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Abstract
The next generation of experiments for making cold anti-hydrogen will attempt
to trap them using multipole magnetic fields. We investigate the motion of the
anti-protons through the combined electric and magnetic fields of this type of
trap. The multipole fields that will prevent the anti-hydrogen from hitting the
walls cause the anti-protons to have regions of regular motion and regions of
chaotic motion. We find that hexapole fields give motion that would greatly
suppress the formation of cold anti-hydrogen; for realistic conditions, less
than ∼1/10 could lead to cold anti-hydrogen. For octupole fields, we found
that ∼1/4 of the anti-protons could lead to cold anti-hydrogen formation at
short times. We discuss the implications of these regions for anti-hydrogen
experiments.

1. Introduction

Recently, two groups [1, 2] reported the formation of anti-hydrogen (H̄) by having anti-protons
(p̄) traverse a positron (e+) plasma. The e+’s and p̄’s are trapped in the same region of space
using a nested Penning trap geometry [3]. In this geometry, a strong magnetic field along the
trap axis prevents the charged particles from escaping radially. A series of electrodes then can
trap both the e+’s and p̄’s along the trap. See figure 1 for an example.

The next generation of experiments will attempt to trap the H̄ using spatially varying
magnetic fields. The H̄ is trapped using its magnetic moment; the fraction of atoms attracted
to low magnetic fields can be trapped by constructing a magnetic field that increases in
magnitude near the walls and the ends of the trap. The ground state of H̄ has a magnetic
moment such that the depth of the trapping potential is ∼2/3 K per 1 T change in magnetic
field. Rydberg states can have larger magnetic moment so that Rydberg H̄ might be trapped
with kinetic energies up to ∼20 K. The magnetic field can be thought of as a superposition
of three terms. (1) A uniform field along the trap axis. (2) A magnetic field from two mirror
coils placed at ±L/2 so that the magnetic field along the axis has a minimum at the middle of
the trap. (3) A radial multipole field of the form

�B = (r/rw)s−1Bw[r̂ sin sθ + θ̂ cos sθ ], (1)
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Figure 1. The electric potential energy for a p̄ along the trap axis. The flat region near 0 cm is
where the e+’s are trapped with 0 being the centre of the e+ plasma. This simulation has the e+’s at
4 K with a density of n0 = 1.2 × 107 cm−3 and for 8 × 106 e+’s. The plasma is roughly a spheroid
in shape with a radius of 4.33 mm and a length along the axis of 17.1 mm. The mirror coils are at
±12 cm.

where rw is the radius of the wall, Bw is the magnitude of the multipole magnetic field at the
wall, and s is the order of the multipole. For the calculations in this paper, we chose rw =
2.25 cm and Bw = 2 T. Experiments indicate that the order of the multipole field will need
to be somewhat high in order for the e+ plasma to have sufficient lifetime [4]. For this paper,
we focus on the case of an octupole field, s = 4, since this appears to be a good compromise
between the difficulty in winding a high-order magnet and the added stability that comes from
increasing s. We also present some results for a hexapole field, s = 3, to show that the size of
these deleterious effects increase rapidly as the order of the multipole decreases. There have
been proposals for other types of traps; those that preserve the cylindrical symmetry, e.g. [5],
will not exhibit the features discussed in this paper.

While the uniform magnetic field and the field from the mirror coils are cylindrically
symmetric, the multipole field is not. This leads to interesting behaviour of the p̄ in the trap.
In many ways, this is similar to single particle transport through the multipole fields used to
steer and focus charge particle beams [6]; the analogy to the Lie algebraic treatment of beam
dynamics will be shown below. The fact that multipole fields can lead to resonant transport
is well known and has even been studied for light particle plasmas for systems relevant to H̄
experiments [7].

The purpose of this paper is to show that the octupole field has a large effect on the
properties of the H̄ that will be formed in future experiments. We show that the p̄ exhibits
chaotic motion, but only when the multipole field is present. The chaotic motion occurs for
phase space parameters that would lead to trappable H̄. Although the multipole field is weak,
it could have a dramatic effect on the kinetic energy distribution of the H̄’s formed in these
experiments. Thus, the fraction of H̄’s that can be trapped may be strongly affected by this
field.

In this paper, we first describe some of the basic features of the trap including rough sizes
for all of the parameters. We then show the results from some example trajectories that exhibit
curious features which are only present when the multipole field is on. We then remove the
damping from the calculation and we use a simple guiding centre approximation to demonstrate
the origin of the curious features. We also present a simple map that reproduces the guiding
centre behaviour. In the last section, we discuss the implications for the experiments that are
attempting to trap H̄.
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2. Basic features

Before describing the numerical results, we first give a qualitative description of the trap,
typical sizes associated with the particles, and the properties of the magnetic field.

