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Abstract. Two-photon absorption processes resulting in two-electron ionization of He and H−
are calculated using a time-dependent close-coupling expansion on a two-dimensional radial
lattice. The ground state atom or ion is subjected to a 10-cycle pulse of linearly polarized light
with peak intensities ranging from 1013 to 1016 W cm−2. Probabilities are calculated for one-
photon single ionization, two-photon single ionization and two-photon double ionization. The
ratio of non-sequential double ionization to single ionization following two-photon absorption
is found to be somewhat larger than the similar ratio following one-photon absorption.

Due to the development of bright light synchrotron experiments, correlated photoionization
processes in two-electron atomic systems have received extensive theoretical attention.
The most popular methods for handling double photoionization are based on many-body
perturbation theory (Carter and Kelly 1981, Hinoet al 1994), initial-state dipole response
functions (Proulx and Shakeshaft 1993, Pont and Shakeshaft 1995, Forreyet al 1997),
asymptotically correlated final states (Maulbetsch and Briggs 1992, Teng and Shakeshaft
1993, Andersson and Burgdorfer 1993, Kornberg and Miraglia 1993), hyperspherical close-
coupling theory (Tang and Shimamura 1995, Qiuet al 1998), convergent close-coupling
theory (Kheifets and Bray 1996) andR-matrix pseudo-state theory (Meyer and Greene
1994, Meyeret al 1997, Marchalant and Bartschat 1997, Gorczyca and Badnell 1997).
Recently, a method based on the time propagation of a coupled set of two-dimensional partial
differential equations on a numerical lattice has been applied to the single photoionization
of helium (Pindzola and Robicheaux 1998). The lattice results for the ratio of double to
single photoionization in the energy range from 90–200 eV are in very good agreement with
the most accurate previous theories and the most recent synchrotron experiments (Levinet
al 1996, Dorneret al 1996, Samsonet al 1998).

In this letter we extend the same time-dependent close-coupling method to the
calculation of correlated multiphoton ionization processes in two-electron atomic systems.
We begin by choosing wavelengths short enough so that two-photon absorption is above
the threshold for complete fragmentation of the two-electron atom. Our choice of such
wavelengths is based on a desire to stand clear of all intermediate resonances and to limit
our close-coupled calculations to fairly low angular momentum. Our goal in this letter
is to find the ratio of non-sequential double ionization to single ionization following two-
photon absorption, which is the exact analogue of the one-photon absorption calculations
and experiments.

In contrast, theoretical work to date has concentrated on much longer wavelengths
where two-photon absorption is only above the first ionization threshold (Proulxet al 1994,
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van der Hart 1994, Zhang and Lambropoulos 1995, Parkeret al 1996, Nikolopoulos and
Lambropoulos 1997). Parkeret al (1996) examined ionization yields above the threshold
for the complete fragmentation of helium, but this involved a minimum of 12 photons.
Although they calculated double to single ionization ratios, the likelihood of sequential
processes involving ionization to He+ or resonant excitation of doubly excited states of He
is extremely high. Thus, they really did not furnish any direct information on the ratio of
non-sequential double ionization to single ionization following the 12-photon absorption.
The situation on the experimental side is the same. Double ionization of helium has been
studied using short pulse lasers with such long wavelengths that from 16–50 photons are
needed to go above the complete fragmentation threshold of 79.0 eV (Fittinghoffet al 1992,
Kondo et al 1993, Walkeret al 1994).

In the following paragraphs, we report two-photon absorption calculations for He at
45.0 eV and for H− at 8.0 eV using a 10-cycle pulse of linearly polarized light with
peak intensities ranging from 1013 to 1016 W cm−2. Probabilities are calculated for one-
photon single ionization, two-photon single ionization and two-photon double ionization
by projecting the time-evolved lattice wavefunction onto a complete set of single-particle
states. The ratio of non-sequential double ionization to single ionization following two-
photon absorption is found to be somewhat larger than that found in the single-photon
ionization calculations and experiments.

