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Abstract. There now exist two different formalisms for the high-n form of the radiation-
dampedS-matrix. These two formalisms give nearly identical results for all physical systems
and either may be used in calculations. However, there is some uncertainty as to which is the
more exact form. It is shown that Bell and Seaton made four approximations that prevented
them from deriving the correct form due to Hickman. A corrected derivation is given in this
letter. It is shown that the poles of a two-channelS-matrix have an unphysical high-n form when
using the formalism of Bell and Seaton, but behave nicely using the formalism of Hickman.
Also, two statements about Robicheauxet al (1995) in a recent paper by Pradhan and Zhang
are corrected.

For over a decade, there have been questions raised about the correct form for the close-
coupling equations when one electron is in a Rydberg state outside of a core that can decay
radiatively. The first formalism was introduced by Hickman (1984) using very plausible
heuristic arguments; this formalism consists of replacing the real core energy,Ec, in the
close-coupling equations with a complex energy,Ec− iR/2, whereR is the radiative decay
rate of the core. The second formalism was introduced by Bell and Seaton (1985) based
on the general radiation damping formalism of Davies and Seaton (1969); this formalism
consists of replacing the real principal quantum number,ν, in the multichannel quantum
defect theory (MQDT) with a complex principal quantum number,ν + iRν3/2z2, where
z is the residual charge of the ion. Seaton (1984) gave an intuitive derivation of the Bell
and Seaton result because in Bell and Seaton this simple result was obtained after atour de
forcederivation involving∼ 200 equations. Although Hickman’s formalism was much more
physically plausible, the Bell and Seaton formalism was preferred in calculations because
it had been derived from first principles (only LaGattuta and Hahn (1985) attempted model
calculations using Hickman’s formalism); it appeared that Hickman’s formalism was a good
approximation of that by Bell and Seaton. A recent paper by Pradhan and Zhang (1997) is
an example illustrating the controversy in that the work of Hickman is not even mentioned.

This issue was reopened by Robicheauxet al (1995). Using a very powerful and
flexible formalism for describing general radiation damping, we were able to derive the
form for the close-coupling equations using five equations (section VIB). Strikingly, the
final form consisted of replacing the real core energy,Ec, in the close-coupling equations
with a complex energyEc − iR/2 (i.e. identical to the formalism of Hickman). As both
formalisms have now been derived from first principles, a natural question is which is the
more exact formalism and which is the approximation? Is Bell and Seaton’s formalism a
good approximation to Hickman’s more exact formalism (or vice versa)?
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There are four arguments for supposing that Hickman’s formalism is more exact and that
Bell and Seaton’s formalism is approximate: (i) Hickman’s formalism is more physically
appealing and can be trivially generalized to cases where the asymptotic potential is not
1/r; (ii) the derivation of Hickman’s formalism is much simpler and therefore there is
less opportunity for inadvertent approximations; (iii) the poles of theS-matrix have a more
intuitively correct form using Hickman’s formalism. (Arguments (i) and (iii) depend on
personal taste and argument, (ii) rests on the assumption that Robicheauxet al are less
likely to make mistakes than Bell and Seaton; thus these arguments are not very compelling
by themselves.) (iv) It is possible to identify four approximations in Bell and Seaton’s
derivation; removing these four approximations, but otherwise following Bell and Seaton’s
derivation, results in a final formula that is identical to that of Hickman. Together, these
four arguments make it overwhelmingly likely that Bell and Seaton’s formalism is a good
approximationof Hickman’s more exact formalism.

In the derivation that follows, I will use the notation of Bell and Seaton unless stated
otherwise. Equations taken from this paper will be denoted with a BS. Bell and Seaton
used the general radiation damping formalism of Davies and Seaton which was shown to be
formally equivalent to that used by Robicheauxet al (see section VC). Thus the differences
between Hickman and Bell and Seaton must arise in an approximate implementation. The
final form of Bell and Seaton rests on a derivation given in their section 6 for a two-channel
case; this derivation will be examined in detail.

