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Abstract
We describe simulations that illustrate the possibility for manipulating the
position correlation of atoms in a magneto-optical trap (MOT) using the dipole–
dipole interaction. The control scheme utilizes a narrow band laser that is
detuned to the high-frequency side of a single-photon Rydberg transition in an
isolated atom. As two atoms move near each other, they can be laser excited to
repelling diatomic Rydberg–Rydberg potential energy curves which halt their
approach. By chirping the laser from large to small detunings, atoms in a
MOT can be pushed apart by dipole–dipole forces, thereby controlling nearest-
neighbor interactions. Alternatively, by holding the frequency of the Rydberg
excitation laser fixed as the MOT is loaded, it should be possible to limit the
minimum distance between atoms to a prescribed value.

1. Introduction

Isolated Rydberg atoms are extremely sensitive to externally applied electric fields.
Accordingly, when two or more atoms are in close proximity, each may be strongly influenced
by the dipole field of the other(s) via resonant and/or non-resonant dipole–dipole interactions.
Spectroscopically, if the Rydberg atom density is sufficiently high, the frequencies associated
with allowed transitions measurably shift and broaden [1–3]. Also, transitions that are
forbidden within isolated atoms may become allowed in the presence of other Rydberg atoms
[2, 4]. There is considerable current interest in the processes that govern the behavior of
Rydberg gases in the regime where the atom–atom interaction strength becomes comparable
to other energy scales in the problem. These effects include the dipole blockade [5–14],
the hopping of Rydberg excitation through an ensemble [15–21], and long-range collisions
between pairs of Rydberg atoms [22–28]. Controlling these phenomena is critical for their
application in areas such as quantum information processing [5, 6] or for utilizing Rydberg
atoms to simulate quantum many-body models. Since the dipole–dipole interaction strength
drops off rapidly (R−3 and R−6 for the resonant and non-resonant cases, respectively) with
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increasing distance R between atoms, the ability to manipulate nearest-neighbor separations
is the key to controlling the atomic interactions.

More generally, techniques to create ordered arrays of neutral atoms at arbitrary separation
or ensembles of atoms with well-defined minimum separation would be beneficial for a
variety of applications. In principle, localizing atoms at a separation R is possible using
either a periodic array of externally generated trapping potentials, e.g. an optical lattice, or
by confining atoms with strong repulsive interactions within a global trapping potential. The
latter case is analogous to the situation in a crystalline solid or to ion crystallization in a
Penning or Paul trap [29, 30]. In either case, the atoms will have well-defined separations
provided that the change in the potential energy over distances �R exceeds kBT . Fortunately,
using standard laser cooling and trapping techniques one can readily produce ensembles of
atoms with extremely low temperatures, T. Unfortunately, while generating an optical lattice
is straightforward, achieving a unit filling fraction with only one atom per lattice site is
quite challenging [31]. Also, due to the short range of the interatomic forces, observing the
effect of repulsive interactions on the density or position correlation of trapped ground-state or
weakly-excited neutral atoms would be extremely difficult. Instead, we describe a method that
exploits long-range repulsive Rydberg–Rydberg interactions to restrict the distance of closest
approach between atoms in a MOT and to potentially produce ordered arrays of atoms without
an optical lattice. The technique relies on continuous laser cooling of ground-state atoms in
the MOT. Atoms may be pumped into Rydberg states depending on their relative separations,
but typically remain excited for only a small fraction of their spontaneous emission lifetime.

Before describing the control scheme in detail we note that the R-dependent electronic
dipole–dipole interaction energy is the origin of the mechanical force between the Rydberg
atoms. In the absence of external fields, the gain(loss) of electronic energy comes from the
loss(gain) of energy from the center-of-mass motion of the atoms. Provided the atoms are
sufficiently cold, the electronic energy curves are followed adiabatically and correspond to
effective potential curves for the atomic motion [32–37]. Attractive potential curves can
support bound ‘vibrational’ states of the interatomic motion. Moreover, electronic excitation
of nearby atoms to attractive or repulsive curves can lead to a substantial increase in the atomic
kinetic energy as the atoms are accelerated toward or away from each other.

