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Abstract
We investigate the excitation of a collection of cold atoms to Rydberg states. By
a direct numerical solution of Schrödinger’s equation, we are able to compute
various interesting properties of the many-body wavefunction. The high
polarizability of Rydberg atoms allows them to support large dipole moments
which in turn can interact with each other over long ranges. If the interaction
energy between excited atoms is large enough, the resultant energy shift will
move the two excitation states out of resonance, thus effectively blocking a
two excitation state from occurring. One particular topic investigated is the
quantum phase gate, where both groups of atoms are within a blockade radius
Rb and subjected to a π − 2π − π sequence of pulses. We examine the regime
where the groups are neither totally within nor totally outside the blockade
radius. Our results explore the tolerance in variation of intergroup lattice
distances for a series of quantum gates.

1. Introduction

Atoms excited into Rydberg states are large in size and thus able to support large dipole
moments. The long-range interactions between these large dipoles have been a popular topic
of study over the last several years. With recent advancements in cooling and trapping, it
has been experimentally shown that the laser excitation of a frozen gas from an initial state
to a Rydberg state is suppressed when driving on resonance [1–5]. There have also been
various numerical simulations investigating this system [1, 6–8]. If the interaction energy
between two excited atoms is large enough, the shift will move the two excitation state out
of resonance, thus effectively blocking this state from occurring. The number of particles
able to be excited is now suppressed, exhibiting a dipole blockade [9]. This allows for the
coherent manipulation of a large collection of atoms, enabling careful macroscopic control
over microscopic systems. The ability to precisely interact with quantum systems is critical
in the development of quantum computing.

The original proposals for creating a dipole blockade [10] consisted of exciting Rydberg
states at Förster resonance and using the interaction between these transition dipole moments
to create energy shifts. Evidence of a dipole blockade has been successfully observed via this
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process [2]. A dipole blockade could also be created by exciting a group of cold Rydberg
atoms in a static electric field (along the z-axis). The resultant Stark states have relatively
large static dipole moments, �d , along the direction of the electric field. For two Rydberg atoms
within the n manifold in a static electric field, separated by a distance R, the dominant long-
range interaction is proportional to 1/R3 and scales like n4. This is similar to the proposal for
a blockade that utilizes the second-order interaction (van der Waals) between two np Rydberg
atoms [1]. It is proportional to 1/R6 and scales like n11. In this paper we will investigate
both the first-order dipole–dipole and second-order van der Waals (vdW) interactions. For
the vdW case, we will only be looking at the ns–ns interaction in order to eliminate any
directional dependence. In both cases, the initial state is coherent; we do not include decays
or repopulations from our ‘ground’ level. If a narrow bandwidth laser is used to drive from
the ‘ground’ to a high Rydberg state (n > 50) on resonance, the main transition will be
the dipole-allowed one [11]. We can then treat the entire collection as a group of two-level
systems.

When a collection of cold atoms is in a blockade configuration (i.e. the physical parameters
are such that the interaction energy between two Rydberg atoms is large enough to shift the
pair out of the two excitation resonance), the number of atoms that can be excited (Ne) is
suppressed. By taking repeated measurements of Ne, we can find the relationship between

the mean 〈Ne〉 and the variance
〈
N2

e

〉 − 〈Ne〉2. The Mandel Q parameter, Q ≡ 〈N2
e 〉−〈Ne〉2

〈Ne〉 − 1,
is a useful quantity to compare the atom counting statistics to a Poissonian distribution [12].
For a Poissonian distribution the mean is equal to the variance, so Q = 0. In the case of
blockaded atoms, Q should be less than 0; this corresponds to a sub-Poissonian distribution.
The Q parameter reflects the measure of how efficiently the system is blockaded. Recent
experiments have been able to measure Q values [4] and in this paper we will present the
results of our simulations of Q.