Assume that channelα is open and channelγ is closed and that the core state for
channelγ decays to that for channelα with a rateR. Let

χ =
(
χαα χαγ
χγα χγγ

)
(6.5 BS)

be the unphysicalS-matrix obtained by allowing both channels to be open. The complex
quantum defect is defined in equation (6.12 BS) to beχγγ = exp[2π iµγ ]; µγ has real and
imaginary partsµγ = p + iq (equation (6.13 BS)) wherep and q are real andq > 0.
Without radiation damping, the physicalS-matrix has poles atνn = n−µγ (equation (6.14
BS)) or energiesEn = −z2/2ν2

n (equation (6.15 BS)) relative to theγ threshold. The
important parameter for describing radiation damping in this two-channel case is

T =
∑
n

(Pγ (ν)|Pγ (νn))
(
E − En + 1

2iR
)−1
t (νn)/t (ν) (6.50 BS)

wherePγ (ν) is the radial wavefunction in channelγ (equation (A.2.3 BS)),(Pγ (ν)|Pγ (νn)
is a radial overlap integral (equation (A.2.1 BS)) andt (ν) is a complex normalization factor
(equation (6.9 BS)). There are no approximations in these equations.

Bell and Seaton use four approximations to evaluate the expression forT . These
approximations are not necessary for obtaining a final result.

Approximation (i). Bell and Seaton use an approximate expression for the radial overlap:

(Pγ (ν)|Pγ (νn)) ' sinπ(ν − νn)
ν − νn (A.2.12 BS)

instead of the exact expression

(Pγ (ν)|Pγ (νn)) = z2

Eν − En (ννn)
−3/2 sinπ(ν − νn)

π
(1)

obtained from equations (A.2.8 BS)–(A.2.11 BS) and whereEν = −z2/2ν2 (equation (A.2.5
BS)). (Pγ (ν) is replaced by its complex conjugate ifν is complex (equation (A.2.12
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BS)).) The approximate expression (A.2.12 BS) arises by using the large-n approximation
Eν − Eν ′ ' −z2(ν ′ − ν)/ν3.

Approximation (ii). Bell and Seaton use the approximation for the ratio oft ’s:

t (νn)/t (ν) ' exp[iπ(ν − νn)] (6.53 BS)

instead of the exact expression

t (νn)/t (ν) = (ν/νn)3/2 exp[iπ(ν − νn)]. (6.51 BS)

The approximate expression (6.53 BS) arises by using the large-n approximationν/νn ' 1.

Approximation (iii). Bell and Seaton use an approximate expression for energy differences
for real ν:

Eν − En ' (z2/ν3)(ν − νn) (6.54 BS)

instead of the exact expression

Eν − En = z2/2ν2
n − z2/2ν2. (2)

The approximate expression (6.54 BS) arises from the large-n approximationδE/δν '
z2/ν3.

Approximation (iv). Bell and Seaton use an approximate expression for complex energy
differences:

Eν − En + 1
2iR ' (z2/ν3)[ν − νn + i1(ν)] (6.55 BS)

instead of the exact expression

Eν − En + 1
2iR = z2/2ν2

n − z2/2(ν + i1)2. (3)

The approximate expression (6.55 BS) again arises from the large-n approximationδE/δν '
z2/ν3. In what follows, I will use a parameter not defined by Bell and Seaton:

ν̄ = ν + i1 (4)

or equivalently

Eν − En + 1
2iR = z2/2ν2

n − z2/2ν̄2 ≡ Eν̄ − En. (5)

Exact derivation. The derivation of Bell and Seaton section 6.5.2 (evaluation ofT ) can
proceed but now using the exact expressions. First substitute in equation (6.50 BS) for the
ratio of thet ’s using theexactexpression (6.51 BS),

T =
∑
n

(Pγ (ν)|Pγ (νn))(Eν̄ − En)−1(ν/νn)
3/2 exp[iπ(ν − νn)] (6)

whereEν̄ = Eν + iR/2 has been used. Use theexactoverlap expression (1) to eliminate
(Eν̄ − En)−1:

T = −π
∑
n

(Pγ (ν)|Pγ (νn))(P ∗γ (νn)|Pγ (ν̄))
√
ν̄3ν3/z4

exp[iπ(ν − νn)]
sinπ(νn − ν̄) . (7)