This effect can be exploited to control atomic scattering between atoms in low-lying
excited states [38–41] and when they are in Rydberg states [42, 43]. By detuning the frequency
of an excitation laser slightly to the red (i.e. lower frequency) of a transition in an isolated
atom, pairs of atoms atoms at particular separations can be promoted to an attractive molecular
potential curve. The laser detuning determines the separation between the atoms at the instant
of excitation as well as the kinetic energy of the two atoms at their point of closest approach.
This selective excitation can result in more rapid and energetic collisions than would otherwise
occur, and therefore, can also alter the evolution of a Rydberg gas, perhaps resulting in plasma
formation.

Here we propose to exploit the situation that develops when a narrow-band cw laser is
detuned by an amount � to the blue (i.e. higher frequency) of a Rydberg transition in an
isolated atom. This situation was investigated for low-lying excited states [38]. If two atoms
are very far apart, their dipole–dipole potential energy is negligible, and there will only be
virtual transitions to the Rydberg state. However, for nearby atoms, the interaction shifts the
resonant transition frequency. In particular, there is a distance where the two-photon transition
is in resonance. Imagine two ground-state atoms that are far apart. As they come together due
to random motion, they hardly feel a force until they reach a distance where both atoms make
a transition to a Rydberg state. Because the laser is blue detuned, the potential curve for the
Rydberg–Rydberg state must be repelling. Thus, the atoms experience a strong force pushing
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(a) (b)

Figure 1. The Floquet energy curves for a model two-atom system with the laser detuned to the
blue: (a) laser intensity is 0 and (b) laser intensity gives a single-atom Rabi frequency of 2.5 MHz.
In (a), the solid lines are the Rydberg–Rydberg states, the dashed lines are the two states with one
atom in the Rydberg state and the other in the ground state, and the dotted line is for both atoms in
the ground state. The distance has been scaled to the separation Rres where the repelling Rydberg–
Rydberg state is in resonance. The dash-dot line shows the position of the Rydberg–Rydberg state
if the interaction between atoms is set to 0. In (b), an approximate, diabatic curve for the repelling
Rydberg–Rydberg state is shown as a dotted line.

them apart. Later, as the atoms move to larger separation, they will once again go through
the distance where the laser is resonant with the two-photon transition. The atoms then emit
photons and end up in the ground state. As discussed in more detail below, the two-photon
absorption and emission is accomplished via adiabatic rapid passage between dressed states.
This process can occur with arbitrarily high efficiency, provided there is sufficient laser power
for a given relative velocity between atoms, supplying a controllable interatomic force that acts
to keep the atoms separated while only having the atoms in the Rydberg state for a short time.

To see how this situation develops, examine the Floquet energy levels in figure 1 for a
model of two atoms interacting with a laser field and each other. Details of the model are
given in the next section. In figure 1(a), we show the Floquet energy levels with the laser
strength set to 0. For this model, we assume the Rydberg–Rydberg interaction occurs through
a dipole–dipole potential that couples a pair of (nearly) degenerate states of opposite parity.
There are many, many possible examples of this scenario including the Rb 48s1/248s1/2 +
47p3/248p3/2 states from [43] or the Cs 23p3/223p3/2 + 23s1/224s1/2 levels from [16]. The two
Rydberg states become mixed and have energies of 2ERyd ± C/R3. In figure 1(a), the two
solid lines are the Floquet energies for the two eigenstates in the presence of the dipole–dipole
interaction. The dashed line in figure 1(a) shows the two states with one atom in the Rydberg
state and the other in the ground state (degenerate levels) and the dotted line is for both atoms
in the ground state. We will use the symbol Rres for the separation where the two-photon
resonance condition is satisfied. The atomic separation length scale has been chosen so that
the two-photon resonance condition occurs at 1.

