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Abstract
Using a classical trajectory Monte Carlo method, we have computed the three-
body recombination (two free positrons and an anti-proton scattering into one
free positron and an anti-hydrogen atom: e+ + e+ + p̄ → H̄ + e+) in the presence
of electrons. By simply reversing the sign of all of the particles, these results can
be applied to three-body recombination of matter in the presence of positrons.
An important parameter is the fraction of light particles which are of the
opposite sign; we performed calculations for several values of this parameter
and find a substantial effect even for small fractions. We have also included a
strong magnetic field in the calculation since this seems the most likely way to
have mixed sign light particles in the same region of space. Our results will be
useful for future anti-hydrogen experiments. We identify the main mechanisms
controlling the recombination process.

1. Introduction

Recently, two groups [1, 2] reported the formation of anti-hydrogen (H̄) by having anti-protons
(p̄) traverse a positron (e+) plasma. Presumably [3], H̄ is formed through the three-body
recombination (TBR): two e+’s scatter in the field of the p̄ so that one e+ loses enough energy
to become bound to the p̄ and the other e+ carries away the excess energy. The theoretical
treatment of this process is quite daunting due to the small cyclotron period of the e+: 36 ps in
a 1 T field. Compare this time scale with typical TBR rates for these experiments which have
been roughly kHz; there are eight orders of magnitude between the two time scales.

TBR in a strong magnetic field was first treated in [4] where TBR in the B → ∞ limit
was obtained. In this limit, the light particles are pinned to the field lines and the heavy particle
is fixed in space. Later, [5] treated the large, but not infinite, B limit by allowing the light
particles to have �E × �B drift velocity for motion perpendicular to �B and allowing the heavy
particle to have its full motion. The total rate was found to be approximately 60% larger
than in the B → ∞ limit. More importantly, [5] reported that the TBR rate did not decrease
rapidly with the velocity of the heavy particle suggesting the H̄’s would form with energies
much greater than kBT . More detailed simulations [6] and measurements [7, 8] confirmed
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that the majority of H̄ had kinetic energy substantially larger than kBT . By launching the p̄
through the e+ plasma at lower energy, this problem can be averted. Reference [9] investigated
the magnetic moment of H̄ formed in three-body recombination and found that only a small
fraction of the H̄ could be trapped for the conditions in [6–8].

The high centre-of-mass energy of the H̄ formed by the original-mixing schemes has
increased the relevance of other processes for the formation of H̄. One possibility is the
double charge exchange [10–12] first proposed in [10] and measured in [11]. In this process,
a Rydberg atom is introduced into a positron plasma where a charge exchange makes Rydberg
positronium which subsequently travels to a region of p̄’s where a second charge exchange
makes Rydberg H̄. Since most of the centre-of-mass momentum of the H̄ is from the p̄, the
resulting H̄ will be cold if the original p̄ was at low temperature. Another possibility is to mix
p̄’s into a more diffuse e+ plasma and have the recombination occur by radiative processes
which could, in principle, be enhanced by stimulated radiative recombination [13–15].
Because the TBR rate is proportional to the square of the e+ density while the slowing
rate is proportional to the density, the diffuse e+ plasma will allow the p̄ to reach lower velocity
before the recombination occurs.

Another possibility is to launch e+’s through a plasma composed of p̄’s and electrons. The
electrons are present to keep the p̄’s at a low temperature; the p̄’s lose energy to the electrons
through collisions and interactions with plasma waves. The electrons radiate this energy away
due to their cyclotron motion. As with the previous two schemes, the resulting H̄ will have
a lower centre-of-mass energy because the p̄ will start out cold. There are several possible
processes that could lead to the formation of H̄’s and their relative importance will depend
on the temperature, and on the relative number and density of electrons, e+’s, and p̄’s. For
example, there are two direct processes that could occur. When a e+ is passing by a p̄, it
can emit a photon and radiatively recombine. Or, if there is a high enough e+ density, there
can be a three-body recombination. There are also indirect processes available. For example,
a three-body recombination involving all light species (e.g., two e+ and an electron or two
electrons and an e+) could give Rydberg positronium which then can give Rydberg H̄ through
charge exchange with a p̄. There could be even higher order indirect processes involving more
than one charge transfer.