Because the ratio
exp[iπ(ν − νn)]

sinπ(νn − ν̄) = −
exp[iπ(ν + µγ )]

sinπ(ν̄ + µγ ) (8)
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is independent ofn, the only terms that depend onn are in the overlaps. Using closure
gives

T = π(Pγ (ν)|Pγ (ν̄))
√
ν̄3ν3/z4

exp[iπ(ν + µγ )]
sinπ(ν̄ + µγ ) . (9)

(Note that closure is not exact because only the bound states are summed over but the
continuum is not integrated over; the error is of the same size as in the Bell and Seaton
closure derivation. The size of this error is roughlyδµ2/n, where δµ is the difference
between the quantum defect of the autoionizing state and the final state;δµ will typically
be much less than 0.01 for ions thus making this a very good approximation.) Now again
use theexactexpression for the overlap, equation (1), to obtain

T = (Eν − Eν̄)−1 sinπ(ν − ν̄)
sinπ(ν̄ + µγ ) exp[iπ(ν + µγ )]. (10)

UsingEν−Eν̄ = −iR/2 and multiplying the numerator and denominator by exp[iπ(µγ−ν̄)]
gives

T = 2i

R
(e2iπ(ν−ν̄) − 1)e2iπµγ /(e2iπµγ − e−2iπν̄). (11)

Now use the definition ofχγγ = exp[2π iµγ ], equation (6.12 BS), and define the parameter

g(ν) = exp[2iπ(ν − ν̄)] (12)

to obtain

T = 2i

R
[g(ν)− 1]χγγ /[χγγ − g(ν) e−2iπν ]. (6.65 BS)

This expression forT is the same as in Bell and Seaton except they used theapproximate
expression

g(ν) ' exp(πν3R/z2). (6.66 BS)

This approximate form forg is obtained from the exact expression, equation (12), by
expandingν− ν̄ to lowest order inR. Equations (6.67)–(6.71) of Bell and Seaton are exact
as long as the exact value ofg(ν) is used instead of the approximate expression (6.66 BS).
In particular, the physicalS-matrix is given by

Sαα = χαα − χαγ [χγγ − g(ν) e−2iπν ]−1χγα (6.71 BS)

which is equivalent to

Sαα = χαα − χαγ [χγγ − e−2iπν̄ ]−1χγα (13)

when using theexact form for g(ν), equation (12). This is equivalent to substituting
Ec− iR/2 for the core energy in the close-coupling expansion. (Note that this form of theS-
matrix does give an unphysical discontinuity at threshold proportional to exp(−πZ√2/R);
for the example below the size of the discontinuity is e−7025∼ 10−3051 which is negligibly
small for most applications.)

This derivation shows that if the four high-n approximations are eliminated from the
derivation in Bell and Seaton, thenthe formalism of Davies and Seaton is equivalent to that
of Hickmanfor a Rydberg electron attached to a radiating core. The main reason Bell and
Seaton’s original derivation did not reproduce Hickman’s formalism is that at highn the
spacing of successive resonances becomes much smaller than the radiative decay rate of the
core,R. Thus the small change in energyEν → Eν+ iR/2 becomes a substantial change in
principal quantum numberν → ν̄. Removing approximation (iv) is the key to showing that
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the formalism of Davies and Seaton is equivalent to that of Hickman. The reason for the
difference also shows why the two formalisms give nearly identical results for all physical
systems. Most autoionizing resonances have widths much smaller than the Rydberg spacing
z2/ν3. As n increases Bell and Seaton’s formalism differs increasingly from Hickman’s.
But before this approximation breaks down, the radiative rate becomes much larger than
the autoionization rate; for this case, the branching ratio for autoionization is very small
so order of magnitude errors are irrelevant in practice (for example, the difference between
branching ratios of 10−3 and 10−5 is physically irrelevant).