It is hoped that the p̄’s will have a transverse temperature of roughly 4 K. In a 1 T field,
this leads to a cyclotron radius of 2–3 µm. The e+’s will have a temperature of roughly 4 K
giving a cyclotron radius of approximately 60 nm in a 1 T field. The cyclotron period is 66 ns
for the p̄ and 36 ps for the e+ in a 1 T field; these times should be compared to the time for the
p̄ to make one axial oscillation which is several µs to several tens of µs. These parameters
suggest that the simple guiding centre approximation will give a very good approximation to
the large-scale motion through the trap. This does not mean the p̄’s follow the magnetic field
lines; there are substantial electric fields in the trap and the �E × �B drift has an important role
in the dynamics.

The motion of the p̄’s through the trap is over a very large scale and there are many
different types of incoherent interactions. Thus, it is appropriate that we solve for the p̄ motion
using the classical Hamilton’s equations. We solved the full three-dimensional motion of the
p̄; these are relatively long calculations because the cyclotron period is roughly a factor of 103

shorter than the axial period. The equations of motion are
d�r
dt

= �v d�v
dt

= q

M
[ �E(�r) + �v × �B(�r)] + �F plas(�r, �v)/M, (2)

where q,M are the charge, mass of the p̄. �E is the electric field from the electrodes of the
trap and the mean electric field from the e+ plasma. �B is the magnetic field from the external
currents. �F plas is the dissipative and fluctuating force from the interaction with the e+ plasma.
There are several forces that can be neglected. These include the collisions between pairs of
p̄’s, the mean electric and magnetic fields from the p̄’s, and the magnetic field from the rotation
of the e+ plasma.

The calculations were performed in Cartesian coordinates but some of the results are more
easily described in cylindrical coordinates: r and z. The coordinate z is the position along the
trap axis and r =

√
x2 + y2 is the distance from the trap axis.

The electric fields in the trap are generated by a series of cylindrical electrodes and by the
e+ plasma. The voltage differences are on the order of 10 V. The voltages are chosen to trap
a e+ plasma near the centre of the trap and simultaneously trap the p̄’s with electrodes further
down. In figure 1, we show the electric potential energy for the p̄’s along the trap axis. The
flat region near the centre is where the e+ are trapped. To a good approximation, they short
out the electric field along the magnetic field; the density is not completely flat because the
magnetic field from the mirror coils gives some variation [8] in B across the plasma.

All of the calculations in this paper are for a e+ density of n0 = 1.2 × 107 cm−3 and for
8 × 106 e+’s. The plasma formed is roughly spheroidal in shape with a radius of 4.33 mm
and a length along the axis of 17.1 mm. It is hoped the e+ in the experiments will have a
temperature of 4 K. We computed the shape using a temperature of 16 K because this allowed
us to represent the electric fields with a factor of 4 fewer spatial grid points. The higher
temperature only affects a small region near the edge of the plasma. The Debye length for a
4 K plasma with a density of n0 = 1.2 × 107 cm−3 is �40 µm while a 16 K plasma has a
Debye length of �80 µm. We performed several test calculations and found that our results
do not change when we use the shape of a e+ plasma at a temperature of 4 K.

The spatial distribution of e+ is computed by assuming they are in global thermal
equilibrium [9]. For a given number of e+’s and electrode geometry and voltages, the shape
of the the e+ plasma is determined by the density at the centre of the trap. In computing
the e+ density distribution, we numerically solve for the self-consistent solution of Poisson’s
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equation and the equations for thermal equilibrium. The treatment of [9] assumes perfect
cylindrical symmetry. This is not precisely correct for our system since the multipole field
breaks the cylindrical symmetry; at the edge of the plasma, the octupole field has a magnitude of
0.014 T compared to the 1 T from the uniform field. We assume that the experimental results
in [4] are correct and that the e+ plasma will hardly change due to the presence of an octupole
field because the radial extent of the plasma is much smaller than the radius of the trap. For
the expected parameters in the H̄ experiments, the density of p̄’s is several orders of magnitude
less than that of the e+’s; thus, we have not included the electric fields from the p̄ space charge.

Because the plasma is small, the dominant magnetic field in the e+ plasma is the uniform
magnetic field along the axis. The e+ plasma has nearly uniform density throughout. The
electric potential within the plasma has the form

∇2V = en0

ε0
, (3)

where the right-hand side is, approximately, constant and n0 is the e+ density. The potential can
not depend on z otherwise there would be electric fields along the magnetic field. Furthermore,
the potential must be cylindrically symmetric. Therefore, the electric potential within the
plasma must have the form:

V � V0 +
en0

4ε0
r2, (4)

where V0 is a constant. If the mirror coils were off, the � would change to =. Because
the electric field increases linearly with r through the e+ plasma, the plasma rotates with an
angular frequency of v/r = E/(rB) = en0/(2ε0B). For a 1 T field, the rotation period is
58 µs and the speed of the plasma at the edge (r = 4.33 mm) is ∼470 m s−1.

The electric field was computed by storing the potential on a grid of points: 4096 points
along the axis and 512 radial points. This corresponds to a grid spacing of approximately
64 µm along the axis and 44 µm in the radial direction. The electric field at the position of
the p̄ was computed using bicubic interpolation [10].