Note that the repelling potential curve crosses the singly excited state at the separation
21/3Rres. The one-photon resonance (i.e. the one-photon transition when one of the atoms
is already in a Rydberg state) is detuned by � but the two-photon resonance is detuned by
2�. The Floquet energy levels in the presence of the laser are shown in figure 1(b). Note
that the crossings with the Rydberg–Rydberg state have now become avoided crossings. An
approximate, diabatic curve for the repelling Rydberg–Rydberg state is shown as a dotted line.
Our primary interest here is the uppermost curve. This is the dressed state that corresponds
to both atoms in the ground state at large distances and the atoms in the strongly repelling
Rydberg–Rydberg state at short distances.



3696 M L Wall et al

As long as the atoms move slowly and spontaneous emission from the Rydberg states is
negligible, the system will stay on the upper curve. This means the atoms can be kept far apart
and will always end up in the ground state after each collision. The atoms will only be in the
Rydberg states during the short amount of time needed to push them apart. This time can be
much shorter than the Rydberg spontaneous emission lifetime. Another interesting feature is
that the detuning of the laser determines the separation that gives the two-photon resonance:
large detuning gives resonance at small separation and small detuning gives resonance at large
separations. For typical pairs of Rydberg states with n ≈ 40, the resonant separation is on the
order of microns for laser detunings on the order of 10 MHz.

This leads to two interesting possibilities for cold gas experiments. The first is to start
with a laser that has a large detuning and slowly chirp toward smaller detuning. The atoms
then experience an inter-atomic potential whose repelling part moves to larger separations.
This would give an effective force that pushes the atoms apart while they remain confined in
a MOT. One might use this mechanism to push the atoms into something approximating an
ordered array. The second is to use the inter-atomic potential to control the properties of an
ultracold gas. A MOT could be loaded with a fixed frequency Rydberg laser in place. One
would then have an interaction where both the scattering length and range of the potential can
be controlled. Moreover, the range of the potential is enormous.

In the following sections, we give the results of calculations that illuminate the properties
of the potential curves. We first describe a model that captures the essence of this physical
situation. We then give two examples in Rb that demonstrate some of the complications that
develop for real systems.

Atomic units are used throughout this paper unless specifically noted otherwise.

2. A model system

In this section, we consider a model system that captures the essence of the Rydberg–Rydberg
interaction. We use five electronic states to characterize the two-atom system. Physically
we want to represent the case where a laser is detuned slightly from a transition between a
ground- or low-lying excited-state and a Rydberg state ra . The transition does not occur for
isolated atoms because the laser is too far off resonance. However, if two atoms are both in
the Rydberg state ra , they can interact through the dipole–dipole interaction. In particular, we
consider the case where there is a second, (nearly) degenerate pair of states, rb and r ′

b which
differ in angular momentum from ra by ±1. In order to simplify the calculation, we ignore the
dependence of this interaction on the direction between atoms. We also assume the two pairs
of Rydberg states are exactly degenerate; in practice this is easily accomplished by applying
a small, static electric field to the atoms, e.g. see [15, 16, 23].

The laser–atom interaction is through a coupling term EDg,ra
cos(ωt) with Dg,ra

the
dipole matrix element between the ‘ground’ state and the Rydberg state ra and ω is the laser
frequency. To put the frequency into a more useful form, we write ω = Er + � where Er is
the energy of the Rydberg state above the ground state and � is the detuning.

We define zero energy to be the energy where both atoms are in the electronic ground
state. The five states correspond to both atoms in the ground state, |1〉 ≡ |gg〉, atom 1 in the
Rydberg state ra and atom 2 in the ground state, |2〉 ≡ |rag〉 exp[−i(Er + �)t], atom 1 in the
ground state and atom 2 in the Rydberg state ra, |3〉 ≡ |gra〉 exp[−i(Er + �)t], both atoms in
the Rydberg state ra, |4〉 ≡ |rara〉 exp[−2i(Er + �)t], and both Rydberg atoms in the opposite
parity Rydberg state, |5〉 ≡ |rbr

′
b〉 exp[−2i(Er + �)t].