We also investigate the situation where there are two spherical, localized groups of cold
atoms. The radii of both spheres are chosen so that all pairs of atoms are in a blockade
configuration when the two spheres are just touching. The maximum number of atoms able
to be excited in this case should be 1, creating a two-level system. We then subject the system
to the following sequence of pulses: group 1 is excited by a π pulse, then group 2 is excited
by a 2π pulse and finally group 1 is deexcited by another π pulse. If all pairs of atoms
are in a blockade configuration, the sequence of pulses will maintain all the atoms in their
‘ground’ level, but this final state will now have a π phase shift relative to the initial state.
This sequence of pulses acts as a phase gate [9]. If the radii of each sphere are held constant
and the centre-to-centre distance D is increased, pairs of intergroup atoms will no longer be
blockaded. There is no longer just a two-level system, but if D is increased to the point where
no intergroup atoms are blockaded, then each group is now effectively independent of the
other leaving two two-level systems. In such a configuration, the π − 2π − π pulse will leave
the final state exactly in phase with the initial one. Our interest is in the regime in between
all intergroup atoms being blockaded and none of them being so. The behaviour of the phase
gate as D is increased will determine how far apart or close together the groups of atoms must
be in order to minimize errors.

The relatively large and long-range interaction between a pair of Rydberg atoms implies
that a collection of N atoms must be treated as a many-body system. By a direct numerical
solution of Schrödinger’s equation, we are able to compute and retain various interesting
properties of the many-body wavefunction. Even if every atom was strictly treated as a two-
level system, the number of basis states needed for a direct solution would still be 2N . This
severe limitation in size can be overcome by utilizing the simplifications described in [7].
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Although the method used in this paper utilizes the full wavefunction for calculations, other
techniques have been used such as the Monte Carlo procedure used in [6] which requires much
less computational effort. This is appropriate in the case of an incoherent ground state such as
in [4], but it cannot be used to probe quantities such as phase shifts or the amplitudes of pieces
of the full wavefunction useful to quantum computing. The mean field approach developed
in [1] works well for high laser power, but it is unable to give spatial correlation functions or
phase shifts needed to check the error of phase gates. Unless otherwise noted, atomic units
will be used throughout this paper.

2. Theory

In this section we will describe the techniques involved in the direct numerical solution to
the many-atom wavefunction. We will also discuss how we solved for the wavefunction in a
manner that allowed us to check for convergence. Once the wavefunction has been solved for,
it is possible to compute the number of excited atoms and various correlation functions.

We begin by treating each atom as a purely two-level system with one level being the
initial tightly bound state |g〉 and the other being a highly excited Rydberg state |e〉. For the
purposes of this paper, the locations of the atoms will be fixed in space. This is a reasonable
approximation if the temperature of the gas is low enough and the time duration of the exciting
laser pulse is short enough. For conditions similar to recent experiments, the laser pulse must
be � 200 ns. We expanded the wavefunction

|�(t)〉 = agg...g(t)|gg . . . g〉 + aeg...g(t)|eg . . . g〉
· · · + aee...g(t)|ee . . . g〉 + aee...e(t)|ee . . . e〉 (1)

=
∑

α

aα(t)|α〉. (2)

We do not use all of the states in the expansion, but recursively eliminate them as described in
[7]. At time t = 0, all atoms are in their tightly bound state: |�(0)〉 = |gg...g〉.

The Hamiltonian of this system is

Ĥ =
∑

j

Ĥ
(1)
j +

∑
j<k

Vjk|ej ek〉〈ej ek|,

Ĥ
(1)
j = −�ω(t)|ej 〉〈ej | +

S
τ

e−t2/τ 2
(|gj 〉〈ej | + |ej 〉〈gj |),

(3)

where Vjk is the interaction between two excited states for an atomic pair (j, k). The detuning
of the laser is �ω(t), τ is proportional to the duration of the excitation pulse, and S is the laser
amplitude. The Hamiltonian was also obtained by using the rotating wave approximation. If
we use parameters similar to [1], the laser frequency is in the UV range and at a relatively
low intensity, allowing for the rotating wave approximation to be a good one. If, however,
the parameters in [5] are used and a microwave transfer pulse is introduced, then careful
consideration must be used when applying this approximation. If the detuning is set to zero
and the system is blockaded, the system evolves in an oscillatory manner between all the
atoms in the ground state and a symmetrical state with only one excited Rydberg atom. The
Rabi frequency is

√
N�, where � is the single atom Rabi frequency and N is the number of

atoms blocked. The dynamics of this two-level system can be given as[
ag(t)

ae(t)

]
=

[
cos θ(t) −i sin θ(t)

−i sin θ(t) cos θ(t)

] [
ag(0)

ae(0)

