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Abstract
Electron-impact double ionization cross sections for H− are calculated
using a non-perturbative time-dependent close-coupling theory. The total
wavefunction for the three-electron system is represented by a coupled
channels expansion involving simple products of three-dimensional radial
lattices and six-dimensional coupled spherical harmonics. Following time
evolution of the total wavefunction according to the Schrödinger equation,
collision probabilities are found by projection of the total wavefunction onto
fully antisymmetric products of spatial and spin functions representing three
outgoing Coulomb waves. The completely ab initio double ionization cross
section results for H− are found to be more than a factor of 5 below the
experimental measurements of Peart et al (1971 J. Phys. B: At. Mol. Phys.
4 88) and in excellent agreement with the experimental measurements of
Yu et al (1992 J. Phys. B: At. Mol. Opt. Phys. 25 4593).

In the last couple of years, a time-dependent close-coupling method has been developed to
treat three continuum electrons moving in the field of a charged core, that is Coulomb four-
body breakup. This non-perturbative method has produced ab initio cross sections for the
triple photoionization of Li [1] that are in excellent agreement with synchrotron light source
experiments [2] and for the electron-impact double ionization of He [3] that are in excellent
agreement with crossed-beams experiments [4]. The time-dependent close-coupling method
has also been used to predict double photoionization with excitation and triple photoionization
cross sections for Li and Be [5], as well as to investigate the double autoionization of triply
excited hollow atom states of Li [6].

In this letter, we apply the time-dependent close-coupling method developed for Coulomb
four-body breakup to the electron-impact double ionization of H− in an attempt to resolve a
long-standing disagreement between experimental measurements. The early crossed-beams
experimental measurements of Peart et al [7] for the double ionization cross section of H−

peaked at 50 Mb (1.0 Mb = 1.0 × 10−18 cm2) around 50 eV incident electron energy.
Subsequent perturbative Born calculations [8] found a peak cross section of about 35 Mb. Two
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decades later the crossed-beams experimental measurements of Yu et al [9] for the double
ionization of H− found a peak cross section of about 10 Mb. More recent perturbative Born
calculations [10] report peak cross sections substantially below the Yu et al [9] experimental
measurements. Depending on the description of the final state, the recent Born results vary
from 0.01 Mb to 0.50 Mb at the peak of the cross section.

In the ensuing paragraphs, we first review the time-dependent close-coupling (TDCC)
theory, then compare the theoretical cross sections with the experiments and then conclude
with a brief summary. Unless otherwise stated, all quantities are given in atomic units.

The fully correlated wavefunction, �L, for the ground state of a two-electron target
atom is obtained by relaxation of the time-dependent Schrödinger equation in imaginary time
(τ = it):

−∂�L(�r1, �r2, τ )

∂τ
= Htarget�

L(�r1, �r2, τ ), (1)

where the non-relativistic Hamiltonian is given by

Htarget =
2∑
i

(
−1

2
∇2

i − Z

ri

)
+

1

|�r1 − �r2| (2)

and Z is the atomic number. The fully correlated wavefunction, �L, for electron scattering
from a two-electron target atom is obtained by evolution of the time-dependent Schrödinger
equation in real time:

i
∂�L(�r1, �r2, �r3, t)

∂t
= Hsystem�L(�r1, �r2, �r3, t), (3)

where the non-relativistic Hamiltonian is given by

Hsystem =
3∑
i

(
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∇2
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ri

)
+
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i<j

1

|�ri − �rj | . (4)

The total wavefunction, �L, for the two-electron target is represented by a
coupled channels expansion involving simple products of two-dimensional radial functions,
P L

l1l2
(r1, r2, τ ), and four-dimensional coupled spherical harmonics, while the total

wavefunction, �L, for the three-electron scattering system is represented by a coupled
channels expansion involving simple products of three-dimensional radial functions,
P L

l1l2Ll3
(r1, r2, r3, t), and six-dimensional coupled spherical harmonics. Angular reduction

of the time-dependent Schrödinger equations, equations (1) and (3), results in a coupled
set of partial differential equations for the radial expansion functions, P L

l1l2
(r1, r2, τ ) and

P L
l1l2Ll3

(r1, r2, r3, t) (see [3] for more details). The resulting time-dependent close-coupled
(TDCC) equations are solved by standard numerical methods to obtain a discrete representation
of the radial functions and all operators on either two- or three-dimensional lattices. Our
implementation on massively parallel computers is complete domain decomposition by
partition over all ri coordinates.