When we use the rotating wave approximation, we obtain a time-independent Hamiltonian
whose only nonzero matrix elements are
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H12 = H13 = H24 = H34 ≡ �

2
H22 = H33 = −�

H44 = H55 = −2� H45 = C

R3

(1)

and the transposed elements Hkk′ = Hk′k . In equation (1), � is 2π times the Rabi frequency
for the single-atom transition between the ground state and Rydberg state ra, R is the distance
between atoms, and C parameterizes the strength of the Rydberg–Rydberg interaction. For
this section, we use C = 404 au which is roughly that for strong coupling of Rydberg states
near n = 40. The system could be simplified to four-levels by using the fact that the ‘−’ state,
(|2〉 − |3〉)/√2, is ‘dark’ and does not couple to any other state. The distance that gives exact
two-photon resonance is Rres = (C/2�)1/3.

In figure 1, we show the five energies of this Hamiltonian versus the distance between
the atoms. The Rabi frequency is 0 in figure 1(a) and 2.5 MHz in figure 1(b), which is a
reasonable number for strongly allowed Rydberg transitions. We have set the detuning to
7.4 MHz, giving a two-photon resonance at R = 5.5 µm. The character of the five curves in
figure 1(b) can be expressed in terms of the original, uncoupled basis states or in terms of the
eigenstates in figure 1(a). Many of the qualitative features in figure 1(b) are easily understood.
The state that has no dependence on R corresponds to the ‘−’ superposition of states where
one atom is in the ground state and the other is in a Rydberg state. The energy level crossings
in figure 1(a) become avoided crossings in figure 1(b) due to the laser interaction. The avoided
crossing of the (|4〉+ |5〉)/√2 with the singly excited state is much larger than with the ground
state because the first corresponds to a one-photon transition while the second is a two-photon
transition.

2.1. Classical treatment of atom motion

Before describing a fully quantum treatment of the atomic motion, we first examine the
behavior when the atomic motion is approximately classical. In this case, the pair of atoms
experience a mutual force that depends on which of the electronic states the pair is in. If the
atoms have a temperature of several 100 µK, their velocity is low enough that the system
remains on the adiabatic potential curves. The force between the atoms can be computed from
the gradient of the adiabatic energy.

The repulsive dipole–dipole force is ineffective for atoms that do not interact perfectly
adiabatically. Ground-state atoms that pass diabatically through the avoided level crossing
on the upper potential curve could move near each other without being excited to Rydberg
states and, therefore, without any energy penalty for their approach. Worse still, there would
be substantial heating of the atoms if the ground-state atoms were not continuously cooled.
To see this, suppose the atoms come together on the upper potential curve and adiabatically
follow it to the double Rydberg state but as they move apart the atoms make a non-adiabatic
transition, either via stimulated or spontaneous emission, to the singly excited state. They
would then share a kinetic energy equal to �. For the parameters in our model, they would
each gain ∼180 µK worth of kinetic energy. Fortunately, however, the ground-state atoms
will be rapidly cooled by the MOT trapping beams. In addition, the remaining Rydberg atom
from the pair will spontaneously decay to the ground state, typically in ∼100 µs or less, before
leaving the MOT and will also be cooled and remain trapped.

A perturbative treatment of the interactions with the singly excited states gives an
approximation to the important parameters. We assume that the spontaneous lifetime of
the Rydberg states has been chosen to be at least several tens of µs so that spontaneous
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emission can be neglected during the few µs interval that the atoms are excited near the
resonance separation. Adiabatic elimination of the single Rydberg states and the repelling
double Rydberg state, results in an effective 2 × 2 Hamiltonian, H̃ , with the approximate
matrix elements

H̃11 = �2

2� + �2/(4� − 2C/R3)
(2)

H̃12 = H̃21 = (1/
√

2)H11 and H̃22 = (1/2)H̃11 +(−2�+C/R3). To lowest nonzero order, the
|gg〉 state is AC Stark shifted by an amount �2/2� for large R. The repelling double Rydberg
state is shifted by �2/4� for R � Rres. To lowest nonzero order, the coupling between the
|gg〉 state and the two Rydberg state is

√
2�2/(4�).