The indirect processes will depend strongly on the details of the plasmas (temperature,
density, size and shape) and are, thus, of less general interest than the direct processes. In
this paper, I examine the mechanisms that control the direct three-body recombination when
both electrons and positrons are present. The recombination involves the competition between
four basic processes. (1) The capture step which involves two e+’s (or an electron and an e+)
colliding in the field of the p̄ so that one of the e+’s are captured. (2) Positron–H̄ collisions
cause the H̄ to change energy. When the binding energy of the H̄ is more than ∼5kBT the
collisions mostly lead to an increase in binding energy (i.e., a decrease in principal quantum
number ν). (3) Electron–H̄ collisions cause the H̄ to change energy. As with positron collisions,
the scattering mostly leads to a decrease in ν when the binding energy is more than a few kBT .
(4) Electron–H̄ collisions leading to charge transfer and the formation of Rydberg positronium.
Clearly, processes (1)–(3) lead to a greater number and more deeply bound H̄’s while process
(4) destroys H̄’s.

The different processes scale with different powers of the temperature and densities of
the light species. In order to parameterize the effects of changing relative density, we will
use ne to be the sum of the densities of the electrons and positrons and use f to be the
fraction of light particles that are electrons; T will be the temperature of the electrons and
positrons which is assumed to be the same. The capture step (1) scales like T −9/2 and like
n2

e[(1 − f )2γ1 + (1 − f )f γ2] where γ1 parameterizes the capture due to a pair of e+’s and
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γ2 parameterizes the capture due to a e+ and an electron. The scaling of steps (2)–(4) is
complicated by the magnetic field. Roughly, if the H̄ has an energy −13.6 eV/ν2, then (2)–(4)
scale like T 1/2 and ν4. The dependence on density is that (2) scales like (1 − f )ne while (3),
(4) scale like f ne.

There are several ways of shifting the balance of these different terms. In this paper, we
vary the fraction, f , of electrons. We calculate the fraction of p̄’s that have captured an e+

as a function of time and some of the properties of the resulting H̄. We focus on the time
dependence because the p̄’s are only in the plasma for a limited time; thus, the evolution will be
crucial for understanding experiments on this system. We restricted the simulations to times
less than 80 µs. This time corresponds to a p̄ travelling at 125 m s−1 (∼1 K) for a distance of
1 cm. Most p̄ will be in the plasma for much less time.

The calculations were performed for a large magnetic field: 1 T. The reason for this is
two-fold. The next generation of H̄ experiments have recently begun and will involve magnetic
fields of approximately this strength. Thus, the calculations will be directly relevant to this
effort. Also, it seems likely that any future experiments that involve mixed sign light species
will need to confine them by a magnetic field.

2. Numerical method

To simplify the discussion in this section, I will use the word lepton to refer to the light particle
when it could be an electron or positron.

2.1. Approximations

The states formed by TBR in strong B-fields correspond to energies with principal quantum
numbers greater than 30. The cyclotron motion is spread over several quantum states:
kBT/h̄ωc � 3 where ωc is the cyclotron frequency. Thus, we can simulate TBR using
classical equations of motion. For the leptons, we allowed them the full three-dimensional
motion; we did not use the guiding centre approximation. The leptons are fired at the p̄ with
the distribution described below. The coupled equations for the motion of the leptons are
solved using an adaptive step size, Runge–Kutta method. This ODE solver does not conserve
energy and the canonical angular momentum in the B-field direction, quantities conserved in
the exact equations of motion. Thus, the numerical drift in these quantities are used as a gauge
of the accuracy of a run. For example, the cumulative energy error during a run was required
to be less than 0.01 K. Inevitably, some runs were rejected due to the too large drift in the
conserved quantities. The number of rejected runs are too small to bias the results presented
here.

