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Abstract
Double Rydberg wave packets for He electronic states are propagated in time
using fully quantum mechanical calculations. The wave packets are constructed
so that the two electrons are simultaneously excited up to nRyd ∼ 15 states and
coupled to total orbital angular momentum equal to zero and to total spin equal
to zero. We attempt to construct a wave packet to isolate symmetric stretch
motion. Classical and quantum ideas are used to interpret several features of
the time-dependent wave function. We briefly discuss some of the interesting
problems that can be addressed.

A recent area of research is the time development of electron wave packets in two or more
spatial dimensions [1–14]. This interest has been sparked by the ability of experimentalists
to initiate and measure the time-dependent behaviour of quantum systems and by the increase
in computational power and numerical sophistication that allows calculations for complex
systems. Another reason for this interest is that it is instructive to observe quantum systems
in ways that are quite similar to analogous classical systems. In atomic physics, the motion of
one electron wave packets has proved to be an interesting playground for enhancing our ideas
about the flow of energy and probability through different degrees of freedom [9–14].

There have been a few steps in the next obvious direction in which two electrons participate
in the wave packet motion in a nontrivial manner [1–8]. In the early studies, both electrons
are excited above the ground state although at least one of the electrons has been restricted to
a quite small distance, typically less than 5 Bohr radii. Thus, quantum effects completely
dominate the behaviour of one of the electrons and it is not possible to establish a
correspondence with classical dynamics. Very recently, Pisharody and Jones [8] have observed
wave packet behaviour for two electrons when they can both be simultaneously at large
distances. The results of this measurement were interpreted using classical trajectories and
simplified quantum models. Although the simplified models reproduce the main features
of the experiment, it is clearly time for a strong theoretical effort to perform fully quantum
calculations of double Rydberg wave packets.

In this paper, we show how it is possible to extend the range of motion that can be
theoretically investigated by performing accurate and fully quantum calculations where both
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electrons are simultaneously ∼300 Bohr radii from the nucleus. The wave packets are for
electrons simultaneously in nRyd ∼ 15 states; both electrons are in the semiclassical limit and
some correspondence with classical motion may be observed. For all the calculations presented
in this paper, the angular momentum and spin of the two electrons are coupled together so that
both the total orbital angular momentum and the total spin are zero. This reduces the 6-degrees
of freedom to 3; but this is the only restriction and we attempt to account for the remaining
three dimensions as accurately as possible using an efficient basis set expansion. The wave
packets discussed here are true He wave packets and are not wave packets for a simplified
model. The main result presented here is the knowledge that double Rydberg wave packets
can be generated and investigated with quite modest resources; all the calculations for this
paper were performed on a personal computer. We discuss the various possible choices for
the computational techniques and the physics that determines which techniques might be best.
The other main result pertains to one of the simplest investigations into the dynamics of two
electron states. This investigation confirms some of our expectations but also demonstrates
that many aspects of the time-dependent wave function can be understood at a qualitative level.

The ability to obtain accurate time-dependent wavefunctions depends on how efficiently
it can be represented and on the level of complexity of the wavefunction. Typically, the level
of difficulty increases with the number of nodes in the wavefunction and with the number
of spatial dimensions. There are two generic possibilities for representing the wavefunction:
basis function techniques and a grid of spatial points. Basis functions can often represent
the wavefunction with relatively few functions but sometimes the resulting representation of
the Hamiltonian is dense; thus the number of Hamiltonian matrix elements scale with the
square of the number of basis functions. A spatial grid of points usually gives a sparse
representation of the Hamiltonian, but sometimes the number of points needed for an adequate
description of the wavefunction is large.