A Landau–Zener treatment of the avoided crossing gives an approximate transition
probability of the form P = exp

(−2πH̃ 2
12

/
[vd(H11 − H22)/dR]

)
. The approximate

parameters from the previous paragraph allow us to estimate the transition probability in
atomic units as

P = exp

[−π�4R4
res

12�2Cv

]
= exp

[−π�4(C/2)1/3

24�10/3v

]
(3)

where v is relative radial speed of the atoms and in the second step we have substituted for the
resonance condition C

/
R3

res = 2�. Note the high powers of �, the one-atom Rabi frequency
times 2π , and �, the one-atom laser detuning. This means that if one can reach the region of
adiabatic motion then the non-adiabatic transitions can be made almost arbitrarily small. For
example, once the non-adiabatic transitions have been reduced to 10% they can be reduced to
1% by increasing � by a factor of 1.2. Another interesting question is how does the transition
probability depend on n? The dependence is through C which is proportional to n4; however,
the exponential only depends on C1/3 which means the transition probability is not as strongly
dependent on n as might be expected.

To test whether the motion is adiabatic, we solved the time-dependent Schrödinger
equation for the electronic states but used classical equations of motion for the atom positions.
We fired the atoms at each other with a relative velocity of 0.84 m s−1 which corresponds
to two Rb atoms with kinetic energy of 900 µK each. This is probably a good deal faster
than atomic collisions in a MOT. We found less than 1% non-adiabatic transitions for our
parameters.

2.2. The three-atom case

We propose to use this mechanism to move, and perhaps hold, atoms apart. Success will
depend on whether the atoms stay on the adiabatic Floquet curves during a collision. From the
previous section, it can be seen that the adiabaticity for a binary collision can be assured. We
also computed the adiabaticity when three atoms collide. It is not obvious that the evolution
will still be adiabatic because there can be collisions with the third atom while the other
two are in Rydberg states and this might cause non-adiabatic transitions. We used the same
parameters as from the previous section. However, for three atoms there are many more states
in the calculation corresponding to all of the different combinations of electronic states. Again,
we numerically solved the time dependent Schrödinger equation for the electronic states and
allowed the atoms to move classically.

We performed two different types of calculations. First, we fired the three atoms inward
on an equilateral triangle; this case guarantees that all three atoms simultaneously interact
strongly with the others. Second, we confined the atoms within a small cube and let them
randomly bounce into each other; we repeated this calculation for many different random
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parameters for the initial positions and velocities of the atoms. There were many example
cases where all three atoms strongly interacted with each other at the same time. Somewhat
surprisingly, in all of the calculations, we found the level of adiabaticity to be similar to the
two-atom case.

2.3. Fully quantum treatment of atom motion

In the previous sections, we treated the atomic motion of the atoms using a classical
approximation. This leads to relatively straightforward calculations of the motion of the
atoms using the adiabatic potential curves. We have also solved for the motion of two atoms
using a fully quantum treatment of the R degree of freedom as well as the electronic states.
We examined this behavior to ensure that the quantum motion did not introduce new physical
processes.

In this calculation, we assume that the atoms are moving directly toward each other to
guarantee the maximum motion in and out. The full wavefunction can be written as

|�〉(t) =
5∑

k=1

ψk(R, t)|k〉 (4)

where the function ψk(R, t) is proportional to the amplitude for the atoms to have electronic
state k and have separation R at time t. The normalization is such that

1 =
∫ 5∑

k=1

|ψk(R, t)|2dR. (5)

The radial functions are solutions of the Schrödinger equation

i
∂ψk(R, t)

∂t
= − 1

2µ

∂2ψk(R, t)

∂R2
+

5∑
k′=1

Hkk′(R)ψk′(R, t) (6)

with the electronic Hamiltonian Hkk′ given in equation (1). We launch incoming atomic
wavepackets with radial widths �R = 250 au � 13 nm from an initial mean separation
R0 = 1.15 × Rres � 6.3 µm at t = 0. The electronic part of the initial wavefunction is the
adiabatic eigenstate for the upper potential curve in figure 1(b).

We find that the wave packet is reflected from the point R = Rres with more than 99%
efficiency onto the adiabatic potential curve. The part of the wave that does not reflect
approximately corresponds to the nonadiabatic transition calculated in the previous section.
Thus, the simple picture of the atoms moving on adiabatic potential curves is confirmed by
this fully quantum calculation.