]
, (4)
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where θ(t) = 2
√

N
∫ t

−∞(S/τ) exp (−t ′2/τ 2) dt ′. The probability that one atom will be excited

at the end of the laser pulse is sin2 (
√

NπS).
In order to solve Schrödinger’s equation numerically, we use the split operator method:

|�(t + δt)〉 = e−iĤ off(t)δt/2 e−iĤ diagδt e−iĤ off(t)δt/2|�(t)〉, (5)

where Ĥ diag is the matrix of diagonal elements (Rydberg–Rydberg interaction) of Ĥ and Ĥ off

is the matrix of off-diagonal elements (laser interaction) of Ĥ , such that Ĥ = Ĥ diag + Ĥ off . At
this point, the laser part of the interaction is approximated via the second-order Runge–Kutta
method. The error introduced is O(δt3), but by using second-order Runge–Kutta the norm
〈�(t)|�(t)〉 is no longer conserved. In fact at every time step it endures a error O(δt4). By
using small enough time steps, we are able to minimize this error.

For a group of cold Rydberg atoms in an electric field E , the dipole–dipole interaction
between atoms j and k can be given as

Vjk =
�dj · �dk − 3( �dj · R̂jk)( �dk · R̂jk)

R3
jk

, (6)

where �dj is the dipole matrix element for atom j . If the electric field is in the ẑ-direction and
we excite to the highest energy Stark state, then the dipole matrix elements can be written as
�d = (3/2)n2ẑ. Finally, we can write

Vjk = 9n4

4

1 − 3 cos2(θjk)

R3
jk

, (7)

where θjk is the angle formed between the vector pointing from atoms j to k and the direction
of the electric field. With no electric field, a second-order interaction between two atoms in
states ν0 and µ0, respectively, takes place:

Vjk = 1

R6
jk

∑
ν,µ

|〈ν|〈µ|�rj · �rk − 3(�rj · R̂jk)(�rk · R̂jk)|ν0〉|µ0〉|2
Eν + Eµ − (

Eν0 + Eµ0

) . (8)

This can be more concisely written as Vjk = −C6
/
R6

jk , and the C6 coefficient is proportional
to n11. A major difference between the dipole–dipole and vdW interactions is the dependence
on the relative orientation between atoms.

After propagating the wave equation for a period of time, we can now easily determine
the fraction of atoms in the excited state by projecting onto the states |α〉:

Pe =
∑

α

Nα

N
|〈α|�〉|2 =

∑
α

Nα

N
|aα(∞)|2, (9)

where Nα is the number of atoms excited in state |α〉. It is also possible to calculate a spacial
correlation function, which is the probability of finding two excited atoms separated by a
distance R divided by the probabilities of each individual atom:

C(R) = Pee(R)

P (R)P 2
e

, (10)

where Pee(R) is the probability to find two atoms excited a distance R apart:

Pee(R) =
∑
j<k

|〈βjk|�〉|2, (11)

such that the state |βjk〉 has excited atoms j and k a distance R apart. P(R) is the probability
of finding a pair of atoms separated by a distance R. By examining this two-particle correlation
function, we can estimate Rb, the blockade radius [7].
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Figure 1. The two-particle correlation function for a group of Rydberg atoms. The top graph is for
the second-order (van Der Waals) interaction and the bottom graph is for the first-order interaction.
The axes are the distances between particles in the x and z directions. The grey scale indicates the
probability of finding a second Rydberg atom at a location with respect to a Rydberg atom at the
origin. Black is the smallest probability. The correlation function drops to zero outside of 25 µm
in the vdW case and outside of 50 µm. This is due to the fact that there are no pairs that exist with
distances greater than 2R0, where R0 is the size of the uniformly distributed sphere.

3. Pair correlation

If we take advantage of the azimuthal symmetry of the Hamiltonian and take a slice in the xz

plane, we can look at the 2D pair correlation function. For this simulation, we used ten 85Rb
atoms and randomly placed them using a uniform spatial distribution in a sphere of radius R0.
For the vdW case, R0 = 12.5 µm and for the dipole–dipole case, R0 = 25 µm. In both cases,
we excite via a π pulse for 120 ns. The top plot in figure 1 is the pair correlation C(�x,�z)

for the vdW interaction. As expected, the vdW case is also symmetric in the polar direction.
A reasonably accurate blockade region can be defined by Rb. If an atom is excited, then all of
the other atoms within a distance Rb are blockaded. In the dipole–dipole case (static electric
field in the ẑ-direction), the interaction potential depends on θjk , the angle between the electric
field and the vector connecting atoms j and k. In fact when cos (θjk) = ±√

1/3, Vjk = 0; the
interaction vanishes and the two atoms are independent of each other. This can be seen in the
bottom plot of figure 1: along the angle cos (θjk) = √

1/3 (θjk ≈ 55◦), the blockade region
is pierced. In order to have a well-defined Rb as in the vdW case, the geometry must be set
up where cos(θjk) 
= ±√

1/3 for as many j, k pairs as possible. This can be accomplished by
placing the atoms in a thin plate in the xy plane; by decreasing the thickness, we can adjust
the number of pairs that lie along the critical angle. If the atoms lie in the xy plane, then C is
only a function of R,C � C(R).