Wintgen and co-workers [15–17] showed that a Sturmian basis set in perimetric
coordinates gave an extremely efficient representation of highly excited resonance states of
He. The perimetric coordinates are q12 = r1 +r2−r12, q1 = −r1 +r2 +r12 and q2 = r1−r2 +r12.
The basis functions are chosen to be

yn12,n1,n2 = φn12(2βq12)
[
φn1(βq1)φn2(βq2) + φn1(βq2)φn2(βq1)

]/√
1 + δn1,n2 (1)

with φn(x) = Ln(x) exp(−x/2) and where Ln(x) are the usual Laguerre polynomials. When
the electrons’ spins are coupled to total spin 1, the + is replaced by −. The parameter β is a
scale parameter which sets the size of the wavefunction. When trying to model the motion of
two electrons both with principal quantum number nRyd, a decent choice for β is 2/nRyd. The
symmetry of the functions means that only n1 � n2 is needed in the basis set. Our basis set
includes all functions with ω ≡ n12 + n1 + n2 � ωmax. The number of basis functions is the
nearest integer to ω3

max

/
12 + 5ω2

max

/
8 + 17ωmax/12 + 7/8.

A very nice property of this basis set is that the Hamiltonian and overlap matrices are
extremely sparse in this representation. Another advantageous property is that a complex
scaling of the coordinates may be employed; thus, in principle it is not necessary to include
the electron continuum states since any outgoing flux is àbsorbed’ in the complex plane. The
resonance states have complex energies and their norm decreases exponentially with time.
As discussed below, we could not take advantage of complex scaling in our time-dependent
calculations.

For the time-dependent wavefunctions, we found that the sparseness of the Hamiltonian
and overlap matrix contributed greatly to the ability to increase the size of the basis set and
to increase the speed of the calculation. We were thus able to obtain converged results for
both electrons in nRyd = 16 states on a small PC with 250 Mb of RAM. The nondiagonal
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overlap matrix does not have a negative effect on the calculations presented here since we
used an implicit method to propagate the wavefunction as discussed below; however, the
overlap matrix effectively eliminates the possibility of using a direct time propagation of the
wavefunction since it is necessary to invert the overlap matrix at each time step.

The only unforeseen difficulty arose when we tried to use complex scaling to take care of
the outgoing waves. There is more than enough energy for one of the electrons to escape the
atom; these outgoing waves reflect from the edge of the basis set. Although complex scaling
works perfectly well for time-independent calculations of resonance parameters, it works very
poorly for this time-dependent problem. The reason is that unless |β| is larger than ∼1.7 there
are always some eigenvalues of the time-independent problem that have positive imaginary
parts which causes an exponential divergence of the wavefunction with time. Unfortunately,
such a large value of |β| completely destroys the usefulness of the basis set for describing
Rydberg states. Thus, we could not use complex scaling and were forced to use a mask at
the edge of the basis set. The mask was a diagonal function of ω = n1 + n2 + n12 instead
of a diagonal function of the distances. All the results presented here were tested for their
dependence on the range and strength of the masking function.

The wavefunction is expanded in a time-independent basis set. Letting N stand for the
triple index n12, n1, n2 we write

|�(t)〉 =
∑
N

|yN 〉CN(t) (2)

with the differential equation for the CN given by

i
∑
N

ON ′NĊN(t) =
∑
N

HN ′NCN(t) (3)

where ON ′N = 〈yN ′ |yN 〉 and HN ′N = 〈yN ′ |H |yN 〉. Integrating this equation from t to t + δt

and using the trapezoidal rule for the right-hand side gives(
O + i

δt

2
H

)
C(t + δt) =

(
O − i

δt

2
H

)
C(t). (4)

Thus the propagation of the wavefunction by one step δt reduces to solving a linear equation
Ax = b, with O + iδtH/2 equalling A. We directly solved the linear matrix equation using
the method described below.

The propagation of Rydberg electrons almost always forces the use of either an
implicit propagator or a split operator technique. The reason is that these methods
allow time steps related to the physical time of the problem (here the Rydberg period).
With a split operator approximation, the Hamiltonian is formally separated into two (or
more) pieces, e.g. H = H1 + H2, and the propagator is approximated as exp(−iHδt) �
exp(−iH1δt/2) exp(−iH2δt) exp(−iH1δt/2). For the basis set representation we use, there
does not appear to be an accurate way to split the operators. Thus, we must use the implicit
propagator.