The interaction of the p̄ with the e+ plasma includes three terms: (1) the mean electric
field which is included in �E, (2) the loss of energy due to excitation of plasma waves, and (3)
the interaction with plasma fluctuations. The last two terms are included in �F plas = �F dis + �F fluc

in equation (2).
We computed these terms using the development of [11]; we extended their treatment

to separately include the loss of energy parallel to B̂ and perpendicular to B̂ and to include
fluctuations to the energy loss through the fluctuation dissipation theorem. In [11], the power
dissipated into the plasma can be written as

−dE

dt
= �F dis · �v, (5)

where �v is the velocity of the p̄ and

�F dis = e2λ2
D

8π3ε0

∫
�k F (s)

[k2λ2
d + G(s)]2 + F 2(s)

d3�k, (6)

where �k is the wave vector, s = k̂ · �v/
√

kBT /m, λD is the Debye length, and F(s) and G(s)

are terms in the imaginary and real part of the dielectric function. See equation (6) of [11].
We evaluated the expressions for F(s) and G(s) by numerical integration. When the p̄ is in
the e+ plasma we include this damping term which causes the p̄ to lose energy.

If only �F dis is included in the equations of motion, the p̄ loses energy until it is stopped in
the plasma. To prevent this unphysical development, we included a fluctuating force when the
p̄ is in the e+ plasma. We do not know the details of the fluctuating force, but we know that
the fluctuating force plus the dissipative force must lead to the p̄ having a thermal distribution
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Figure 2. The time dependence of the p̄ kinetic energy, KE = mv2/2, when it crosses the midpoint
of the e+ plasma with positive velocity. (a) A representative case when the octupole field is off.
(b) A representative case when the p̄ is near the axis, ∼1.83 mm; the octupole field has little effect.
(c) A representative case when the p̄ starts farther from the axis, ∼4.12 mm which is near the edge
of the e+ plasma; note the sudden change near 8 ms and the large spread in kinetic energy after this
time. (d) A different type of case when the p̄ is away from the axis, ∼3.27 mm; note the sudden
change near 5 ms and how the kinetic energy is never less than ∼100 K after 10 ms. Note that
(c) and (d) have a wide spread of kinetic energy even at early time.

with temperature T. We modelled this by a series of impulses. While the p̄ is in the plasma,
it has a probability for getting a momentum kick during the interval δt . From our calculation
of �F dis and the fluctuation dissipation theorem, we could determine a form for the impulses
that leads to a thermal distribution given a form for the distribution of the impulses. To
see how we did this, examine the equation for one component of the velocity. Write the
contribution from the dissipation as v̇x = −λxvx where the λx is determined numerically from
equation (6). Then the momentum impulse during the time interval δt is given by δpx =
Fx,flucδt where the Fx,fluc must have an average second moment

〈
F 2

x,fluc

〉 = 2λxMkBT/δt .
As an example, if the distribution of Fx,fluc is chosen to be flat then it must be between
±√

6λxMkBT/δt while if it is a Gaussian distribution it must have a full width at half
maximum of 4

√
ln 2λxMkBT/δt . Clearly, this is an approximation, but it is much better to

include this model fluctuation than not to include fluctuations at all. Individual trajectories are
sensitive to the fluctuations due to the regions of chaos. However, we found that the distribution
of properties of trajectories did not strongly change with the form of the fluctuations.

3. Motivation

This paper was motivated by the results shown in figures 2 and 3. Figure 2 shows the kinetic
energy of the p̄ when it crosses the midpoint of the e+ plasma with positive velocity along the
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Figure 3. The time dependence of the p̄ distance from the axis when it crosses the midpoint of
the e+ plasma with positive velocity. The cases match those in figure 2. Note there is little radial
change for cases (a) and (b). For (c) and (d), there is a much wider spread in distance from the axis
as well as a long-term decrease in distance with time.

magnetic field; the times of the crossings are given on the x-axis for the first 30 ms. Figure 3
shows the distance from the central axis for these times. In these calculations, the p̄ has its full
three-dimensional motion. The motion through the trap includes the effects from the magnetic
field, the electric field from the trap electrodes and the e+ plasma, and the interaction with
plasma waves ( �F dis and �F fluc).

Figure 2(a) shows the behaviour of the kinetic energy when the octupole field is off. The
kinetic energy decreases due to loss of energy to plasma waves and to sporadic collisions with
individual e+’s. When the octupole field is off, the time dependence of the p̄’s kinetic energy
has the general form as shown in figure 2(a) for all of the trajectories we examined; the only
differences arise from the radial position of the p̄ because those near the axis go through a
larger path length of plasma and thus lose energy more quickly. There is a steady decrease
in kinetic energy with small fluctuations until the kinetic energy is ∼kBT of the e+ plasma.
At that point, the kinetic energy fluctuates so that the time average is (3/2)kBT . If H̄ is to
be made with low enough kinetic energy to be trapped, the p̄ will need to capture a e+ after it
reaches this final stage where KE ∼ kBT . Figure 3(a) shows that the distance from the central
axis hardly changes with time; the changes are somewhat larger than the size of the cyclotron
orbit radius.