The time-dependent Schrödinger equation for a two-electron atom in a strong time-
varying electromagnetic field is given by (in atomic units)

i
∂9(r1, r2, t)

∂t
= (Hatom+Hrad)9(r1, r2, t) (1)

where the non-relativistic Hamiltonian for the atom is given by

Hatom= −1
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and the Hamiltonian for a linearly polarized radiation field is given by

Hrad= E(t)(r1 cosθ1+ r2 cosθ2) cosωt. (3)

In equation (2) the atomic number isZ, while in equation (3) the electric field amplitude
is E(t) and the radiation frequency isω. Following a standard procedure found in time-
independent scattering theory (Temkin 1962, Shertzer and Botero 1994, Wang and Callaway
1994), the total wavefunction for a givenLS symmetry is first expanded in coupled spherical
harmonics and then substituted into equation (1) to derive the the time-dependent partial
differential equations given by
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In equation (4) the kinetic and nuclear energy operator isTl1l2, the electron–electron
interaction energy operator isV L

l1l2,l
′
1l
′
2

and the time-varying radiation field operator isWLL′
l1l2,l

′
1l
′
2

(see Pindzola and Robicheaux 1998 for detailed expressions). The same set of time-
dependent close-coupling equations were used by Parkeret al (1996) to study harmonic
generation and double ionization of helium at a photon energy of 5.44 eV.

The time-dependent close-coupled equations are solved by discretization of all radial
wavefunctions and operators on a two-dimensional lattice. For easy implementation on
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distributed-memory parallel computers, low-order finite-difference methods are employed
with uniform mesh spacing. The two-dimensional radial wavefunctions are partitioned
in rectangular strips over the processors, a particularly simple example of domain
decomposition. The key to our numerical solution is the use of a second-order difference
approximation for the time evolution of the radial wavefunctions. The method is
ideal for distributed memory parallel computers since it involves only one matrix-vector
multiplication at each time step.

The ground states of He and H− are found by relaxation of the time-dependent
Schr̈odinger equation in imaginary time. The ground state wavefunctions are then time
evolved by solving the time-dependent Schrödinger equation in real time subject to a 10-
cycle pulse of linearly polarized light whose electric field amplitude is given by

E(t) = E0 sin2

(
πt

T

)
(5)

and whose total pulse time isT = 20π/ω. For He we employ a 200× 200 point lattice
with a mesh spacing of1r = 0.2, so that the maximum radial extent isR = 40 au. For
H− we keep the same mesh spacing, but employ a 400× 400 point lattice withR = 80 au.
Following the radiation pulse, ionization probabilities are extracted by projecting the various
LS components of the total wavefunction onto a complete set of single-particle states for
He+ and H, respectively. For example, the probability for one-photon single ionization
leaving the atom or ion in the 1s state is given by

P1s→kl = 2

(∫
dr2|〈P1s(r1)|P 1P

sp (r1, r2, T )〉|2−
∑
np

|〈P1s(r1)Pnp(r2)|P 1P
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)
.

(6)

The single-particle eigenstatesPnl(r) are obtained by diagonalizing the Schrödinger equation
for He+ or H on a one-dimensional lattice with the same uniform mesh and radial extent
as that used for the two-electron atom. A number of additional probabilities may be found
by projection, including two-photon single and double ionization involving the1S and1D
components of the total wavefunction.

To check our numerical methods we first examined the two-photon ionization of He in
various approximations. The ground state wavefunction is chosen to be

80(r1, r2) = 1
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P
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S
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and we time-evolve a six-channel wavefunction given by
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whereYLl1l2 is a coupled spherical harmonic in the angular coordinates. If the electron–
electron interaction operatorV L

l1l2,l
′
1l
′
2

is set to zero in equation (4), the ground state of He

is a product of He+ ground state wavefunctions with a total energy of−104.8 eV (i.e.
a 52.4 eV ionization potential for He and another 52.4 eV to ionize He+). Remember
that the mesh spacing of the lattice is1r = 0.2, so we do not get the exact ionization
potential of 54.4 eV. For two-photon ionization of He in the 1s1s uncorrelated ground
state, we chooseω = 60 eV and a peak field intensity of 5.0× 1015 W cm−2. The various
ionization probabilities following the radiation pulse are given in table 1. One-photon single
ionization is found in the1P component at 0.238, while the1D component has 12 times
as much two-photon double ionization as two-photon single ionization. This is certainly
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Table 1. Multiphoton ionization probabilities for He models (intensities I in 1015 W cm−2).

