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Abstract. Electron-impact detachment cross sections for H− are calculated using time-dependent
close-coupling theory. The three-electron wavefunction is expanded in terms of a product of a
frozen core 1s hydrogenic wavefunction and a correlated two-electron wavefunction which fully
describes the ejected and scattered electrons at all times following the collision. Ejected-energy
differential and total integrated cross sections are calculated at 10 eV and 20 eV incident electron
energy. Equal energy anomalies in the differential cross section are avoided by direct projection
of the time-dependent wavefunction onto lattice continuum eigenstates. The total cross sections
are in excellent agreement with previous ion storage ring experiments, while the differential cross
section results confirm Monte Carlo perturbation theory in predicting a zero energy signature which
should be common to all negative ions.

Renewed theoretical interest in electron-impact detachment of negative ions has been sparked
by recent high precision experimental measurements using ion storage rings [1–4]. The final
quantum state after detachment consists of two free electrons moving in the field of a neutral
third body. This is qualitatively different from the final quantum state after ionization of an atom
or positive ion, in which two free electrons move in the long range Coulomb field of a charged
third body. However, common to both the detachment and ionization processes is the difficult
task of representing the double-electron continuum. Classical [1] and semiclassical [5–7]
approaches have been invoked to predict electron-impact detachment cross sections for negative
ions. Fully quantal approaches have used non-perturbative R-matrix theory [8], standard first-
order perturbation theory [9], and non-standard first-order perturbation theory based on Monte
Carlo integration of a scattering amplitude in a mixed coordinate system [10, 11].

In this letter we apply time-dependent close-coupling (TDCC) theory to the electron-
impact detachment of H−. This fully quantal non-perturbative method has been used previously
to calculate electron-impact ionization cross sections for a number of atoms [12,13] and positive
ions [14–17]. To support experiment and to verify the predictions of Monte Carlo perturbation
theory (MCPT), we calculate ejected-energy differential and total integrated cross sections
for the detachment of H− at 10 eV and 20 eV incident energy. In the past, the calculation
of ejected-energy differential ionization cross sections has presented problems for various
non-perturbative quantal treatments, such as the R-matrix pseudo-state [18], converged close-
coupling [19, 20], and hyperspherical close-coupling [21] methods. The problems appear
to be connected with extraction of differential cross sections by boundary matching of the
wavefunction [21, 22]. Non-perturbative methods that avoid asymptotic forms, such as the
complex exterior scaling [23] and the time-dependent close-coupling methods, are also found
to avoid these equal energy anomalies in the differential cross section.
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The time-dependent close-coupling calculations begin with a frozen core 1s hydrogenic
wavefunction. A set of bound n̄l and continuum k̄l radial orbitals are then obtained by
diagonalization of the single particle Hamiltonian given by:

h(r) = −1
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where the direct, VD(r), and local exchange, VX(r), potentials are calculated using the frozen
core 1s orbital (atomic units are used throughout unless otherwise specified). Diagonalization
is on a radial grid of 300 points with a uniform mesh spacing of �r = 0.20. A parameter in the
local exchange potential is adjusted so that the 1̄s orbital has a binding energy of −0.75 eV, in
agreement with experiment. The 1̄s orbital is quite different from the 1s orbital, with a mean
radius of 〈r〉 = 3.19, in contrast to the hydrogenic value of 〈r〉 = 1.50.

The total three-electron wavefunction (e− + H− system) for a given 2L symmetry is
expanded as a coupled product of a frozen core 1s wavefunction and a correlated two-electron
wavefunction. Reduction of the time-dependent Schrodinger equation [12, 13] yields two
uncoupled sets of close-coupled partial differential equations for each 2L symmetry given by:
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where P LS
l1l2

is a two-electron radial wavefunction, L = L, S = 0 or S = 1, and (l1, l2) are the
angular momenta for the ejected and scattered electrons. The operator Tl1l2 contains kinetic
energy, centrifugal barrier, nuclear, frozen core direct and frozen core exchange terms. The
operator UL

l1l2,l
′
1l

′
2

couples the various (l1, l2) scattering channels.
At a time t = 0 before the collision, the two-electron radial wavefunctions are taken to

be S = 0 symmetric or S = 1 antisymmetric products of the 1̄s radial orbital and an incoming
radial wavepacket for the l = L incident electron. Finite differencing methods are used to
represent the close-coupled partial differential equations (equation (2)) on a 300 × 300 point
numerical lattice with a uniform mesh spacing of �r1 = �r2 = 0.20. The lattice wavefunction
is partitioned over the many processors of a distributed memory parallel computer. Each radial
wavefunction is propagated in time using an explicit second-order differencing scheme. At a
time t = T following the collision the two-electron radial wavefunctions may be projected onto
the lone 1̄s bound radial orbital or onto the many k̄l continuum radial orbitals. By unitarity,
both projection schemes will yield the same total integrated detachment cross section.

For ejected-energy differential detachment cross sections the two-electron radial
wavefunctions are projected onto the k̄l continuum radial orbitals to yield momentum space
probabilities [13]. In the (k1, k2) plane the momentum space probabilities are peaked along
a ridge of total energy E = k2

1/2 + k2
2/2 = E0 − Ip, where E0 is the incident energy and Ip

is the ionization potential. The diagonalization of h(r) of equation (1) determines the density
of states. To increase the density of states at low energies we extended the radial grid to
1500 points, while maintaining the same uniform mesh spacing of �r = 0.20. Dividing the
(k1, k2) plane into angular segments, �θ , defined by the hyperspherical angle tan(θ) = k2

k1
, the

differential cross section is given by:
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Table 1. Total integrated partial-wave cross sections (10−18 cm2) for the detachment of H− (L is
the total angular momentum and E0 is the incident energy).