3. Rb examples

We now present the results from two examples in Rb. Real atomic systems are more
complicated than the model due to the large number of degenerate levels and due to the
angular dependence of the interaction. The purpose of these examples is to show how these
extra complications change the Floquet potential curves. In particular, the angular dependence
of the interaction needs to be examined [34]. We will take the laser to be linearly polarized in
the z-direction and we will investigate how the states depend on the angle between the laser
and the interatomic vector. Additional complications which are not addressed here include the
(small) inhomogenous magnetic field in the MOT and hyper-fine structure; these two effects
are on the order of a few 10’s of µK for the Rydberg states.
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In both examples, we will consider excitation of the 38p3/238p3/2 Rydberg state. This
state is nearly degenerate with the 38s1/239s1/2 state with an energy offset of 214 µK. In a
0.36 V cm−1 static electric field, all of the different magnetic sublevels of the Rydberg–Rydberg
states are within 24 µK of each other. We assume that the static field is in the +z-direction
and that negligible character of other angular momentum states is mixed into s and p-levels
via the second-order Stark shift. The spontaneous lifetimes of all the bare Rydberg states are
quite long, with τs � 60 µs and τp � 150 µs. The blackbody transitions are to nearby states
and the time scale for transitions out of each of the states is approximately 50 µs for room
temperature black body radiation. Also, this is a promising candidate because the radial dipole
matrix element between the 38p and 38s and between the 38p and 39s are approximately equal
and as big as can be expected. We computed the radial matrix element for 38p38s to be
1399 au and that for 38p39s to be 1365 au. This gives relatively strong Rydberg–Rydberg
coupling for such a low n. We used the energy levels of [44] to compute these quantities.
In the first case we examine, a low-lying ns1/2 state is assumed for the ground state while in
the second case we consider excitation from a nd5/2 state. As discussed below, the sub-state
structure of the ground state affects the details regarding how the atoms behave. In both cases
we implicitly assume that the ground state is either directly cooled and trapped in the MOT, or
laser coupled to a trapped-state with a Rabi frequency less than 1 MHz. The energy level shifts
and broadening associated with the ground-state dressing, as well as the natural linewidth of
the dressed ground state, are assumed to be negligible compared to the Rydberg laser detuning
and the repulsive dipole–dipole splitting near Rres. In addition, for the low-MOT densities we
consider, laser coupling of the cycling levels in the MOT to the lower level of the Rydberg
transition is expected to have little effect on the temperature and number of atoms in the MOT.
When excited, the atoms are neither cooled nor subjected to the primary source of heating due
to the MOT beams and collisional losses due to excited atoms should be small.

We will denote the states by |n, 	, j,mj 〉. All of the terms in the Hamiltonian can be found
from the single-atom dipole matrix elements. Using standard angular momentum recoupling,
the matrix elements are found using

〈n′, 	′, j ′,m′
j |r(1)

q |n, 	, j,mj 〉 = −1j ′+j+3/2−m′
j

√
(2j ′ + 1)(2j + 1)(2	′ + 1)(2	 + 1)

×
(

j j ′ 1
mj −m′

j q

)(
	 	′ 1
0 0 0

) {
1 	 	′
1
2 j j ′

}∫ ∞

0
Rn′	′j ′(r)Rn	j (r)r dr (7)

where we use the conventions of [45]. We computed the radial matrix elements numerically by
solving for the radial functions using a Numerov approximation at the observed values for the
energies [44] to determine the radial functions. The matrix elements of x, y, z are determined
using the relations:

x = r
(1)
−1 − r

(1)
1√

2
y = i

r
(1)
−1 + r

(1)
1√

2
z = r

(1)
0 . (8)

The laser–atom interaction can be found directly from these dipole matrix elements. The
interaction between the Rydberg states requires the summation over the operators embodied
in the expression

DD = �r1 · �r2 − 3(�r1 · R̂)(�r2 · R̂) (9)

where R̂ is the unit vector pointing from atom 1 to 2.