He(1s1s) model He(1s2s) model He(1s2)
ω = 60 eV ω = 35 eV ω = 45 eV

Probabilities I = 5.0 I = 3.0 I = 3.0

1S normalization 0.746 0.817 0.703
1S total single ionization 0.000 0.001 0.008
1S total double ionization 0.000 0.000 0.000
1P normalization 0.242 0.152 0.267
1P total single ionization 0.238 0.080 0.267
1P total double ionization 0.000 0.000 0.000
1D normalization 0.013 0.031 0.030
1D total single ionization 0.001 0.031 0.027
1D total double ionization 0.012 0.000 0.003

Figure 1. Multiphoton ionization for the He(1s1s) model. Contour map of the radial probability
density for the (pp)1P channel near the end of a 10-cycle radiation pulse.

to be expected, since the two-photon double ionization is due to the sequential process
of 1s1s1S→ 1skp 1P single ionization of He, followed by 1skp 1P→ kpk′p 1D single
ionization of He+. In figure 1 we plot|P 1D

pp |2 at a time near the end of the radiation pulse and
find a strong peak alongr1 = r2, confirming the ejection of two electrons in that channel.

Next we examined the two-photon ionization of He in the 1s2s uncorrelated excited
state. Since the total energy is−65.9 eV (i.e. a 13.5 eV ionization potential for He∗

and another 52.4 eV to ionize He+), we chooseω = 35 eV and a peak field intensity
of 3.0× 1015 W cm−2. The various ionization probabilities following the radiation pulse
are again given in table 1. One-photon single ionization is found in the1P component at
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Figure 2. Multiphoton ionization for the He(1s2s) model. Contour maps of the radial probability
density for the (a) (sd)1D and (b) (pp)1D channels near the end of a 10-cycle radiation pulse.
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Figure 3. Multiphoton ionization for the He(1s2). Contour maps of the radial probability density
for the (a) (sd)1D and (b) (pp)1D channels near the end of a 10-cycle radiation pulse.
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0.080, while two-photon single ionization is found in the1D component at 0.031. There
is no two-photon double ionization for two reasons. First there is no sequential pathway,
since ionization of He+ takes a minimum of two 35.0 eV photons itself. Second there is
no non-sequential path, since the electron–electron interaction has been dropped from the
Hamiltonian. In figure 2 we plot|P 1D

sd |2 and |P 1D
pp |2 at a time near the end of the radiation

pulse and find no two-electron ejection.
Finally, we examined the two-photon ionization of He in the 1s2 correlated ground state.

The total energy is−75.1 eV (i.e. a 22.7 eV ionization potential for He and another 52.4 eV
to ionize He+) and we chooseω = 45 eV and a peak field intensity of 3.0× 1015 W cm−2.
The various ionization probabilities following the radiation pulse for this case are given in
the final column of table 1. One-photon single ionization is found in the1P component at
0.267, two-photon single ionization is found in the1D component at 0.027 and two-photon
double ionization is found in the1D component at 0.003. Since there is no sequential
pathway, like the He(1s2s) case, the two-photon double ionization is made possible by the
addition of the electron–electron interaction into the Hamiltonian. In figure 3 we plot|P 1D

sd |2
and |P 1D

pp |2 and find evidence for two-electron ejection alongr1 = r2, especially in theP
1D
pp

channel.
Proceeding to full calculations for the two-photon ionization of both He and H−, the