There are three properties of the A that allow us to go to quite large ωmax. The first is that
A is symmetric so the linear equation can be solved using a Cholesky decomposition [18] of
A; i.e. A can be decomposed into LLT where Lij �= 0 only for i � j . This saves a factor of 2
in memory compared to an LU decomposition of A. The second is that the sparse nature of A

can be used to reduce the number of elements of L that needs to be stored. This is because an
enormous fraction of the elements of L are 0. The column in which the first nonzero element
in a given row of L appears is in the corresponding first column where a nonzero element
appears in A. The linear algebra subroutine that takes advantage of this property uses a factor
of 9.0 less memory for ωmax = 60 than would be needed for the full L. This also gives a
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large increase in speed since we do not use the 0 elements of L in the linear equation solver.
The third property is that the propagation is extremely stable and we did not need double
precision for L. This gives another factor of 2 decrease in memory and an increase in speed.
These properties allow a factor of 36 decrease in memory requirements and over an order of
magnitude increase in speed. As an example, 107 Mb of memory is needed for ωmax = 48
and 204 Mb of memory is needed for ωmax = 60.

In the first situation we modelled in He, we attempted to isolate the analog of the symmetric
stretch motion in molecules. Ideas about the symmetric stretch motion in He have evolved
tremendously during the past decade. Originally, it was believed that the symmetric stretch
motion served as the main mechanism for photo-exciting doubly excited states [19–24];
this seems intuitively obvious since both electrons are originally quite close to the nucleus
compared to the size of the doubly excited states. Later it was argued [25, 26] that the
symmetric stretch plays almost no role in the photoexcitation of doubly excited states. Two
reasons were given for this changed interpretation. The first was that none of the doubly excited
eigenstates showed any sort of structure that could be interpreted as arising from symmetric
stretch motion. The second was a classical analysis that found an infinite Liaponov exponent
arising from the triple collision at r1 = r2 = 0. The current idea is that doubly excited states
are reached by electrons that are launched from r1 = r2 = 0 at a small but nonzero angle with
respect to the r1 = r2, θ12 = π line. Our calculations tend to confirm this interpretation and
eliminate the possibility that a small admixture of ‘symmetric stretch motion’ is contained in
each resonance state.

In our calculations, we estimated the principal quantum number of the Rydberg electrons,
nRyd, using the old quantum theory quantization condition

∮
pdq = nπ where n is the

number of nodes thus giving n = 2nRyd. Using this condition gives an outer turning point
at rf = 2n2

Ryd

/
(Z − 1/4) and a period of τRyd = 2πn3

Ryd

/
(Z − 1/4)2; Z is the charge on

the nucleus. For ‘symmetric stretch’ motion we started the wave packet so that the electron
probability was localized to r1 ∼ r2 ∼ rf and θ12 ∼ π ; the momenta in all three directions
were localized near 0. By starting the electrons near their outer turning point, we can have
100% of the initial wavefunction where both electrons are approximately on opposite sides of
the nucleus at the same distance. The initial state was given by

�(q12, q1, q2) ∝ F12(q12)F (q1)F (q2) (5)

where the function F = q40 exp
(−17.5q

/
n2

Ryd

)
and the F12 = exp

(−50q2
12

/
n4

Ryd

)
. The

separability of the wavefunction at t = 0 is not important and was only used to facilitate the
calculation of the initial coefficients, C(0).

In figure 1, we plot |〈�(0)|�(t)〉| for several different values of nRyd. The times
have been scaled to be in units of τRyd. There are several interesting features to notice in
figure 1. The first is the large amount of recurrence to the initial state at times t � τRyd

suggesting that symmetric stretch motion may exist (this interpretation is not quite correct
as discussed below). The second feature to notice is that the recurrence is only weakly
dependent on nRyd for times less than ∼1.5 periods; this is an effect of the classical scaling
of the Hamiltonian which shows that the Heisenberg uncertainty relation is not playing a
large role for these short times. However, there is little similarity after this time which shows
that quantum effects quickly become important for this type of motion. The third interesting
feature is the large fraction (roughly 1/3–1/5) of the wavefunction recurring to the initial
packet at long times, ∼4τRyd, which shows that a large fraction of the packet returns to the
region near r1 = r2 = rf and θ12 = π and p1 = p2 = 0.