3.1. Example 5s1/2 + h̄ω → 38p3/2

In this section, we present results for when the initial state is a compact s state. All compact
s states present the same qualitative behavior. We chose the initial state to be the 5s1/2
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(a)

(c)

(b)

Figure 2. Same as figure 1 but for the Rb states described in section 3.1. In all of the plots, the
laser detuning was 4.94 MHz � 237 µK. The scale length is Rres = 5.2 µm. In (a)–(c) the angle
between the laser and interatomic axis is 54.7◦, 0◦ and 90◦, respectively. In (b), we show the
curves associated with specific avoided crossings with different line types.

state which gives a transition wavelength of ∼300 nm. We compute a radial dipole matrix
element with the 38p state of 6 × 10−3 au by numerically solving for the radial functions
in a model potential that gives the correct quantum defects. For the calculation, we chose
the laser intensity to be 400 W cm−2. Obtaining such a high intensity from a laser at this
frequency within a bandwidth less than the Rydberg transition Rabi frequency (<1 MHz or
so) is experimentally challenging and expensive. However, any compact s state will give the
same results as long as the laser intensity is chosen to have E · D/2 ∼ 100 µK, i.e. a Rabi
frequency of a few MHz.

First, we count the number of states: there are 4 states with 5s1/25s1/2 character, there are
8 states with 5s1/238p3/2 character and 8 with the order interchanged, there are 16 states with
38p3/238p3/2 character, and there are 4 states with 38s1/239s1/2 character and 4 with the order
interchanged. This gives 44 states altogether.

In figure 2, we show the Floquet potential curves as a function of the atom separation
for three different directions between the laser polarization and the interatomic direction. In
all of the plots, the laser detuning is 4.94 MHz � 237 µK. We defined the scale length to
be Rres ≡ (n4/3�)1/3 which corresponds to 5.2 µm. Unlike in the simple model, there are
several Rydberg–Rydberg potential curves and thus several resonance distances.

It is clear that the Floquet curves are more complicated but the general structure of the
5-state model is preserved. In particular, the curves that have both atoms in the ground state
at large distances always become strongly repelling when the atoms get inside the resonance
distance. Thus, the basic mechanism will also work for this configuration. However, the sizes
of the avoided crossings depend on the angle.
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(a)

(c)

(b)

Figure 3. Same as figure 2 but for the Rb states described in section 3.2. In all of the plots, the
laser detuning was 5.50 MHz � 264 µK. The scale length is Rres = 5.0 µm.

There are a number of interesting features of the Floquet curves at a fixed angle. Of the
24 Rydberg–Rydberg states, there are 4 repelling potential curves and 4 attracting potential
curves. The other 16 Rydberg–Rydberg curves have no R dependence for a fixed angle; these
are the states with Föster zeros [34]. There are 16 zeros because there are 24 states with only
8 off-diagonal rows (columns) in the Rydberg–Rydberg part of the Hamiltonian. In all of the
figures, it appears that there are close avoided crossings for the upper potential curves. For
figures 2(b) and (c), this is an illusion; these are the cases where the angle between the laser
and the interatomic axis are parallel or perpendicular. For example in figure 2(b), we have
shown the curves with the avoided crossing using like line types; the two solid curves are
involved in an avoided crossing, likewise for the two dashed curves and the two dotted curves
but the dashed and dotted curves do not affect the other.

The situation is different for angles near θ = 54.7◦, figure 2(a). In this case, one of
the four curves has a diabatic crossing. Therefore, there is a range of angles where one
of the crossings will change from diabatic to adiabatic. This circumstance would limit the
applicability of the repelling force. There are two ways to circumvent this limitation. (1) Use
a restricted geometry where the atoms can only approach each other with angles away from
θ = 54.7◦; for example, have the light focused down to a narrow sheet or down to a narrow
cylinder [26]. (2) Use a different polarization. For example, with a combination of linear and
circular polarized light, the AC Stark shifts of the four ground states are nondegenerate and
the highest Stark shift always has an adiabatic crossing with the Rydberg–Rydberg states.