At time τ = 0, the two-dimensional radial functions for an L = 0 target are given by

P S
l1l2

(r1, r2, τ = 0) =
∑
l1,l2

P1s(r1)P1s(r2)δl1,0δl2,0, (5)

where P1s(r) is a radial solution of a Z hydrogenic one-electron target. At the end of the
relaxation of equation (1), the radial expansion coefficients for the fully correlated target
wavefunction are given by

P̄
S

ll(r1, r2) = P S
ll (r1, r2, τ → ∞), (6)



Letter to the Editor L129

where l � 0. At time t = 0, the radial expansion coefficients for the fully correlated initial
wavefunction of the scattering system are given by

P L
l1l2Ll3

(r1, r2, r3, t = 0) =
∑

l

P̄ S
ll (r1, r2)Gk0L(r3)δl1,lδl2,lδL,0δl3,L, (7)

where the Gaussian radial wave packet, Gk0L(r), has a propagation energy of k2
0
2 . At the end

of the evolution of equation (3), the probabilities for electron-impact double ionization of a
two-electron target are obtained by projection of a simple product of �L(�r1, �r2, �r3, t) and
a total doublet spin function onto fully antisymmetric products of spatial and spin functions
representing three outgoing Z hydrogenic Coulomb waves. The partial-wave double ionization
probability is given by

P 2L
double =

∑
l1,l2,L,l3

∑
s1,s2,S,s3

∫ ∞

0
dk1

∫ ∞

0
dk2

∫ ∞

0
dk3

∣∣P2L
l1l2Ll3,s1s2Ss3

(k1, k2, k3)
∣∣2

. (8)

The partial-wave momentum space probabilities, P2L
l1l2Ll3,s1s2Ss3

(k1, k2, k3), are given in terms
of angular and spin factor combinations of the six possible permutations of the momentum
space function:

R(ijk) =
∫ ∞

0
dr1

∫ ∞

0
dr2

∫ ∞

0
dr3 Pk1l1(ri)Pk2l2(rj )Pk3l3(rk)P

L
l1l2Ll3

(ri, rj , rk, t → ∞), (9)

where Pkl(r) are radial Z hydrogenic Coulomb waves and s1 = s2 = s3 = 1
2 (see [3]

for more details). We note that the coupled channel expansion over quantum numbers
l1l2Ll3 for �L(�r1, �r2, �r3, t) is different from the summation over projection quantum numbers
l1l2Ll3, s1s2Ss3 for P 2L

double. In addition, a simple restriction of the sums over the electron
momenta, ki , so that the conservation of energy,

Eatom +
k2

0

2
= k2

1

2
+

k2
2

2
+

k2
3

2
, (10)

is approximately conserved, greatly reduces the contamination from the continuum piece of
the two-electron bound state wavefunctions. Finally, the electron-impact double ionization
cross section is given by

σdouble = π

2k2
0

∑
L

2(2L + 1)P 2L
double. (11)

The electron-impact double ionization cross sections for the 1S ground state of H− were
calculated at three incident electron energies near the peak of the cross section, as indicated
by experimental measurements. Bound and continuum radial wavefunctions of a Z = 1
hydrogenic one-electron atom were obtained by matrix diagonalization of the Hamiltonian:

h(r) = −1

2

∂2

∂r2
+

l(l + 1)

2r2
− Z

r
. (12)

The ground-state energy for a mesh spacing of �r = 0.2 is found to be −13.47 eV, as compared
to the analytic value of −13.61 eV. Relaxation of the time-dependent Schrödinger equation
of equation (1) employed a (192)2 point lattice with each radial direction from 0.0 → 38.4
spanned by a uniform mesh with spacing of �r = 0.2. The ground-state energy of H− on
the lattice is found to be −14.18 eV, using three coupled channels (ss, pp and dd). Thus, the
ionization potential on the lattice is 0.71 eV, which compares well to the experimental value
of 0.75 eV. Evolution of the time-dependent Schrödinger equation of equation (3) employed
a (192)3 point lattice with again a mesh spacing in all directions of �r = 0.2. Initially, the
radial wave packets of equation (7) were centred at r3 = 19.2 with a coordinate space spread
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Table 1. Electron-impact double ionization partial-wave and total cross sections for H−, as
calculated by the time-dependent close-coupling (TDCC) method, at various incident electron
energies. All cross sections are in Mb (1.0 Mb = 1.0 × 10−18 cm2).