Figures 2(b)–(d) show some of the different types of behaviour of the kinetic energy
when the octupole field is on. These three figures show qualitatively different behaviour.
Figure 2(b) is a typical behaviour when the p̄ is close to the axis, see the companion
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figure 3(b). This case is similar to that shown in figure 2(a). Since the strength of the
octupole field decreases strongly as r → 0, trajectories near the axis are hardly perturbed.

Figure 2(c) shows a qualitatively different behaviour. The kinetic energy fluctuates quite
strongly (roughly 150 K initially) but decreases in a steady manner until t = 8 ms. At
this point, the size of the fluctuations increases dramatically and the kinetic energy does not
appreciably decrease over the final 22 ms. The origin of this behaviour can be deduced from
the behaviour of the radial position in figure 3(c). In this figure, it is clear that the fluctuations
in the radius are quite large. The fluctuation is due to the octupole field which breaks the
cylindrical symmetry of this system. From equation (4), the change in radius corresponds to
a change in potential energy of �PE � (e2n0/2ε0)r�r . For the density in this calculation
and the radius in figure 3(c), a 40 µm change in radius corresponds to a 200 K change in
potential energy; by conservation of energy there is a corresponding change in kinetic energy.
Note that there is a long-term decrease in the radius in figure 3(c). This shows that the energy
lost to plasma waves is incorporated by a decrease in potential energy through a slow, long-
term drift toward the axis. However, the kinetic energy is not changing much on this time
scale.

Figure 2(d) shows another kind of time dependence. In some ways it is similar to the
behaviour in figure 2(c) but with the change that the long-term behaviour is substantially
shifted away from KE ∼ 0. After t = 6 ms, the kinetic energy is never below 50 K. The
behaviour of the radial position in figure 3(d) has several peculiar features. However, the long-
term behaviour is not qualitatively different from that shown in figure 3(c) so it is something
of a mystery as to why figure 2(d) should show behaviour so different from that in figure 2(c).
We will explain the origin of these features of figure 3(d) in the next section.

We note that this behaviour is of crucial importance to the next generation of H̄
experiments. These experiments need cold H̄ if there is to be any hope of trapping them.
Rydberg H̄ with maximal magnetic moment can be trapped if the kinetic energy is less than
∼10 − 20 K and atoms in the ground state can be trapped if the kinetic energy is less than
∼3/4 K. Since the kinetic energy of the H̄ is almost completely determined by the kinetic
energy of the p̄ just before capturing the e+, the p̄ needs to have a kinetic energy less than a
few K. This could occur if the p̄ shows a behaviour like in figure 2(b), and it does not capture
a e+ until it thermalizes with the e+ plasma. There is no chance for a cold H̄ if the p̄ behaves
as in figure 2(d). There is only a small chance for a cold H̄ if the p̄ behaves as in figure 2(c).

We ran 50 trajectories starting with a random distribution of x, y positions within the
plasma; we started all of the p̄’s with a velocity of 5000 m s−1 (parallel to B̂) at the centre of
the plasma, z = 0. We found that 12 behaved like the trajectory in figure 2(b), 13 behaved
like the trajectory in figure 2(c), 12 behaved like the trajectory in figure 2(d), 11 started like
the trajectory in figure 2(c) but then converted to 2(d), and 2 started like the trajectory of
figure 2(b) but then converted to 2(d). Therefore, only 12 out of the 50 trajectories gave a
behaviour that would lead to a decent probability for trapping the H̄.

We performed a similar calculation for a hexapole field that had the same trap radius and
magnitude of the magnetic field at the wall. We found that four trajectories were similar to
that in figure 2(b), 40 behaved like the trajectory in figure 2(c) and 6 started like the trajectory
in figure 2(c) but then converted to 2d. Thus, only 4 out of 50 trajectories gave a behaviour
that would lead to a substantial probability for trapping the H̄. It should not be surprising that
the number is less for the hexapole because it gives a larger B-field everywhere except at r = 0
and at the wall.

Thus, the majority of p̄’s show a time-dependent behaviour that is incompatible with
trapping H̄. In order to understand the origin of this problem, we investigated a simpler
situation as discussed in the next section.
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4. Interpretation

In this section, we present the results of our studies of p̄ motion in the trap using a simplification
of the motion. One simplification was to use a guiding centre approximation in order to sample
a much larger number of trajectories in a reasonable time. The second simplification was to
remove the dissipative and fluctuating forces due to the plasma. This leads to a conservative,
nonlinear system with four phase space dimensions. From the properties of this system we
could interpret all of the different types of trajectories. We computed the Poincaré surface of
section map for several total energies. To understand the origin of the features of this map,
we constructed a much simpler set of differential equations that allows for an even quicker
exploration of the properties of this system and leads to a simple connection to studies of
single particle transport through the multipole fields used to steer and focus beams in particle
accelerators [6].