3.2. Example 5d5/2 + h̄ω → 38p3/2

For contrast, in this section, we present results for a compact d5/2 ‘ground’ state. All compact
d5/2 states present the same qualitative behavior. We chose the initial state to be the 5d5/2
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(a)

(c)

(b)

Figure 4. Same as figure 3 but for an expanded scale around the 2-photon avoided crossing.

state which gives a transition wavelength of ∼1.3 µm. We compute a radial dipole matrix
element with the 38p state of 4 × 10−2 au by numerically solving for the radial functions in a
model potential that gives the correct quantum defects. For the calculation, we chose the laser
intensity to be 12 W cm−2. Narrow linewidth diode sources at this frequency and intensity are
available and relatively inexpensive.

First, we count the number of states: there are 36 states with 5d5/25d5/2 character, there
are 24 states with 5d5/238p3/2 character and 24 with the order interchanged, there are 16 states
with 38p3/238p3/2 character, and there are four states with 38s1/239s1/2 character and 4 with
the order interchanged. This gives 108 states altogether.

In figure 3, we show the Floquet potential curves as a function of the atom separation for
three different directions between the laser polarization and the interatomic direction. In all
of the plots, the laser detuning was 5.50 MHz ∼ 264 µK. As in the previous section, there
are several Rydberg–Rydberg potential curves and thus several resonance distances. Again,
we define the scale length to be Rres ≡ (n4/3�)1/3 which corresponds to 5.0 µm for this
case. Figure 4 shows a blowup of the region near the crossing of the ground state with the
Rydberg–Rydberg state.

There are similar features between figures 2 and 3. The main qualitative difference arises
from the degeneracy level of the ground state. There are 36 states with 5d5d character. There
are only four Rydberg–Rydberg states that cross them. This means that only four of the ground
states will adiabatically connect to the repelling potential curves. This can be seen clearly in
figure 4. Furthermore, there are a large number of states that do not interact at all with the
Rydberg–Rydberg states and these states have exact crossings. If a pair of atoms is in an initial
state that does not adiabatically connect to the repelling potential curve, then the atoms will
not feel a force. However, we note that the repelling potential curves are strongly coupled to
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the ground states with the largest AC Stark shift. Hence, optical pumping might be used to
ensure that primarily those states that adiabatically connect to the repelling Rydberg–Rydberg
states are populated. Alternatively, one could use Rydberg states with a larger degeneracy
factor (e.g. f-states) to increase the number of ground-Rydberg connections.

4. Discussion

The preceding sections provide only two of the many possible cases that might be explored.
Clearly, the complexity of the control problem increases with the number of (nearly) degenerate
orientations for the Rydberg–Rydberg and initial-state pairs. Nevertheless, the proposed
method appears quite promising for real systems. The fraction of populated ground-state
configurations which adiabatically connect to repulsive Rydberg–Rydberg curves is a key
parameter for determining the effectiveness of any manipulation scheme based on this
interatomic interaction. As noted above, this fraction can be enhanced by appropriate selection
of laser polarization, focusing geometry, and perhaps external electric or magnetic fields.

5. Conclusion

We have proposed a method for manipulating the motion and position correlation function for
cold atoms in a MOT. If successful the technique might be utilized to create an (approximately)
ordered array of cold atoms without the need for confining optical lattice beams and/or to
investigate long-range atomic scattering. The scheme exploits the separation sensitivity of
the dipole–dipole interaction energy to enable excitation of ground-state atoms to repulsive
Rydberg–Rydberg potential curves. The blue-detuned laser frequency determines the critical
distance at which the atoms’ approach is halted by the strong interatomic forces. Under
appropriate conditions, the transfer of population into and out of the Rydberg states and the
reflection of the atoms from each other can be accomplished with arbitrarily high efficiency.
The atoms spend very little time in Rydberg states and remain cold and trapped within the MOT.
Detailed calculations for the atomic dynamics within a reduced 5-state model are presented
and complications associated with different degenerate ground- and final-state configurations
are considered using two potential excitation schemes in Rb. The effectiveness of the method
in the face of additional complications such as magnetic field inhomogeneity in the MOT
(which would be difficult to accurately model) is being explored experimentally.
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