Although the results of figure 1 suggest the possible existence of symmetric stretch motion,
a more complicated picture emerges from the time-dependent wave packet. In figures 2 and 3,
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Figure 1. The time-dependent recurrence, |〈�(0)|�(t)〉|, for symmetric stretch simulation with
nRyd = 10 (solid line), 13 (dotted line) and 16 (dashed line). The time is scaled by the symmetric
stretch period. The initial wavefunctions are scaled with nRyd; thus, the recurrence should be
independent of nRyd if quantum effects are unimportant.

we plot ρ = |ψ(r1, r2, θ12 = π, t)r1r2|2 which is the volume weighted electronic density when
the electrons are on opposite sides of the nucleus. The results in figure 2 are for nRyd ∼ 10
and in figure 3 are for nRyd ∼ 15. The times are given in increments of τRyd/5 and the radial
scales have been chosen to roughly reflect the n2

Ryd distance scaling. While there is clearly
electron probability along the line r1 = r2, there is also a large fraction of the wave packet
that does not travel along this line and reflects off the r1 = 0 line with nonzero r2 (and off
the r2 = 0 line with nonzero r1). An examination of the sequence of electron probability
suggests that there is relatively little motion along the r1 = r2 line although the initial state is
originally localized to this line with zero velocity. The wave packet falls off of the unstable
line so quickly that the region near r1 = r2 = 0 does not play a major role in the dynamics.
An interesting consequence of the electron distribution rapidly deviating from the r1 = r2

line is that the two electrons cannot easily exchange energy with each other. The electrons
need to get somewhat close to each other in order to efficiently exchange energy and angular
momentum. This partly explains why there is a large recurrence to the initial position.

The wavefunction at times 2τRyd/5 and 3τRyd/5 varies much faster in space than at
the other times because an electron’s velocity is much higher when it is near the nucleus;
the fast variation arises from the interference of the inward and outward moving electron
wave near the nucleus. The interference pattern at t = 2τRyd/5 is consistent with a standing
wave pattern resulting from electrons reflecting from r1 = 0 (and large r2) and vice versa.
The wavelength near the nucleus (small r1 or r2) is roughly the same in figures 1 and 2 but
appears smaller in figure 2 because of the change in scale. The interference patterns are a
very sensitive measure of the underlying dynamics and can show substantial changes from
non-dominant interactions. A very interesting change can be noticed between 2τRyd/5 and
3τRyd/5. At 2τRyd/5, the minima and maxima of the quickly varying part of the wavefunction
fairly closely follow r1 = constant or r2 = constant lines but for times larger than or equal to
3τRyd/5 the minima and maxima only approximately follow r1 = constant or r2 = constant
lines. If we artificially set the inter-electron repulsion to 0 but use the same initial state as in
the full calculation, then the minima and maxima follow r1 = constant or r2 = constant lines
for all times. This shows that the 1/r12 interaction does not cause effective correlation until
times later than 2τRyd/5. Although not the cause of the dominant effects, the 1/r12 interaction
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Figure 2. The volume weighted electron density for θ12 = π for nRyd � 10 simulation of
symmetric stretch motion. The times are in increments of τRyd/5. The contours are the same in
all figures and the decrease in probability between successive contours is a factor of 2.

does change the wavefunction. For example, notice that there is a hole in the distribution in
figure 3 near the starting value of r1 = r2 at t = τRyd.

We performed classical calculations where we gave the electrons the same spatial
distribution in the θ12 = π plane as the quantum distribution but set their initial momentum
equal to zero and started all electrons in the θ12 = π plane. The asterisk in each of the frames
of figure 3 marks the positions of classical electrons that start at the peak of the wavefunction
at t = 0 with zero velocity. For all trajectories, the electrons are initially stationary and the
starting position is marked by a + and the final position is marked by a ×. The final time is
the same as for the figure where the trajectory is plotted.