The main approximation was treating the p̄ as being fixed in space, i.e. infinite mass.
Because the mass of the p̄ is ∼1840 times larger than for the leptons, this seems a reasonable
approximation. For the states of interest, all of the motions of the leptons have time scales over
an order of magnitude shorter than those of the p̄. This is another argument for treating the p̄ as
stationary. Finally, we found that the three-body recombination rate in strong magnetic fields
was unchanged within statistical uncertainty when the heavy particle was treated as fixed in
space [9].

2.2. Initial distribution

The lepton distribution was similar to that described in [9] with the addition of a last random
parameter that determined the sign of the charge. The distribution of trajectories is computed
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using the physical distributions for the leptons. The leptons are randomly fired at a p̄ located
at the centre of a cube. The time of firing a lepton is random with a probability δt/tave during
the time interval δt ; tave is the average time a lepton takes to cross the volume. The cube has
edges of length xmax = 10e2/(4πε0kBTe) which is ∼100 times larger than the radius of the
recombined atom. The leptons are randomly fired from z = ±xmax/2 with the x, y position
randomly chosen in the range −xmax/2 < x, y < xmax/2.1 This prescription gives a varying
number of leptons in the simulation. The leptons have a Maxwell–Boltzman distribution in �v.
When a lepton is fired at the p̄, the sign of its charge is determined by a last random number
with a flat distribution between 0 and 1; when the random number is less than f , the lepton is
an electron otherwise it is a positron.

In [5], we fired electrons until the binding energy was greater than a fixed multiple of the
thermal energy. For the present simulation, this method is not practical due to the small time
steps that are needed in the ODE solver to properly account for the cyclotron motion of the
leptons. Instead we performed a two-step process similar in spirit to the method used in [4];
we used a similar method in [9].

The present calculations focus on the evolution of the fraction of p̄’s that have captured
an e+ and the properties of the resulting H̄. In the first step, we generated a distribution of H̄
initial conditions by randomly firing leptons at the p̄ until only one e+ was inside the cube with
an energy less than −kBT . The time at which this occurred and the e+’s position and velocity
were stored. This was done for all of the different values of f , the fraction of electrons.
There were approximately 104 examples from this step for each f . In the second stage, we
performed roughly 106 runs with a duration of 80 µs. For each run, we start at t = 0 and
randomly pick an H̄ from the first stage. The time, t, is incremented by a random amount
given by the distribution of formation times from the first step. Next, we randomly fire leptons
at it until the atom is ionized or 80 µs is reached; during this step, the time is incremented
normally. If the atom is ionized before 80 µs is reached, another atom is randomly picked
from the first step. The time, t, is incremented by a random amount given by the distribution
of formation times from the first step, etc.

3. Results

In this section, we present the results of our calculations and simple models that reproduce the
main features. All of the calculations were performed for a temperature of 4 K and a magnetic
field of 1 T. The density of the leptons was such that on average only one lepton at a time
was in a cube with edge length xmax = 10e2/(4πε0kBTe) which corresponds to a density of
13.7 × 106 cm−3.

3.1. Capture rate

One of the interesting features of the calculation was the rate that H̄ formed with a binding
energy of at least kBT . This rate is much larger than the actual three-body recombination rate
(∼200 Hz), because most of these atoms are reionized by e+’s or electrons. To compute this
rate, we fired leptons at the p̄ until only one e+ was in the cube and had an energy less than
−kBT . The average time that this occurred is the inverse of the capture rate. The last collision
between the H̄ and the lepton that causes the binding energy to become larger than kBT gives
a distribution in energy that is peaked at −kBT but has a long tail that extends to much deeper
binding energy.

1 We made sure the shape of the region was unimportant by comparing the results from calculations with different
shape reaction region.
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Figure 1. The positron capture rate into states with a binding energy greater than kBT . The
asterisks are the calculated data points whereas the two lines are fits as described in the text.