4.1. Simple guiding centre approximation

In order to generate a large number of trajectories, we solved the equations of motion using a
simple guiding centre approximation. The equations of motion we used were

d�r
dt

=
�E(�r) × �B(�r)

B2(�r) + B̂(�r)p‖
M

dp‖
dt

= q �E(�r) · B̂(�r), (7)

where M,q is the mass, charge of the p̄, �E(�r), �B(�r) are the electric,magnetic fields at the
position �r , and B̂(�r) is the unit vector in the magnetic field direction at the position �r . We
compared the results from the guiding centre approximation to that from the full (six phase
space dimensions) classical calculation and found good agreement. These equations do not
include several standard terms because they are unimportant for our system. As an example,
we do not include the �µ · �B term in the potential energy because it gives potential energy
changes of the order of a few K compared to the electric potential energy scale of 105 K. A
more detailed discussion of these equations is given in the appendix.

The function H(�r, p‖) = p2
‖
/

2M + qV (�r) does not change with time. Since there are
four phase space dimensions with coupled, nonlinear equations of motion, it should not be
surprising that the system shows regions of regular and regions of chaotic motion.

When there is no octupole field, both the electric and magnetic fields have cylindrical
symmetry. The guiding centre equations, equation (7), give motion such that the value of
rθ̂ · �A(�r) is a conserved quantity [12] if �A(�r) is the vector potential at the position �r .

4.2. Poincaré surface of section

We examined the mapping for the x, y points when z = 0, the midpoint of the e+ plasma, and
p‖ > 0. When the octupole field is off, the radial position of the p̄ when it reaches z = 0 is
a conserved quantity. The only thing that changes is the angle, θ , at each return where θ is
defined as x = r cos θ and y = r sin θ . Since the function H is a conserved quantity and the
electric potential does not depend on θ , this means that a trajectory that starts at r0, θ0 will
have different values of x on each return within the range −r0 � x � r0 and will have the
same value of the kinetic energy on each return. Most of the angular rotation occurs within
the e+ plasma because the electric field perpendicular to �B is largest there and the p̄ has its
smallest value of v‖.

When the octupole field is turned on, the p̄ does not return to z = 0 with the same value
of r because the octupole causes a net change in radial position. This can be seen from
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the form of the �E × �B term. The magnetic field from the uniform field plus the multipole
field has the form �B = (Cy[3x2 − y2],−Cx[3y2 − x2], B0). The electric field has the
form �E = −([x/r]∂V/∂r, [y/r]∂V/∂r, ∂V/∂z). Using these two forms, we can find the
contribution of the �E × �B drift to the x and y velocity is

ẋ = 1

B2

[
−Cx(3y2 − x2)

∂V

∂z
− y

1

r

∂V

∂r
B0

]
(8)

ẏ = 1

B2

[
−Cy(3x2 − y2)

∂V

∂z
+ x

1

r

∂V

∂r
B0

]
,

where B2 = B2
0 + C2r6. The second term on the right-hand side only leads to rotation while

the first term can lead to radial motion. Using the relationship xẋ + yẏ = rṙ , one can show
that ṙ = (C/B2)r3 cos(4θ)∂V/∂z. Thus, the radius will increase or decrease depending on
the angle.

An important point is the fourfold symmetry of this system. Rotating the system by 90◦

gives the same equations of motion. This leads to the possibility for resonant coupling when
the p̄ rotates through an integer multiple of 2π/4 during one axial period. The largest resonance
arises when the rotation angle is 2π/4 during one axial period because the p̄ experiences a
radial drift in the same direction after every bounce.

In figure 4, we show the surface of section plot in terms of the kinetic energy,
KE = p2

‖
/

2M , and the x position. We plot the p̄ kinetic energy each time it returns to
the midpoint with positive velocity as a function of its x position. Figure 4(a) is for initial
conditions near the axis while figures 4(b) and 4(c) are for conditions increasingly far from
the axis.

There are four features that deserve notice.

(1) The envelope of allowed points is simply due to conservation of energy. The value
of x must be in the range −r � x � r . For a given KE, the value of r is given by
equation (A.1) with the potential given by equation (4). Combining these equations, the
kinetic energy as a function of r is given by KE(r) = KE(0) − en0r

2/(4ε0) at z = 0.
Thus, the range of x is limited by |x| � 2

√
(ε0/en0)[KE(0) − KE].

(2) At large KE, the octupole field causes a slight inward/outward motion in distance from
the axis. There is only little inward/outward motion because the rotation during a single
axial period is small, <0.1 revolutions, and the duration of a period is small giving little
chance for the �E × �B drift to cause substantial movement. Thus, the amount of change
in KE is not very large on the scale shown. Our orientation of octupole leads to the p̄
being a slight inward distance when x = 0 or y = 0. This leads to the KE being largest
at x = 0 or y = 0.