ground state wavefunction is chosen to be
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For a lattice spacing of1r = 0.2, the ground state energy of He is found to be−75.8 eV,
while the ground state energy of H− is found to be−14.2 eV. The energy for He is within
5% of the exact value of−79.0 eV, while the energy for H− is very close to the exact value
of −14.4 eV. A lattice spacing of1r = 0.1 improves the energy for He to−78.1 eV. We
time evolve a 15-channel wavefunction given by
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For two-photon ionization of He we chooseω = 45 eV and a range of peak intensities
from 1015 to 1016 W cm−2. Ionization probabilities are given in table 2. A general rise
in all the ionization probabilities is seen as the intensity increases. Two-photon single
ionization is found in both the1S and1D components, and two-photon double ionization
tracks at about 10% of the two-photon single ionization. For two-photon ionization of H−

we chooseω = 8 eV and a range of peak intensities from 1013 to 1014 W cm−2. Ionization
probabilities are given in table 3. The ratio of two-photon double ionization to two-photon
single ionization for H− is generally somewhat less than that found for He.

At the higher intensities for both He and H−, the double ionization in the1P component
begins to contribute to the overall ionization process. We repeated our calculations for He
at 1016 W cm−2 after expanding the wavefunction of equation (10) to include six more
1F channels. The ionization probabilities for the1S, 1P and 1D components remained
approximately the same as reported in table 2, while the1F component had almost equal
amounts of three-photon single ionization and three-photon double ionization. A large
contribution to the odd-parity double-ionization components is coming from the sequential
process of one-photon ionization of He, followed by two-photon ionization of He+. Unlike
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Table 2. Multiphoton ionization probabilities for He (intensitiesI in 1015 W cm−2).

He He He He
ω = 45 eV ω = 45 eV ω = 45 eV ω = 45 eV

Probabilities I = 1.0 I = 3.0 I = 5.0 I = 10.0

1S normalization 0.895 0.729 0.607 0.433
1S total single ionization 0.014 0.024 0.042 0.104
1S total double ionization 0.002 0.003 0.004 0.011
1P normalization 0.101 0.244 0.332 0.410
1P total single ionization 0.101 0.244 0.332 0.407
1P total double ionization 0.000 0.000 0.000 0.003
1D normalization 0.004 0.027 0.061 0.156
1D total single ionization 0.004 0.023 0.052 0.129
1D total double ionization 0.000 0.003 0.009 0.027

Table 3. Multiphoton ionization probabilities for H− (intensitiesI in 1013 W cm−2).

H− H− H− H−
ω = 8 eV ω = 8 eV ω = 8 eV ω = 8 eV

Probabilities I = 1.0 I = 3.0 I = 5.0 I = 10.0

1S normalization 0.904 0.745 0.622 0.420
1S total single ionization 0.011 0.013 0.017 0.034
1S total double ionization 0.002 0.002 0.002 0.003
1P normalization 0.094 0.239 0.342 0.481
1P total single ionization 0.094 0.238 0.338 0.463
1P total double ionization 0.000 0.001 0.003 0.018
1D normalization 0.002 0.015 0.036 0.099
1D total single ionization 0.002 0.014 0.034 0.091
1D total double ionization 0.000 0.001 0.002 0.007

the two-photon ionization of He atω = 45 eV and of H− at ω = 8 eV, the three-photon
ionization is a mixture of sequential and non-sequential processes.

In summary, we have calculated two-photon double-ionization processes in He and
H− by direct solution of the time-dependent Schrödinger equation on a two-dimensional
radial lattice. Frequencies were chosen so that two-photon absorption is above the complete
fragmentation threshold, and intensities were chosen so that one-photon single ionization
is the dominant process. When the much weaker two-photon ionization processes are
examined, the ratio of double ionization to single ionization is found to be surprisingly
large. Due to the choice of frequencies, we can identify the two-photon double ionization
as a strictly correlated non-sequential electron emission event.

In this work, MSP was supported in part by NSF Grant PHY-9122199 and FR was supported
in part by NSF Young Investigator Grant PHY-9457903. The computational work was
carried out at the National Energy Research Supercomputer Center in Berkeley, CA.
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