In figure 1, we show this rate versus the fraction, f , of leptons that were electrons. The
calculation is shown as asterisks, and the lines are two different fits to the data. The rate
decreases with increasing f because the TBR caused by the collision of two e+’s is greater
than that caused by the collision between an electron and a e+; also, there is the possibility for
charge transfer destroying the H̄ which will decrease the formation rate. Because the binding
energy is small for figure 1, we can think of the capture as if it were happening as a single step.
The collision of two e+’s is proportional to (1 − f )2 while the collision between an electron
and positron is proportional to (1 − f )f . Thus, we might expect the capture rate to depend
on f as (1 − f )2A + (1 − f )f B where A and B are constants.

The solid line is a linear fit to the data for f � 0.2: �0 + f �1; the fit gives �0 = 5526 Hz
and �1 = −8208 Hz. The dashed line is a fit to the data for f � 0.2 using a form suggested
by the physics: (1 − f )[(1 − f )�ls + f �os]; the fit gives �ls = 5546 Hz and �os = 2240 Hz.
The interpretation is �ls characterizes the capture rate for a pair of e+’s while �os characterizes
the rate for an electron and e+. The rate decreases approximately linearly over the range
0 < f < 0.20 and both fits give a good representation of the data. However, the linear fit
clearly underestimates the rate for larger f . Also, the linear fit would give a rate of 0 for
f = 5526/8208 � 0.67. The physically motivated fit gives a rate of 0 for f = 1 (no e+).
Also, the parameters of the motivated fit are of a reasonable size with �ls more than a factor
of 2 larger than �os.

3.2. Time dependence of H̄ population

We next turn our attention to the fraction of p̄ that have captured an e+ with a binding energy
greater than 4kBT . This binding energy is deep enough that scattering by the leptons tends to
drive the H̄ to more deeply bound states. However, charge transfer during a collision with an
electron can still destroy the atom.

Figure 2 shows the time dependence of the probability, P(t), a p̄ has become an H̄ with
a binding energy greater than 4kBT . We plot data for f = 0.04, 0.08, 0.12, 0.16 and 0.20;
the data points are the symbols while the lines are the results from a simple model described
below. There are several interesting features which can be understood qualitatively. For very
early times, t < 5 µs, the probability is suppressed compared to extrapolations from later
times. This is because the atoms cannot form instantaneously. Once an e+ is captured, many
collisions with the leptons are needed to drive it to binding energies greater than 4kBT . This
time delay is manifested as a suppression; the delay would be longer if we had chosen a deeper
binding energy.
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Figure 2. The population of p̄ that have captured a e+ with a binding energy greater than 4kBT .
The symbols are the data points and the solid lines are the results from solving the simple rate
equation described in the text. The uppermost line shows the population for f = 0: no electrons.
The + are for f = 0.04, the ∗ are for f = 0.08, the diamonds are for f = 0.12, the triangles are
for f = 0.16 and the squares are for f = 0.20.

Another interesting feature is that the data do not lie on straight lines. This is important,
because it appears that the population for f ∼ 0.2 are nearly reaching their steady state for
tiny populations. For small probabilities (like those in figure 2), one expects a rate equation
to give linear dependence: P(t) = 1 − exp(−�t) � �t . This time dependence arises from
dP/dt = � × (1 − P) (i.e., the rate of probability increase is � times the probability the H̄
has not formed). The definition of the TBR ‘rate’ becomes somewhat problematic because the
P(t) is not a straight line, except for the smallest f ’s. Note that the bending is strongest for
the largest f ’s. We have modelled this behaviour by assuming it arises from charge transfer.
Qualitatively, the dP/dt has two terms. The first is from recombination and is positive while
the second is from charge transfer and is negative.

