cm−3. While the echo signal is not perfect
at τp = τ/2, it is still prevalent because the interaction between
pseudoparticles is not as strong. When simulating at a higher
peak density of 1.5 × 1013 cm−3, the echo signal is weakened
as in figure 4(b) by the dephasing caused by pseudoparticle
interactions.

Interactions between pseudoparticles are a significant
source of dephasing which prevents a perfect echo from
occurring. This can be understood in the context of the
Hamiltonian for the system. While the off-diagonal elements
(given by the excitation amplitude) are reversed after τp,
the sign of the diagonal van der Waals interaction elements
remain unchanged, and the system does not perfectly evolve
backwards in time. If it were possible to switch the sign of
the van der Waals interaction between particles at the same
time as the excitation amplitude then the sign of the entire
Hamiltonian would be flipped and all sources of dephasing
would have to be external such as thermal motion or ionization.
Flipping the sign of the whole Hamiltonian is effectively
the same as reversing the sign of t and perfectly running
the system backwards in time. The lack of a perfect rotary
echo signal would indicate outside sources of decoherence
on the gas and coupling to external degrees of freedom. In
figure 5, we simulated a system where the whole Hamiltonian
gets switched in sign at τp in the same manner as equation (3).
The perfect echo indicated in our simulations is consistent
with the notion of running the system backwards in time. We
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Figure 4. Number excited versus the timing of the sign change of the excitation amplitude. The echo signal for (a) peak density of
ρ = 5.0 × 1012 cm−3 and (b) peak density ρ = 1.5 × 1013 cm−3.
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Figure 5. Number excited versus the timing of the sign change of
the entire interaction Hamiltonian. This echo signal is for a high
peak density of ρ = 1.5 × 1013 cm−3.

believe that it might be possible to realize a time-reversible
system of Rydberg atoms by using a small electric field
to diabatically push the system to states that experience a
dipole interaction of the same magnitude but opposite in sign
compared to the field-free states. A promising interaction
would involve taking advantage of the resonance near n = 43
for d − d Rb atoms.

3. Spin echo for coherent Rydberg hoppers

In [14], a possible experiment to measure the coherent
hopping of excitation between slightly irregular lattice sites
was proposed. A key feature of this proposed experiment
was the clear separation of regions which would allow for the
spatial location of the hopper to be measured, but it would be
impossible to measure the coherent nature of the hopping in
an inhomogeneous gas in this manner. The amount of time
it takes for an excitation to hop between atoms is inversely
proportional to the dipole–dipole interaction energy between
them, thop ∝ R3 [14], so in an irregular gas of Rydberg
atoms the excitations would be hopping at different rates and
directions. Any measurement of hopping rates or locations
would be hidden due to the random placement of Rydberg

atoms. Unlike the previous section, all state labels that follow
will refer to single atom states and not pseudoparticle states.

3.1. Spin echo

Like the rotary echo, the spin echo sequence was first
used to overcome inhomogeneities in the magnetic field in
NMR. Unlike the rotary echo, the spin echo is not simply a
consequence of running the system forwards and backwards
in time for the same duration. The spin echo works by making
series of unitary transformations on the generalized Bloch
sphere describing the quantum system [19]. In particular,
we used the following sequence of pulses to simulate a spin
echo: first the system is excited by a π/2 pulse (which takes
the ground state |g〉 to a mix of the ground and excited
state (|g〉 − i|n〉)/√2, and an excited state |n〉 to a mix of
|n〉 → (−i|g〉 + |n〉)/√2), then the system is allowed to
dephase for a time τ1. Next, the system is excited by a π

pulse (which takes the state |g〉 → −i|n〉 and |n〉 → −i|g〉);
again the system is allowed to dephase for τ2, and finally the
system is excited via a π/2 pulse. In summary the sequence
looks as follows:

π/2 → τ1 → π → τ2 → π/2. (5)

If decoherence are negligible then the system will exhibit a
strong spin echo when the two dephasing times are equal,
τ1 = τ2.