The value of Rb can be estimated by finding at which distance Vjk ≈ h̄/τ . Since the
correlation function is not a perfect step function [7], the value of Rb is not exact unless a
well-defined criterion is set up. In this paper, the blockade radius for a given τ is defined as
follows: the diameter of the sphere with the largest radius where the maximum number of
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atoms that can be excited averages to 1.01. As a test of this definition of Rb, we computed the
probability of being in the blockade state, (|egg . . . g〉 + |geg . . . g〉 + · · · + |ggg . . . e〉)/√N ,
and the phase of the amplitude of the blockade state. When 〈Ne〉 = 1.01, then the probability
of being in the blockade state is approximately 98% and the phase shift is about 0.52π ; for a
perfect blockade, these should be 100% and π/2, respectively.

4. Number correlation

The Mandel Q parameter is a measure of the blockade effectiveness. By solving the many-
body wavefunction, Q is readily found. A value of Q = 0 indicates a perfectly Poissonian
distribution. For a collection of N completely independent, quantum atoms with a probability
Pe of being excited,

〈Ne〉 =
N∑

j=0

(
N

j

)
jP j

e (1 − Pe)
N−j = NPe (12)

and 〈
N2

e

〉 =
N∑

j=0

(
N

j

)
j 2P j

e (1 − Pe)
N−j (13)

= (NPe)
2 + NPe(1 − Pe). (14)

So for the uncorrelated case, Q = −Pe (i.e. uncorrelated quantum systems do not give
Q = 0, but minus the fraction excited). The other extreme case is if Nb atoms are located
within a blockade region. Now only up to one atom can be excited; thus,

〈Ne〉 = NbPe (15)〈
N2

e

〉 = NbPe. (16)

So Q = −NbPe for the case of Nb atoms being within the blockade radius. In figure 2,
the Q value is plotted as a function of the fraction of atoms excited for different densities:
ρ0 ≈ 1.3 × 1010 cm−3, ρ0/8, ρ0/27, ρ0/64 and ρ0/512. In all cases, ten atoms were used in
the simulation. Figure 2(a) was generated using the vdW (1/R6) interaction, while figure 2(b)
used the dipole–dipole interaction (1/R3). At the lowest density, Q(Pe) � −1Pe, indicating
a very low level of correlation. In essence, we have a group of isolated two-level systems. As
the density is increased, the slope of Q(Pe) steepens suggesting that the system is becoming
more and more highly correlated. Because the dipole–dipole interaction has a longer range
than the vdW case, the slope of Q(Pe) is steeper for the former. The inset examines the system
at low laser intensities, or equivalently when few atoms are excited. It can been seen that the
slope remains relatively constant in both the vdW and dipole–dipole cases, showing that the
system is still correlated even when few particles are excited. Although the excited atoms are
not in a blockade configuration with each other, the blockaded atoms near by certainly are.
These blockaded atoms are still ‘conveying’ the information about the system to the separated
excited atoms. They are not excited because they are blockaded and not just because few
atoms are excited. It is the initial state of the system which holds the information, even before
the interactions are turned on. By comparing the slope, m, of Q(Pe) to the perfectly blockaded
case, we can in effect measure how ‘efficient’ the interaction is by turning the system from a
large collection of uncorrelated two-level systems to a single two-level system. In fact, −N/m

gives a rough indication of how many uncorrelated two-level systems the collection has been
reduced to.
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Figure 2. Q values as a function of the fraction excited (Pe) for different densities. The solid
line was calculated using a density ρ0 ≈ 1.3 × 1010 cm−3. Moving from left to right, the
densities decrease as follows: ρ0/8 (dashed), ρ0/27 (dotted), ρ0/64 (dash-dotted) and ρ0/512
(thick-dashed). The inset is a blow-up of the region where there are very few excitations. (a) is
for the vdW case and (b) is for the dipole–dipole interaction. The line Q = −Pe results when the
atoms are uncorrelated.