We solved the equation

dP

dt
= �

(0)
TBR(1 − f )2[1 − P(t)] − 〈ν4〉(t)�ct,1f P (t) (1)

to produce the lines in figure 2. The first term in the right-hand side is the increase in population
due to TBR where �

(0)
TBR = 205 Hz is the f = 0 TBR rate; this rate is computed from the

expression in [5]. As discussed above, this is much smaller than the capture rates plotted in
figure 1. Unlike the capture rate, we model the TBR rate as only arising from e+–e+ collisions;
unlike the capture process, several collisions are needed to cause the H̄ to have a binding
energy greater than 4kBT which will decrease the role of the electrons. The second term
models the charge transfer rate. The parameter �ct,1 = (2a0)

2√kBT/mneC, with C being a
dimensionless constant, is the dimensional part of the charge transfer rate (see equation (1) of
[12]) and 〈ν4〉(t) is the average of ν4 for atoms bound by more than 4kBT ; the radius of the
atom is proportional to the square of the principal quantum number, ν, so the cross section
∼ν4. The parameter 〈ν4〉(t) decreases with t because scattering drives the atoms to more
deeply bound states. In [12], we found that 4 < C < 6.5 depending on the temperature and
magnetic field. The solid line results from solving the rate equation, equation (1), using the
〈ν4〉(t) from our simulations. In our model, we used C = 4.25 which is in the range from
[12]. All of the curves are reproduced using only one adjustable parameter, C.

As a point of reference, the equation

dP

dt
= �1(1 − P) − �2P (2)
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Figure 3. The average value of ν4 for atoms bound by more than 4kBT . The symbols are the same
as in figure 2. The solid line is from solving a simple rate equation as described in the text.

with P(0) = 0 and constant �1, �2 has the solution

P(t) = �1

�1 + �2
[1 − exp(−(�1 + �2)t)]. (3)

This result is interesting in that P(t) → �1/(�1 + �2) < 1 as t → ∞ and that the time
variation has the rate �1 + �2. The fact that P(t) is less than 1 for long time arises from the
destruction by the process associated with the rate �2. From above, �1 = (1 − f )2 × 205 Hz.
To get the approximate size of �2, we need 〈ν4〉(t). In figure 3, we plot this parameter for five
different values of f . Remarkably, this parameter does not vary strongly with f compared to
the dependence in figure 2. The 〈ν4〉(t) decreases with time because the e+ scattering causes
transitions to lower ν. Before discussing the time dependence, we will use figure 3 to estimate
�2. For the estimate, we will use the smallest value 2 × 107; note that the 〈ν4〉1/4 ∼ 65
corresponds to a binding energy of ∼35 K. This gives �2 = f × 2.4 × 104 Hz.

For f = 0.2, the steady state population is �1/(�1 + �2) � 2.7% and the total rate is
�1 + �2 ∼ 5 kHz which is much faster than the TBR rate. For f = 0.1, �1/(�1 + �2) � 6.5%
and �1 + �2 ∼ 2.5 kHz. Although the 〈ν4〉(t) has time dependence so that the results of this
paragraph are only qualitative, it is clear that even small fractions of electrons can strongly
suppress the formation of H̄.

As a final point, the curve on figure 3 results from a very simple model. The average

〈ν4〉 = 1

N

∑
j

′
(

13.6 eV

Ej

)2

, (4)

where the Ej is the energy of the j th H̄, N is the number of atoms with a binding energy
greater than 4kBT , and the sum is only over atoms with a binding energy greater than 4kBT .
The time derivative is

d

dt
〈ν4〉 ∝

∑
j

′ 1

E3
j

dEj

dt
∝

∑
j

′
ν6

j ν
4
j (A × Ej) ∝ −

∑
j

′
ν8

j , (5)

where dE/dt has been approximated as being proportional to the geometric cross section of the
atom, ν4, times an energy change proportional to the energy. For early times, 〈ν8〉 ∼ 〈ν4〉2.
Thus we arrive at a differential equation that has the form dx/dt ∝ −x2 which has the
solution x(t) = B/(t + t0) where B and t0 are constants. The solid line in figure 3 is
6.64×107/(1+[t/36 µs]). The time scale 36 µs corresponds to a rate of 28 kHz which should
be compared to the scattering time scale, 24 kHz, in the �2 above. We note that the curves
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(a) (b)

(d)(c)