(3) The octupole field leads to a resonant coupling between the rotation around the axis and the
axial motion. When the p̄ rotates by 1/4 of a revolution after one bounce, it experiences
exactly the same forces. The large island at x = 0 (or y = 0) and KE ∼ 250 K
corresponds to the main 1:4 resonance.

(4) There is a region of chaotic KE when the KE is small. The region of chaotic motion
depends on how far the p̄ is from the axis. When the p̄ is close to the axis, the region
of chaos is a small range of KE and the 1:4 resonance is well above the chaotic region.
When the p̄ is relatively far from the axis, the chaotic region is a large range of KE and
the 1:4 resonance is inside the region. This is due to two effects that both act in the
same direction. At larger r, the octupole field is larger giving larger �r’s, and the rate of
potential energy change, �PE/�r ∝ r , is larger which leads to a correspondingly large
spread of KE.
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Figure 4. The Poincaré surface of section map for the guiding centre approximation with all
damping and fluctuating forces removed. The plot shows the p̄ kinetic energy, KE = p2

‖/2M , and
x position every time the p̄ returns to z = 0 with positive velocity. The different figures correspond
(a) to initial conditions near the axis, (b) to medium radial distances, and (c) to distances near the
plasma edge. Note the main resonant island (at KE ∼ 300 K in (a), at KE ∼ 200 K in (b), and
KE ∼ 100 K in (c)) is when the p̄ rotates by π/2 during a complete axial bounce. Note that the
chaotic region for small KE increases rapidly with radial distance.

As with all chaotic Hamiltonian systems, there are an infinity of islands. However, most
of the other islands are relatively small and do not play a large role in the dissipative
dynamics.

4.3. Simplified map

In an effort to understand the features of the Poincaré map, we constructed a simplified model
of the p̄ where we only focus on the x, y motion and do not include the variables z and p‖.
A qualitative discussion of the types of forces in the Penning trap was given above. From
this picture, we were led to the following five stage map. (1) The p̄ travels from the midpoint
of the e+ plasma to the plasma edge with positive velocity. (2) The p̄ travels from the edge
of the plasma to the large z turning point and back to the edge of the plasma. (3) It travels
through the plasma with negative velocity. (4) It travels from the edge of the plasma to the
small z turning point and then back to the edge of the plasma. (5) It travels from the edge of
the plasma to the plasma midpoint with positive velocity.

Only treat the x, y coordinates of the p̄. To model the change in x, y during step (1),
rotate x and y by an angle

�θ = 1

2
�θ0

√
1 − (r/rmax)2√
1 − (r/rt )2

, (9)
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Figure 5. Same as figure 4 except using the much simplified map which consists of rotations and
small translations. Note the very similar structure for the corresponding case in figure 4. For this
map, the kinetic energy is defined as KE(r) = KE(0) − en0r

2/(4ε0).

where r =
√

x2 + y2 and �θ0 = −(en0/2ε0B)2zmax/v‖,0. This form arises from the idea
that the angle should be the angular frequency of the p̄ when it is in the plasma, en0/2ε0B,
multiplied by the time it is in the plasma. We assume the plasma has a spheroidal shape
with edge defined by (z/zmax)

2 + (r/rmax)
2 = 1. The distance the p̄ travels in the plasma is

z = zmax

√
1 − (r/rmax)2. The parallel speed of the p̄ in the plasma is v‖(r) = v‖,0

√
1 − (r/rt )2

where we have defined KE(r) = KE(0) − en0r
2/(4ε0) and rt is the maximum value of r for a

given KE(0) whose expression is rt = 2
√

ε0KE(0)/en0. We did not include effects from the
octupole field in this step because the plasma has only a small extent in z.

To model the change in x, y step (2), we note that the equations (8) have the form

ẋ = x[3y2 − x2] − βy = ∂h(x, y)

∂y
ẏ = y[3x2 − y2] + βx = −∂h(x, y)

∂x
(10)

if h(x, y) ≡ xy3 − yx3 − β(x2 + y2)/2. The term with β only gives a pure rotation. Because
this system is Hamiltonian, it preserves phase space area. We note that this treatment is
different from that in [6] but it produces similar types of results. There are two adjustable
parameters in this step: the duration of the time integration, T, and the value of β. We chose
these parameters to give a surface of section plot that best matches the calculation using the
guiding centre approximation in figure 4(a). These parameters were then held fixed

To model step (3), we use the same idea as step (1) except the distance travelled in the
plasma is twice as large because the p̄ travels through the whole plasma. This gives a rotation
of

�θ = �θ0

√
1 − (r/rmax)2√
1 − (r/rt )2

. (11)

To model step (4), we use the same idea as in step (2). However, the electric field in the z

direction has the opposite sign which means the equations are changed to

ẋ = −x[3y2 − x2] − βy = ∂h̃(x, y)

∂y
ẏ = −y[3x2 − y2] + βx = −∂h̃(x, y)