Recently, Pradhan and Zhang (1997) made several comments regarding the accuracy
of Bell and Seaton’s results and several purported assertions in Robicheauxet al (1995).
Pradhan and Zhang assert that we stated reservations about the precision and utility of Bell
and Seaton’s formalism. This is incorrect. There are no statements in Robicheauxet al
that are in any way related to judgements about the utility of Bell and Seaton’s formalism.
Bell and Seaton’s formalism isa very good approximationto the more exact formalism by
Hickman (in all known cases); however, because it is such a good approximation, agreement
with experiment does not indicate that the formalism is exact because no experiments to
date can distinguish between Bell and Seaton’s approximate formalism and Hickman’s more
exact treatment.

Pradhan and Zhang also state ‘This contradicts the assertions of Robicheauxet al (1995),
made without reporting any calculations, that the BS theory leads to ‘strange poles in the
S-matrix’.’ This is also incorrect. The direct quote ‘strange poles in theS-matrix’ which
they attribute to Robicheauxet al is not in this paper; in fact, the issue of poles in the
S-matrix is not addressed at all. Therefore, it is not surprising that we have not reported
any calculations supporting these non-existent assertions. While Robicheauxet al did not
make this assertion, it is nevertheless true that the approximate form of theS-matrix due to
Bell and Seaton has a strange sequence of poles whenν3R/z2 � 1. The more exact form
by Hickman has a physically reasonable sequence of poles.

Figure 1. The poles of theS-matrix using the exact form due to Hickman (squares) and the
approximate form due to Bell and Seaton (pluses). The energy where the Rydberg spacing
equalsR/2 is marked with a vertical line. The boxed region is expanded in figure 2.
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To demonstrate this, examine the position of the poles for the two-channel case above.
Using Hickman’s formalism, the poles are atν̄ = n−µγ = n− p− iq; this gives poles at

EH
n = −

z2

2(n− p − iq)2
− iR

2
' − z2

2(n− p)2 −
iz2q

(n− p)3 −
iR

2
. (14)

This equation makes physical sense since the imaginary part is simply minus the sum of
the autoionization and radiative decay rates; these different decay paths are distinguishable.
In contrast, using Bell and Seaton’s formalism, the poles are at

exp(−2iπν + πν3R/z2) = exp(2iπµγ ) (15)

where ν = z/
√−2EBS

n . This transcendental equation has no simple solution except for
ν3R/z2� 1, where theEBS

n ' EH
n .

Figure 2. Same as figure 1. The boxed region is expanded in figure 3. Note the change in scale
for the real part of the energy.

Figure 3. Same as figure 1. Note that the decay rates of the very high-n states using Bell and
Seaton’s formalism are less than the radiative decay rate of the core. Only a fraction of the
states has been plotted for clarity. Note the change in scale for the real part of the energy.
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The results of a model calculation are plotted in figures 1–3 forp = 0.03, q = 0.01,
R = 10−5 au andz = 5. The poles of theS-matrix are plotted in the complex energy
plane with squares for the poles from the more exact equation (14) and with pluses using
the approximate form from equation (15). The vertical line marks the energy where the
Rydberg spacing equalsR/2. It is clear that over a huge range ofn, the results are nearly
identical. Note that the branching ratio for autoionization has dropped to∼10−3 before the
two results begin to disagree. But clearly the poles of theS-matrix using Bell and Seaton’s
approximate form have a strange behaviour at highn. The widths of the resonances are
going to 0 and therefore becoming smaller than the radiative decay rate of the core state.
This is certainly unphysical behaviour.

In conclusion, we have shown that a more accurate derivation using Davies and
Seaton’s formalism corrects the final result of Bell and Seaton so that it agrees exactly with
Hickman’s formalism for a Rydberg electron outside of a core that can decay radiatively.
The original derivation of Bell and Seatonmust be considered an approximation to the
more exact formalism by Hickman. However, it must be stressed that Bell and Seaton’s
formalism accurately reproduces Hickman’s formalism until the Rydberg spacing becomes
much smaller than the radiative decay rate of the core. Thus, theapproximateresults of
Bell and Seaton will probably be accurate enough for all practical calculations because the
physically important range for dielectronic recombination is when the Rydberg spacing is
larger than the radiative decay rate of the core.
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