Close-coupling Projection TDCC TDCC TDCC
L channels functions 40 eV 50 eV 60 eV

0 11 10 0.23 0.27 0.28
1 21 16 0.62 0.62 0.59
2 23 22 0.97 0.98 0.92
3 49 30 1.30 1.40 1.34
4 63 38 1.45 1.57 1.51
5 87 46 1.04 1.30 1.35

Sub-total 5.61 6.14 5.99

Top-up 1.36 1.81 1.93

Total 6.97 7.95 7.92

of 4.8. Depending on the incident energies and total angular momenta, L, the evolution of the
time-dependent Schrödinger equation of equation (3) involved up to a maximum of 7600 time
steps.

Partial-wave double ionization cross sections for H− are presented in table 1. The
number of coupled channels and projection functions are indicated in columns 2 and 3,
respectively, for each total angular momentum. For example, for L = 0, we used 11 coupled
channels ((ss)Ss, (sp)Pp, (ps)Pp, (pp)Ss, (sd)Dd, (ds)Dd, (dd)Ss, (pp)Dd, (pd)Pp, (dp)Pp, and
(dd)Dd) and 10 projection functions ((ss)1Ss, (ss)3Ss, (sp)1Pp, (sp)3Pp, (sd)1Dd (sd)3Dd,

(pp)1Dd, (pp)3Dd, (dd)1Dd, and (dd)3Dd). The number of coupled channels and projection
functions for L = 0 to L = 5 are identical to those used in earlier TDCC calculations for the
electron-impact double ionization of He [3]. We note that the partial-wave double ionization
cross sections for H− are approximately 50 times larger than the partial-wave double ionization
cross sections for He at incident energies near the peak of the cross section.

To obtain total cross sections, we must extrapolate our time-dependent close-coupling
results to higher angular momentum L. Luckily, the partial-wave cross sections found in
table 1, for all incident electron energies, climb to a peak at L = 4 and then fall off for L = 5.
In extrapolating the time-dependent results to larger L, we chose a fitting function of the form

f (L) = (A + BL + CL2) e−L, (13)

where A,B and C are varied over an angular momentum range from L = 2 to L = 5. The
ratio of the ‘top-up’ found from the extrapolation to our final ‘total’ cross section ranges from
20% at 40 eV to 24% at 60 eV. We also used a second fitting function of the form

f (L) = A(L − L0)
n e−BL, (14)

where A,L0, n and B are varied over an angular momentum range from L = 0 to L = 5. The
total cross sections obtained from the second fitting function differed from those reported in
table 1 from the first fitting function by around 5%.

Total electron-impact double ionization cross sections for H− are shown in figure 1.
The time-dependent close-coupling results are shown as filled squares, the experimental
measurements of Peart et al [7] are open circles with error bars and the experimental
measurements of Yu et al [9] are open diamonds with error bars. The TDCC results are
found to be more than a factor of 5 below the Peart et al [7] measurements and in excellent
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Figure 1. Electron-impact double ionization cross section for H−. Solid squares: time-dependent
close-coupling method, open circles: crossed-beams experiment [7], open diamonds: crossed-
beams experiment [9] (1 Mb = 10−18 cm2).

agreement with the Yu et al [9] measurements. The extension of the TDCC calculations to
lower energies will require a larger radial lattice, while an extension to higher energies will
require the inclusion of higher L partial waves with a larger number of coupled channels.

In summary, a time-dependent close-coupling method, formulated to solve Coulomb four-
body breakup problems, has been used to calculate the electron-impact double ionization cross
section for H−. The non-perturbative TDCC results are found to be in excellent agreement with
the most recent crossed-beams experimental measurements of Yu et al [9], helping to resolve
a long-standing experimental discrepancy. In the future, we plan to continue the development
of the TDCC method so that it can be applied to other few-body Coulomb breakup problems.
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