We simulated the effect of the spin echo sequence of
equation (5) on the following system: a single ground state |g〉
atom in a sea of atoms excited to the Stark state |n′〉 or |ψ0〉 =
|gn′n′ · · · n′〉. This is, of course, a severe approximation to
a real experiment where the number of |g〉 state atoms will
most certainly be greater than one, but the effect of a spin
echo sequence on this simplified system should be of interest.
The density of the gas was chosen so the average distance
between particles would be 13.5 μm. The excitation laser
coupled |g〉 to an excited Stark state |n〉, but not |g〉 to |n′〉.
The two Rydberg states |n〉 and |n′〉 were chosen in a manner
that allowed for the resonant exchange of energy through the
dipole–dipole interaction [14]. This means that the |n〉 state on
atom j can coherently hop to any atom k with |n′〉 character. If
the direction of the static electric field is in the ẑ-direction then
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the likelihood of hopping will be determined by (nn′/3)2/R3
jk ,

where |n − n′| = 1 are the principal quantum numbers of the
two Stark states and Rjk is the distance between the two atoms.
If the atoms are not allowed to move during the simulation time
(i.e. the temperature is set to 0 K), then the final state of the
system after a spin echo sequence can be analytically derived
for the single hopper case in a sea of N |n′〉 atoms. For clarity,
we first solved the two-particle case for the final state of the
system,

|ψf 〉
= − 1

2 {[cos(V τ2) e−i(εgτ1+εnτ2) + cos(V τ1) e−i(εgτ2+εnτ1)]|gn′〉
− i[sin(V τ2) e−i(εgτ1+εnτ2) + sin(V τ1) e−i(εgτ2+εnτ1)]|n′g〉
+ i[cos(V τ2) e−i(εgτ1+εnτ2) − cos(V τ1) e−i(εgτ2+εnτ1)]|nn′〉
− [sin(V τ2) e−i(εgτ1+εnτ2) − sin(V τ1) e−i(εgτ2+εnτ1)]|n′n〉}
× e−iεn′ (τ1+τ2), (6)

where V = (nn′/3)2/R3
jk was the off-diagonal matrix element

for the dipole–dipole interaction, εg was the energy of the
ground state, εn was the energy of the excited Stark state
|n〉 and εn′ was the energy of the Stark state |n′〉. When
τ1 = τ2 = τ , the final wavefunction is simply

|ψf 〉 = [− cos(V τ)|gn′〉 + i sin(V τ)|n′g〉] e−i(εg+εn+2εn′ )τ .

(7)

Note that only |gn′〉 and |n′g〉 states remained, and the
probability of finding an atom in the Stark state |n〉 is zero.
This was a perfect spin echo. For the case of a small difference
in dephasing times, τ2 = τ1 + � and � is small, this case can
be simplified as well to

|ψf 〉

= −
{

cos

(
[εn − εg]

�

2

)
[cos(V τ1)|gn′〉i − sin(V τ1)|n′g〉]

− sin

(
[εn − εg]

�

2

)
[cos(V τ1)|nn′〉i − sin(V τ1)|n′n〉]

}

× e−i(εg+εn+2εn′ )(τ1+ �
2 ). (8)

Now the probability of finding a |n〉 state atom is very small
and proportional to

[
(εn − εg)

�
2

]2
. For the general case of one

|n〉 hopper in a sea of N |n′〉, the final wavefunction is

|ψf 〉

= −1

2

{
i

N+1∑
k=1

[
αik(τ2) e−i(εgτ1+εnτ2) − αik(τ2) e−i(εgτ2+εnτ1)

]
|nk〉

×
N+1∑
k=1

[
αik(τ2) e−i(εgτ1+εnτ2) + αik(τ2) e−i(εgτ2+εnτ1)

]
|gk〉

}

× e−iNεn′ (τ1+τ2), (9)

where αik is the probability amplitude of finding the |n〉 state
initially on atom i on atom k, |gk〉 represents the state with |g〉
atom k and |nk〉 represents the state with |n〉 on atom k. In the
essential states model [14], the diagonal matrix elements of the
Hamiltonian for resonant dipole–dipole interactions between
Rydberg atoms excited to extreme Stark states are given by

Vn,n′;n,n′ = Vn′,n;n′,n =
(

3nn′

2

)2 1 − 3(R̂12 · ẑ)2

R3
12

, (10)
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Figure 6. Spin echo signal in a 0 K gas with exactly one hopper
versus difference in scaled dephasing times. When �τ/thop = 0 a
prefect signal is seen.

and the off-diagonal elements are given by

Vn,n′;n′,n = Vn′,n;n,n′ =
(

nn′

3

)2 1 − 3(R̂12 · ẑ)2

R3
12

. (11)

By solving for the eigenvalues and eigenvectors of the
Hamiltonian given in equations (10) and (11), we found the
values for the hopping amplitudes α. When τ1 = τ2 = τ ,
the probability of finding a |n〉 state atom is zero, and the
system again displays a perfect echo,

|ψf 〉 = −
N+1∑
k=1

αik(τ ) e−i[εg+εn+2Nεn′ ]τ |gk〉. (12)

In figure 6, we plot the probability of finding no |n〉 atoms
as a function of the difference in scaled dephasing time.
The difference in scaled relaxation time is �τ/thop, where
�τ = τ1 − τ2 and thop = 0.83 μs is the time it takes for
the excitation to hop the average distance between atoms:
13.5 μm. As expected, in a zero temperature gas with one
hopper the system exhibits a perfect echo at �τ/thop = 0.
When the difference in dephasing times becomes large, the
system becomes more and more evenly mixed.