5. Filling factor for excitations

If a group of atoms is all within Rb, then at most only one excitation is allowed. If every
excited atom creates a ‘bubble’ of radius Rb around itself, then in a given volume the maximum
number of excited atoms should be approximately the number of bubbles that can fit into that
volume. We examined how the maximum number of allowed excitations increases as the
volume containing the atoms is increased, while maintaining a fixed density. We focused on
the case of the atoms placed in a line because that situation should show the largest effect.
We initially placed five atoms on a linear lattice 1.7 µm apart and excited the system to the
maximum number excited via a pulse 120 ns long. For these parameters, Rb ∼ 8.2µm. We
then increased the number of atoms in the line and again excited to the maximum Ne. If the
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Figure 3. (a) is the maximum 〈Ne〉 for atoms in a line of length L. The solid line is for the perfect
lattice case while the dashed line is when the atoms are randomly distributed on the line. In (b) the
solid line is the probability of being in a state with exactly one atom excited as a function of the
length L for the perfect lattice case. The dashed line is the probability of being in a state with only
two atoms excited and the dotted line is the probability of being in a state with three atoms excited,
all for the perfect lattice case. (c) is the same plot as 3(b) except for the randomly distributed
geometry. (d) is also the same plot as 3(c) and 3(b) except using a Poissonian distribution. The
dash-dot line is the probability of zero atoms being excited, the solid is for one excited, the dashed
is for two excited and the dotted is for three excited.

‘bubble’ picture is correct, then the maximum number of excited atoms should remain about 1
until two bubbles of radius Rb can fit into the line then it should jump to 2. We also looked at
the non-lattice case where we randomly placed the appropriate number of atoms in the lengths
used in the perfect lattice case. In figure 3(a), we plotted the maximum 〈Ne〉 as a function
of the chain length L, for both the perfect lattice case and the random case. In either case,
the average number of excited atoms rises fairly linearly with the chain length; as soon as
there is ‘room’ for more than one excitation 〈Ne〉 does not jump up to the next integer number
excited. 〈Ne〉 fills the region rather smoothly, so the ‘bubble’ picture is not entirely correct.
Figures 3(b) and (c) illustrate how states with excited atoms become available as L is increased.
The solid line is the probability of being in a state with only one atom excited, the dashed line
is for being in a state with only two excited and the dotted line is for three. The smoothness
of figure 3(a) can be accounted for by looking at the probabilities of being in various excited
states. By the time the probability of being in a state with only one excited atom is down to
around 50%, the probability of being in a state with two excited atoms has risen to about 50%.
Figure 3(d) is similar to figures 3(b) and (c) except what is plotted is the probabilities of being
in certain states given a Poissonian distribution. As expected, it is quite different from the
sub-Poissonian distribution of our correlated system.

6. Phase gates

If the system is sufficiently sparse, all the Rydberg atoms act as isolated two-level systems,
or, in the parlance of quantum computing, each atom represents an independent qubit. When
a group of atoms are all perfectly blockaded, they also form a single two-level system. This
group of atoms appears as a two-level system, but it is actually a collection of atoms so tightly
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Figure 4. Two regions of equal size and density are excited by a π − 2π − π sequence of pulses
in the following manner: group 1 is excited by a π pulse, then group 2 is excited by a 2π pulse
and finally group 1 is deexcited by another π pulse. (a) shows the phase shift �φ/π as a function
of the average maximum intergroup pair distance, 〈Rmax〉, divided by the blockade distance Rb.
The solid line is for the vdW case (1/R6), while the dashed line is for the dipole–dipole case
(1/R3). (b) is �φ/π as a function of 〈εmin〉/ε0, where ε0 is the pair energy of two excited atoms
separated by Rb. The solid line is for the many-atom case. The dot indicates a phase shift of 0.9π .
The dashed line is for the perfect two-particle case, where the two atoms are in the centre of each
sphere.

correlated that they act as a single two-level system. If we had two isolated groups of atoms
each of the same size and density such that each group was perfectly blockaded, then we
would have two qubits. If we made both groups such that they both sat within Rb, then again
we would have a single two-level system, but as we move one group outside of this ‘bubble’,
pairs of intergroup atoms will no longer interact with each other allowing the possibility of a
third level: both groups containing an excited atom. When the largest intergroup pair distance
is greater than Rb, both groups are now independent of each other and we are back to two
uncorrelated two-level systems. If they are not too far apart however Rpair,max � Rb, most of
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the intergroup pairs are still correlated, thus both groups are as well. Being in such a state
would be undesirable as it leaves us with neither a single two-level system nor two uncorrelated
two-level systems.