TDCC MCPT TDCC MCPT
L E0 = 10 eV E0 = 10 eV E0 = 20 eV E0 = 20 eV

0 51 242 35 122
1 171 189 85 83
2 214 208 117 106
3 248 253 140 137
4 251 269 149 169
5 241 245 153 159
6 224 238 151 150
7 206 196 146 145
8 189 167 140 140
0–8 1795 2007 1116 1211
0–50 3060 3272 2927 3022

where the sum over linear momenta is restricted to be within:
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2
. (4)

The differential cross section in ejected energy (ε = k2
2
2 ) is given by:
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and the total integrated cross section is given by:
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∫ E

0
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Total integrated partial-wave cross sections for the electron-impact detachment of H−

are presented in table 1 at 10 eV and 20 eV incident electron energy. The time-dependent
close-coupling results are found to be in very good agreement with previous Monte Carlo
perturbation theory [10, 11] results for 1 � L � 8. For L = 0 the time-dependent close-
coupling results are substantially below the unitary limit of σmax = π

2E0
(σmax = 120 Mb for

E0 = 10 eV and half that for E0 = 20 eV), while the Monte Carlo perturbation theory results
are substantially above. Obviously the L = 0 MCPT results are incorrect†. We note that the
differences in the L = 0–8 totals for the TDCC and MCPT calculations are in large part due
to the L = 0 discrepancy. To compare with previous ion storage ring experiments for the
total integrated detachment cross section, the low L partial-wave TDCC and MCPT results are
augmented with first-order distorted-wave theory [24] calculations for the high L partial-wave
cross sections. The first-order scattering amplitude is calculated keeping only the direct dipole
terms. The incident and scattered electrons are generated in a V N potential, while the 1̄s target
and ejected electrons are generated in the V N−1 potential found in equation (1). The L = 0–50
hybrid results for both the TDCC and MCPT methods fall well within the error bars of the ion
storage ring experimental measurements [1, 2] of σexpt = 3000 Mb ± 900 Mb at E0 = 10 eV
and σexpt = 2950 Mb ± 900 Mb at E0 = 20 eV.

† The MCPT calculations fail at L = 0 because the incident electron penetrates to smaller distances before detaching
the bound electron. Thus, the electrons in the final state are affected by the short range e− + H potential which
is neglected in the final state of the MCPT approximation. Numerical tests have shown that the sensitivity to the
distorted-wave potential is an order of magnitude smaller for L = 1 than for L = 0.
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Figure 1. Partial ejected-energy differential cross section for the electron-impact ionization of H−
at an incident energy of 10 eV. Solid curve, S wave; long-dashed curve, P wave; short-dashed curve,
D wave (1.0 Mbarn = 1.0 × 10−18 cm2).
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Figure 2. Partial ejected-energy differential cross section for the electron-impact ionization of H−
at an incident energy of 10 eV. Solid curve, S wave; long-dashed curve, P wave; short-dashed curve,
D wave (1.0 Mbarn = 1.0 × 10−18 cm2).

Ejected-energy differential partial-wave cross sections for the electron-impact detachment
of H− are presented in figures 1 and 2 at 10 eV and 20 eV incident electron energy. The threshold
law for differential detachment of H− is found to be quite different from the threshold law for
differential ionization of an atom or positive ion. For the latter, the zero energy cross section
is large, while for the former the cross section is zero. At very low ejected energies the loosely
bound electron of H− is unable to scatter and detach in the neutral field of H, while a bound
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Figure 3. Total ejected-energy differential cross section for the electron-impact ionization of H−
at an incident energy of 10 eV. Solid curve, TDCC for L � 8; dashed curve, TDCC for L � 8 plus
distorted-wave theory for 9 � L � 50 (1.0 Mbarn = 1.0 × 10−18 cm2).
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Figure 4. Total ejected-energy differential cross section for the electron-impact ionization of H−
at an incident energy of 20 eV. Solid curve, TDCC for L � 8; dashed curve, TDCC for L � 8 plus
distorted-wave theory for 9 � L � 50 (1.0 Mbarn = 1.0 × 10−18 cm2).

electron of an atom (or positive ion) is able to ionize due to the long range Coulomb field of
the residual ion. To stimulate further studies of the electron-impact detachment process in
H−, we present ejected-energy differential cross sections summed over partial waves in figures
3 and 4. The solid curves represent TDCC results for L = 0–8, while the dashed curves
include the addition of first-order distorted-wave results for L = 9–50. As pointed out by
Robicheaux [10,11], the zero-energy signature in the ejected-energy differential cross section
should be common to all negative ions.
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In summary, we have calculated the ejected-energy differential and total integrated cross
sections for the electron-impact detachment of H− using time-dependent close-coupling theory.
The total wavefunction for the e− + H− system is expanded as a coupled product of the 1s
wavefunction for H and a correlated two-electron wavefunction for the ejected and scattered
electrons. Projection of the time-evolved wavefunction onto lattice continuum eigenstates
yields ejected-energy differential cross sections free of equal energy anomalies. The time-
dependent close-coupling results for the total and differential cross sections are in very good
agreement with previous Monte Carlo perturbation theory results. Since the TDCC and MCPT
methods treat the detachment process using quite different numerical approaches, their fine
agreement is a solid confirmation of both sets of results. When augmented with first-order
distorted-wave results for high partial waves, the TDCC and MCPT results are in excellent
agreement with ion storage ring experiments for the total integrated detachment cross section.
We hope the predicted differential detachment cross sections for H− can also be checked by
future experiments.

This work was supported in part by the US Department of Energy and the US National
Science Foundation. Computational work was carried out at the National Energy Research
Supercomputer Center in Berkeley, CA.
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