∂x
(12)

if h̃(x, y) ≡ −xy3 + yx3 − β(x2 + y2)/2.
Step (5) uses the same mapping as in step (3).
Figure 5(a) shows a map for parameters similar to those in figure 4(a) and figure 5(b)

shows a map for parameters similar to those in figure 4(b). The parameters for this model
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used B0 = 1 T, n0 = 1.2 × 107 cm−3, rmax = 4.33 mm, zmax = 8.5 mm, T = 1500 and
β = −0.05/T . Note that all of the parameters are exactly those from the guiding centre
calculation except for the T and β which were determined by a best visual fit. Near the edge
of the plasma the limitations of this simple model become more apparent. The main problem
is that the duration, T, of the octupole interaction (steps (2) and (4)) is held fixed whereas the
guiding centre approximation gives a dependence both on the KE of the p̄ and on the radial
position.

4.4. Qualitative motion of the p̄

The simple map described in the previous section does a good job in reproducing the surface
of sections from the more complicated guiding centre calculations. Thus, the motion of the
p̄ can be thought of as a sequence of simple rotations with alternate solutions of the coupled
equations of motion with h = ±(xy3 − yx3). The motion is analogous to the treatment of a
beam [6] alternately interacting with dipole and octupole fields (with alternate octupoles of
opposite sign).

There is substantial resonant coupling whenever the motion of the p̄ is such that the
rotation angle is π/4 for one complete pass through the e+ plasma. The rotation angle in the
e+ plasma can be simply computed if the density of e+’s and the shape of the plasma is known.
If we take all of the rotation to be from when the p̄ passes through the e+ plasma, the rotation
angle for one time through the plasma is given by

�θ = −en0zmax

√
1 − (r/rmax)2

ε0v‖B
, (13)

where v‖ is the p̄ speed along B. The condition for resonance is �θ = −π/4. This gives the
resonance velocity to be

v
(res)
‖ (r) = 4en0zmax

√
1 − (r/rmax)2

πε0B
. (14)

For the condition in figure 4(a), the value of r � 1.7 mm which gives v
(res)
‖ � 2160 m s−1 with

a KE � 280 K. For the conditions in figure 4(b), r � 2.6 mm which gives v
(res)
‖ � 1870 m s−1

with a KE � 210 K. For the conditions in figure 4(c), r � 3.7 mm which gives v
(res)
‖ �

1200 m s−1 with a KE � 90 K. The actual position of the resonance is slightly lower than
these values. The resonance position decreases in KE as r increases because the p̄ goes
through less plasma as r increases and therefore needs to go through more slowly to have a
π/4 rotation.

We have not devised a simple method for determining the extent of the chaotic region.
We can use the results of the simple map and the guiding centre calculation to interpret the

different types of p̄ behaviour in figure 2. We interpret figure 2(b) as arising from a trajectory
close to the axis. As it loses energy, it becomes temporarily captured on the edge of the 1:4
island between 4 and 5 ms; this is what gives the large spread in KE and r (figure 3(b)) during
this interval. However, fluctuations cause it to leave the island so that it loses energy to reach
the chaotic region at small KE. From figure 4(a), the chaotic region only covers a small range
of KE when the p̄ is near the axis.

We interpret figure 2(c) as arising from a p̄ that is far from the axis so that the most
relevant map is figure 4(c). Even at large KE the successive returns of the p̄ give relatively
large change in r which corresponds to a large spread of KE even at early times, <5 ms. It
takes longer to reach the lower KE than the trajectory in figure 2(b) because it is near the edge
of the plasma; it goes through less plasma on each pass and thus loses less energy with each
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pass. Once the p̄ reaches 8 ms, it is now in the chaotic region corresponding to the lower part
of figure 4(c). Each time it passes through the plasma it loses a small amount of total energy.
However, the spread of energies available to it is so large this loss is not noticeable in the
spread of KE. However, the energy is lost; the energy must come from the average potential
energy which is why the average radius decreases with time in figure 3(c).

We interpret figure 2(d) as arising from a p̄ that is captured into one of the islands just after
reaching the chaotic region at 5 ms. In particular, notice the interesting pattern that develops
between 16 and 20 ms. This feature is also visible in figure 3(d). Because the islands do not
extend down to KE = 0, the p̄ always returns with a large KE. Note that the p̄ remains trapped
at large KE for the duration of the run. As with the example in figure 2(c), the p̄ loses energy
each time it passes through the plasma. Because it is trapped in an island, the energy loss is
manifested through a loss in potential energy through a slow drift to smaller r.

5. Conclusions

We performed calculations of the motion of p̄’s in the combined electric and magnetic fields
that are expected in the next generation of H̄ experiments. The multipole field used to trap the
cold H̄ leads to very interesting behaviour. In particular, we found that most of the p̄’s exhibit
motion that would not lead to the production of cold H̄ that could be trapped at short times.
Octupole fields gave a higher trapping fraction than hexapole fields. We traced the origin of
this behaviour to the coupled, nonlinear dynamics of the p̄ motion. The most important feature
was the interplay of the rotation of the p̄ about the trap axis as it traversed the e+ plasma and
the radial changes induced by the multipole field.