At t = 0, the maximum of the quantum distribution in figure 3 is at the point (257,
257) au. From a comparison with classical calculations, we found that some of the features in
the wavefunction at the later times, 4τRyd/5 and τRyd, appear to have a correspondence with
the classical distribution at these times. Three classical trajectories are given in figure 3. It is
interesting to note that the closer the starting point is to r1 = r2 the more energy is exchanged
between the electrons and the further the final point is from r1 = r2; if the initial point is at
(257 + �, 257 − �), then all � < 15 give final points outside of the graphed region except
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Figure 3. Same as figure 2 but for an nRyd � 15 simulation. The position of classical electrons
that start at the peak of the wavefunction at t = 0 is marked with an asterisk in each frame. The
classical trajectories start with zero velocity at the + at t = 0 and end at the × at the time of the
panel. The trajectory in the 0.8τRyd frame starts at (245, 265) and ends at (296, 172). The solid
line trajectory in the 1.0τRyd frame starts at (210, 274) and ends at (228, 229) while the dotted line
trajectory starts at (260, 265) and ends at (522, 87). The trajectory that starts closest to the point
r1 = r2 approaches most closely to r1 = r2 = 0 and has the largest energy exchange between the
electrons.

� = 0. The largest probability for 4τRyd/5 is at roughly (300, 175) and (175, 300) au and for
τRyd is at roughly (320, 170) and (170, 320) au. The classical distribution also shows a large
probability in these regions. This feature apparently arises from trajectories similar to those
in the 4τRyd/5 frame which starts in a region of high probability at t = 0 but is far enough
from the r1 = r2 to prevent large exchange of energy. Some features are not apparent in the
classical distribution; for example, the large accumulation of probability at the r1 = r2 line at
τRyd is absent in the classical calculation. However, there are classical trajectories that start
with a non-negligible probability and reach this region at τRyd; an example trajectory is given
in the τRyd frame. Trajectories that start with θ12 �= π or constructive interference between
trajectories that start on opposite sides of the r1 = r2 line but end on r1 = r2 are two possible
explanations for the large probability at r1 = r2.
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We performed quantum calculations where we kept the initial wavefunction the same but
changed the inter-electron repulsion term from 1/r12 to Z12/r12 and observed several trends
as we varied Z12 from 0 to 1. The same effect can be obtained by increasing the nuclear
charge and scaling the lengths and times. At t = τRyd, the norm of the wavefunction was less
than 1 by an amount3 that increased monotonically with Z12; over the range 0 � Z12 � 1, the
decay rate as a function of Z12 increased faster than Z12 but not as fast as Z2

12. The recurrence
to the initial state as measured by |〈�(0)|�(t)〉| peaked for t > 0 at t � τRyd. The height
of the first recurrence peak decreased with increased repulsion because the electrons could
more efficiently exchange energy and angular momentum and thus reach different regions of
space. Also, the time where this peak occurred increased with increased repulsion because
the classical time to return to the region r1 ∼ r2 increases with Z12 for ‘symmetric stretch’
motion.

The results presented here demonstrate that an understanding of the time evolution of two
highly excited electrons is possible and may in the future provide an improved picture of the
boundary between quantum and classical physics. These calculations for He are simply the first
of a series of investigations that can be now performed. It would be interesting to explore the
behaviour of other simple motions as nRyd increases. For example, the bend vibration and the
asymmetric stretch motion are obvious motions that can be investigated; because the classical
motion simply scales with energy, an investigation with increasing nRyd would be interesting
because one can simulate the same motion but in regions where quantum effects are less or
more important. It would also be interesting to investigate the applicability of semiclassical
methods to He wave packets since previous semiclassical studies have focused on the time-
independent features of this system; it is unclear how long a semiclassical propagation would
reproduce the main features of a quantum calculation. It would be interesting to compare and
contrast the time dependence of wave packets when starting in a region of phase space that
is classically chaotic versus a region that is regular. It would be interesting to know how the
one electron density matrix evolves with time for different levels of excitation. Finally, it is
easy to change the charge of the nucleus (for example, make wave packets in H−) or of one
of the light particles (for example, make wave packets on p + e− + e+) and investigate the
behaviour of wave packets for several distinct systems. The propagation of double Rydberg
wave packets opens a broad region of theoretical research which will increase our knowledge
of how energy and probability move amongst several coupled motions.
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