Figure 4. The energy distribution of H̄ as a function of time for (a) f = 0.01, (b) f = 0.12, and
(c) f = 0.20. All data sets have been converted to the same y-scale so that overall height reflects
the total number of H̄ atoms. In these three figures, the solid line is at 20 µs, the dotted line is at
40 µs, the dashed line is at 60 µs, and the dash-dot line is at 80 µs. The inset is the same data
but on a log-scale for the y-axis. Figure (d) compares the 80 µs data for f = 0.01 (solid line),
f = 0.12 (dotted line), and f = 0.20 (dashed line).

in figure 3 are quite simple so other forms fit the data equally well (e.g. A + B exp(−�t)

with A,B, and � constants). Finally, the trend at later times is for 〈ν4〉2 to be larger for
larger f . This is because the charge transfer destroys the atom before it can be scattered into
more deeply bound states with smaller ν. This will be seen more clearly in the next section.

3.3. Energy distributions

One of the main questions that can be answered is what type of atom is formed in TBR.
We recently found [9] that the distribution of magnetic moments is not random when H̄ is
formed by TBR in a strong magnetic field. Most importantly we found that the atoms tend to
be attracted to high fields which cannot be trapped using multipole magnetic fields. As the
binding energy of the atoms increase, the magnetic moments become more random and there
is an increased chance that the atom can be trapped.

In figure 4, we plot the energy distribution at 20, 40, 60 and 80 µs for f = 0.01, 0.12 and
0.20. We also plot the distribution for f = 0.01, 0.12 and 0.20 at 80 µs. The case f = 0.01 is
hardly different from f = 0 over this time range. All three values of f have a similar type of
time behaviour. At early t, the distribution does not extend to deep binding. This is because
the atoms reach these energies through scattering and there has not been enough scattering
events to reach these binding energies. At later times, the distribution for weak binding does
not change very much. This is because TBR starts from weak binding and this region reaches
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a steady state value most rapidly. It is interesting that the f = 0.2 seems to have reached
steady state down to ∼50 K whereas the f = 0.01 is in steady state only down to ∼25 K.

The f = 0.01 and f = 0.2 develop in a quantitatively different manner. A minimum
appears to be developing near 25 K for f = 0.01 whereas the f = 0.2 monotonically
decreases from ∼4 K. For f = 0.01, there is little charge transfer so the distribution develops
similar to f = 0. The minimum is the bottleneck for TBR. The largest relative difference
between f = 0.01 and f = 0.2 occurs for ∼40 K. This is because the more deeply bound
atoms arise from one or a few lucky collisions that remove substantial energy. Because these
atoms are physically much smaller, there is less chance for a charge transfer. The atoms with
binding ∼40 K arise from many small energy changing collisions. Because they are physically
large, the chance for charge transfer destroying them is great. The differences become more
accentuated for longer times than those shown here. If, by chance, an atom were to be in the
plasma for 200 µs, the f = 0.01 distribution would give a substantial number of atoms with
binding energies greater than 100 K, but the f = 0.2 distribution would not greatly increase
in that range.

4. Conclusions

We have performed calculations of the formation of H̄ through three-body recombination
(TBR) when both electrons and positrons are present. The calculations use classical trajectory
Monte Carlo methods to obtain results for several values of the fraction of electrons. The
calculations do not use the guiding centre approximation. We have also developed simple
models that adequately describe the main results.

Most importantly, we found that even a small fraction of electrons reduce the
recombination by large amounts. For example, the maximum fraction of p̄ that can form
H̄ decreases to just a couple per cent when the density of electrons is only 1/4 that of
the positrons. Another important point is that the electrons prevent the H̄ population from
developing deeply bound states. This is of crucial importance because the weakly bound atoms
are more likely to be attracted to high magnetic fields [9]; atoms attracted to high magnetic
fields cannot be trapped. The few deeply bound H̄ are formed through a couple of lucky
collisions that remove substantial energy.

Our results show the necessity for reducing the fraction of electrons to the smallest possible
number if TBR is the mechanism used in forming H̄. If a different mechanism is used, then the
conclusions might change. For example, the electrons might not have a substantial effect on
atoms formed by radiative recombination because they are typically formed in deeply bound
states.
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