A quantum gate takes a state and transforms it to another state. We created two spheres
of cold atoms, each of radius R0 = Rb/4, separated by a centre-to-centre distance D. Within
each sphere, we randomly placed eight atoms. The two groups of atoms are then subjected
to the following sequence of pulses: group 1 is excited by a π pulse, group 2 is excited by
a 2π pulse and finally group 1 is deexcited by another π pulse. The excited atoms interact
via the dipole–dipole or van der Waals interaction, depending on the situation. We varied
the mean interaction energy between the two groups by increasing D. In the ideal case, we
can represent each group as a two-level system, so the initial state is the ‘ground’ state |gg〉.
When the first group is excited by a π pulse |gg〉 −→ −i|eg〉. If both groups are independent
of each other then a 2π pulse will take −i|eg〉 −→ i|eg〉, but if the groups are both within
Rb then it is impossible to excite the second atom and this pulse leaves the state unaffected:
−i|eg〉 −→ −i|eg〉. The final π pulse to the first atom will deexcite it and multiply the state
by −i: for the uncorrelated case i|eg〉 −→ |gg〉 and for the blockaded case −i|eg〉 −→ −|gg〉.
When the groups are independent, there is no accumulated phase shift; the sequence of pulses
leaves the original state unchanged. When the system is blockaded, a phase shift (�φ) of π

is acquired, making a phase gate [9].
The top plot in figure 4 shows the phase shift �φ/π as a function of the average maximum

intergroup pair distance, 〈Rmax〉, divided by the blockade distance. As D is increased, the
distance between the two farthest pairs will also increase beyond Rb. This allows for the
possibility of more than one atom to be excited, thus introducing an error into the phase shift.
The solid line in figure 4(a) is for the vdW case and the dashed line is for the dipole–dipole
interaction. The rapid 1/R6 scaling of the vdW interaction can be seen in the steep drop of
the phase shift with increasing 〈Rmax〉. As expected, when 〈Rmax〉 is small �φ/π approaches
1 and when 〈Rmax〉 is large �φ/π tends to 0. With every intergroup distance, an intergroup
pair energy can be calculated; so with each average maximum intergroup pair distance there
is an associated average minimum intergroup energy, 〈εmin〉, where ε = V τ/h̄. The solid line
in figure 4(b) is �φ/π as a function of 〈εmin〉/ε0, where ε0 is the pair energy of two excited
atoms separated by Rb. The dot indicates a phase shift of 0.9π . The dashed line is for the
perfect two-particle case, where the two atoms are in the centre of each sphere. If a phase
error of less than 10% is desired, then the average minimum pair energy must be greater than
about 2.5. If a phase error of less than 5% is required, then 〈εmin〉 > 3.5. The difficulty in
reducing the error is evident in the flatness of the curve in figure 4(b) as �φ/π goes to 1.

7. Conclusion

By solving for the many-body wavefunction, we were able to calculate many useful quantities
such as the 2D two-particle correlation function which shows the angular dependence of the
first-order dipole–dipole interaction. When using the dipole–dipole interaction to investigate
the Q parameter or anything else that requires a well-defined blockade region, special care is
needed to make sure that the critical angle θjk ≈ 55◦ is unattainable to pairs of atoms. We
also calculated the Mandel Q parameter, a useful quantity for measuring the degree to which
a gas is blockaded. The non-excited atoms within a blockade region still affect atoms outside
Rb; thus even when few atoms are excited and the gas is dense enough, the system is still
correlated. The Q parameter can also be used to indicate how many two-level systems the
gas has been reduced to. If atoms are placed on a one-dimensional lattice and excited to the
maximum number excited, the average of the maximum number excited grows smoothly as a
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function of the lattice length. The size of Rb can however be seen if the probability of finding
Ne is plotted as a function of L. Since we solved for the wavefunction, we were able to examine
the use of groups of blockaded atoms as phase gates. We calculated the phase accumulated
during a sequence of pulses and generated the errors acquired by a non-perfect phase gate as
a function of the interaction energy. In order to operate a phase gate that returns �φ > 0.9π ,
a rather large interaction energy is required.
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