The effect of the multipole field can be reduced by decreasing the strength of the field.
However, this will quickly decrease the magnetic well depth. For example, if the magnetic
field at the wall is decreased from 2 to 1 T, then the well depth decreases from 1.23 T to
0.41 T, a factor of 3 decrease. This likely means a decrease by a factor of 33/2 ∼ 5.2 in
trapped H̄. Since the magnetic field strength goes like r3Bw for an octupole field, a factor of
2 decrease in Bw means a factor of ∼22/3 ∼ 1.6 increase in the cross section area that gives
usable H̄. Thus, it seems that decreasing the multipole field is not a good strategy.

A possibly effective strategy is to reduce the axial extent of the p̄ motion. This can be
accomplished by raising the potentials in the side wells. This could increase the number of
cold H̄ because the octupole field would have less time to cause change in the radial position
of the p̄ which is the main culprit in causing the large energy spread. A related possibility
is to change the overall size of the electric field. Since the axial period will decrease with
increasing electric field strength and the change in radius also depends on the electric field
(through the �E × �B), there will be an optimum overall strength which gives minimum chaotic
coupling of the p̄.

A much more promising strategy is to get the p̄’s to be concentrated as close as possible to
the axis. All of the p̄’s that could give cold H̄ arise for p̄’s near the axis because the multipole
field decreases so rapidly as r goes to 0. However, this could be difficult because the p̄’s are
cooled by having them come into thermal equilibrium with electrons; the two species plasma
will tend to have the p̄’s outside of the electrons [9] and thus more likely to be at larger r than
smaller r.

On a less pessimistic but more speculative note, we point out that there might be some
parameters where these effects will increase the formation of cold H̄. There could be e+

plasmas where the H̄ formation takes place over a relatively long time scale. We note that
both figures 3(b) and (c) show the radial position decreasing by a substantial amount over a
few 10 ms. Thus, it might be possible that the multipole field might serve as a mechanism to
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transport the p̄’s closer to the axis. Near the axis, the region of chaos is smaller and the p̄’s
will get excited out of the islands due to plasma fluctuations. Also, the p̄’s will have a longer
time in the plasma to cool to the plasma temperature and to form more deeply bound H̄’s.
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Appendix

The first order autonomous system of ordinary differential equations (ODEs), equation (7), is
close to, but not quite, a Hamiltonian system. Define the phase space function, H, to be

H(�r, p‖) = p2
‖

2M
+ qV (�r), (A.1)

where V (�r) is the electric potential at position �r . The phase space gradient of H is

�∇H ≡




q ∂V
∂x

q ∂V
∂y

q ∂V
∂z

p‖
M


 (A.2)

and the time-dependent equations can be written as

d

dt




x

y

z

p‖


 =




0 − Bz

qB2
By

qB2
Bx

B

Bz

qB2 0 − Bx

qB2
By

B

− By

qB2
Bx

qB2 0 Bz

B

−Bx

B
−By

B
−Bz

B
0




�∇H (A.3)

which has the form d �
/dt = J �∇H with J = −J T and �
 = (x, y, z, p‖).
The structure of the ODE’s, with the right hand side an antisymmetric matrix J (the

Poisson tensor) multiplied by the gradient of a scalar, H, is characteristic of Hamiltonian
systems, when written in non-canonical coordinates [12]. However, there is another condition
that must be satisfied in order for a system to be Hamiltonian. The inverse of the Poisson
tensor, J , is the Lagrange tensor, ω,

ω = J−1 =




0 qBz −qBy −Bx

B

−qBz 0 qBx −By

B

qBy −qBx 0 −Bz

B

Bx

B

By

B

Bz

B
0


 . (A.4)

To be Hamiltonian, the Lagrange tensor must be closed, that is
∂ωij

∂
k

+
∂ωki

∂
j

+
∂ωjk

∂
i

= 0, (A.5)

where �
 = (x, y, z, p‖) In the case of equation (7), this condition is

�∇ · �B = 0 and �∇ × ( �B/B) = 0. (A.6)

For our system, �∇ · �B = 0 and �∇ × ( �B/B) is small, but it is not zero.
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Even though equation (A.3) is not Hamiltonian, it does share two important properties with
the Hamiltonian system. (1) The function H is conserved: dH/dt = ∑

i (∂H/∂
i)(d
i/dt) =
0. (2) In the axisymmetric limit (no octupole field in our case), the quantity rθ̂ · �A(�r) is a
conserved quantity where �A is the vector potential.

The system of equations, equation (A.3), could be altered to be truly Hamiltonian [13].
This would require the computation of �∇×( �B/B) at each time step, which would significantly
slow down the computations. The surface of section plots indicate that, for the length and time
scales we are interested in, the non-Hamiltonian character of equation (7) is not significant.
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