While the previous discussion neglected the effects of
temperature, by allowing the particles to exhibit thermal
motion and by solving for the hopping amplitudes during every
time step, we simulated a one hopper gas with an outside source
of decoherence. In order to account for the time dependence
of the Hamiltonian we used an exponential propagator and
adjusted the position of each atom during each time step. If
the time steps are kept small and the change in position is also
small then the accumulated errors can be kept to a minimum.
The results of our simulations are shown in figure 7 as a plot of
finding zero |n〉 atoms as a function of temperature. At every
temperature point the two relaxation times were exactly equal,
so if thermal motion caused no decoherence then a perfect echo
should be seen. If the two relaxation times between excitation
pulses are just long enough to allow one hop to occur then the
effect of temperature is minimal, the |n〉 state has not diffused
very much. In this situation, the hopping of the |n〉 state can be
limited to only the nearest neighbours; the sequence of hops to
get to the final state is very simple, directly from i to k. When
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Figure 7. Spin echo signal in a gas with exactly one hopper as a
function of temperature for various τ relaxation times. In each case
τ1 = τ2 = τ . The solid line is for τ = thop, the dashed line is for
τ = 2thop, the dotted line is for τ = 3thop, the perforated line is for
τ = 4thop and the chain line is for τ = 5thop.

the relaxation time is increased to allow two hops, the effect of
temperature is again pretty minimal well into the hundreds of
microkelvins. Now the |n〉 state is limited to nearest and next-
nearest neighbours and the number of possible particles it can
hop to has increased by a factor of about 8, and for each one
of these atoms their motion contributes to the dephasing. By
increasing the relaxation time, the number of atoms involved
in the hopping dynamics increases drastically for each interval
of thop. The effect of temperature is quite apparent when the
number of allowed hops is 4 or above, the echo signal has
effectively vanished for temperatures greater than 300 μK.
As expected when the temperature gets closer to 0 K, a
strong echo signal is observed, no matter how many times
the excitation is allowed to hop. It should be noted that the
even when the thermal motion is neglected, the dipolar force
between Rydberg atoms will cause acceleration. The large
mass of Rb and the shortness of thop, however, prevent this
motion from being significant. For example, after ten hops
(∼8.3 μs) the attractive force between two atoms initially
separated by 13.5 μm will have moved them only 0.01 μm
closer.

4. Conclusions

In summary, we have been able to investigate the effects of
echo sequences on systems of interacting Rydberg atoms. We
simulated a rotary echo signal in a dense ultra cold Rydberg
gas by using the pseudoparticle many-body wavefunction
approach to describe the blockade effect. Unlike simpler
mean-field models, the pseudoparticle approach directly takes
into account high correlation between nearby atoms, and
the spatial correlations between pseudoparticles. While
a mean-field model predicts the strong echo signal to be
suppressed due to the strong interactions between nearby pairs
of individual atoms, the pseudoparticle method prevents such
short distances between Rydberg atoms. Our simulations
showed a clear rotary echo signal when the sign of the
excitation amplitude is switched half-way through the total

excitation pulse. When all of the atoms or pseudoparticles
are perfectly correlated, a perfect echo is seen. As the
density between Rydberg atoms is increased the interactions
between pseudoparticles are increased and the echo signal is
reduced.

We also simulated a system where the sign of the
entire interaction Hamiltonian is flipped, both the laser–
atom interaction and the atom–atom interaction. Because
the coupling between Rydberg atoms is no longer a source
of dephasing, any reduction of the rotary echo signal would
indicate an external source of decoherence. It might be
possible to experimentally realize such a system using a weak
electric field to switch the sign of van der Waals potential
between two 44d5/2 Rb atoms at the same time an RF field is
used to switch the phase of the excitation amplitude.

We finally examined the spin echo signal of a single
coherently hopping Rydberg excitation in a gas. If thermal
motion is neglected, we analytically showed that the system
will display a perfect echo when the relaxation time between
excitation pulses is exactly equal. Our simulations of
temperature dependence on signal strength indicated that as
the number of allowed hops is increased, the effect of thermal
motion becomes drastically more significant. If more than
four hops are allowed during each relaxation time then the
temperature of the gas must be less than 300 μK for any
discernable echo signal to be detected. Of interest would be
further studies into the effects of multiple hoppers on the spin
echo signal, and how the coherence of these systems responds
to increasing temperatures.
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