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Abstract. Several recent papers have examined the theory of electron–atom scattering in a
low-frequency laser field. Only one of these papers obtained rough agreement with the size of
the experimental cross section through the identification of a novel physical process: collective
field effects. The purpose of this paper is to demonstrate that an error in the formulation led
to an overestimate of the interaction potential by five orders of magnitude. The experimental
results cannot be explained by collective field effects.

Recent experiments by Wallbanks and Holmes (1993, 1994) and Bader (1986) have triggered
significant interest in the scattering of electrons by atoms in a low-frequency laser field.
These experiments were performed in a geometry such that the momentum transferred to
the electron during the scattering process was perpendicular to the laser polarization. In this
geometry, the cross section for absorbing or emitting photons is greatly reduced from cross
sections where a component of the momentum transfer is parallel to the laser polarization.
This reduction arises, crudely speaking, because the laser field cannot do work on the
electron in this geometry. The theoretical interest in the problem results from the measured
cross section being orders of magnitude larger than expected.

To a large extent, the expectations are based on the Kroll–Watson approximation.
Therefore, it is natural to probe the assumptions in this approximation for an explanation
of the experimental results. Geltman (1995) probed quantum mechanically and Rabadán et
al (1994) semiclassically the assumption that the laser does not affect the shell structure
of the atom. The dominant effect is that the laser induces a dipole moment on the atom
which can interact with the electron through a long-rangez/r3 potential. The cross section
from this interaction was too small to explain the experimental results. Collins and Csanak
(1995), Chen and Robicheaux (1996) and Geltman (1996) probed the assumption that the
Kroll–Watson approximation was valid when the momentum transfer is perpendicular to
the laser polarization. In the first two works, essentially exact close-coupling methods
were employed but the theoretical cross section was found to be too small by factors
of roughly 5–10. Geltman employed perturbation theory to show that the Kroll–Watson
approximation was not valid for weak lasers and by implication not valid for strong lasers;
the large laser fields in the experiments precluded a direct comparison although the form
of the differential cross section was reproduced. Chen and Robicheaux also found that
the exchange interaction and Feshbach resonances in the electron–atom scattering could not
explain the experimental results. Madsen and Taulbjerg (1995) generalized the Kroll–Watson
approximation so that the approximations were valid for the experimental parameters; their
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differential cross section did not have the experimental shape and was orders of magnitude
too small for most of the angles measured. The only possible explanation in this group
of papers was the suggestion of Madsen and Taulbjerg of an unexplained uncertainty in
the experimental momentum transfer direction of 20◦ (Chen and Robicheaux state ‘We find
the shifted angle would need to be as large as 20◦ to account for the difference between
experiment and theory. . . ’).

A recent paper by Varro and Ehlotzky (1995) claimed that the experimental results
could be explained by the interaction of the electron with a collective potential obtained
from adding the potentials from all of the atoms in the laser beam. In contrast, Chen and
Robicheaux state ‘The probability of double scattering under this (experimental) condition
is negligible’. It is the purpose of this paper to indicate the error in the derivation of Varro
and Ehlotzky. When the correct interaction potential is utilized, the collective field potential
does not have any effect on the scattering cross section. The rough agreement they obtained
with experiment was completely fortuitous. This paper will present arguments at three levels
(intuitive physical picture, perturbation theory, exact numerical time-dependent calculation)
against their potential and for the replacement of their potential with one identical in form
but ∼105 times smaller.

The derivation of the collective potential is based on the interaction of an electron with
one atom in a laser field. To find the collective potential, sum the potentials from all of
the atoms in the laser with the atoms randomly distributed. Varro and Ehlotzky obtained
the wrong potential for an electron interacting with one atom. For simplicity, the following
derivation will be for the atom at the origin and atomic units will be used throughout this
paper. The main interest is in the asymptotic form of the potential when the electron is
far from the atom. Therefore in the following the scattering electron will be considered
distinguishable from the atomic electrons. In all that follows, electrons 1−N will be atomic
electrons (with a properly antisymmetrized wavefunction) and electronN + 1 will be the
scattering electron.

The starting point of Varro and Ehlotzky’s potential is the examination of the
Hamiltonian in the acceleration gauge for all of the electrons:

H =
N+1∑
j=1

p2
j

2
− N

|rj + α(t)| +
N+1∑
i<j

1

|rj − ri | (1)

whereα(t) = −α0ẑ sin(ωt) with α0 = A0/ωc = E0/ω
2 (A0 is the amplitude of the vector

potential andE0 is the amplitude of the electric field). For the frequencies and field strengths
in the experimentsα0 ' 1.7 au. Varro and Ehlotzky found the potential to lowest order in
the field strength by expanding the potentials withrN+1 in inverse powers ofrN+1

V (rN+1, t) ' 〈ψatom|
N∑

j=1

(α(t) + rj )|ψatom〉 · rN+1/r3
N+1 (2)

whereψatom is the solution of only the atomic part of the Hamiltonian in (1):

H =
N∑

j=1

p2
j

2
− N

|rj + α(t)| +
N∑

i<j

1

|rj − ri | . (3)

This step is correct. They next incorrectly applied perturbation theory by using the unshifted
ground-state wavefunction forψatom (= ψg(r1, r2, . . . , rN) exp(−iEgt)) because they only
want the potential to lowest order in the field strength. Because〈ψg|rj |ψg〉 = 0, this gives
a potential

V (rN+1, t) = α(t) · rN+1/r3
N+1. (4)
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This application of perturbation theory is incorrect because the perturbation on the atom
is not perturbative. The change in the atomic potential from the laser,1V = ∑

j N/rj −
N/|rj +α|, is enormous becauseα is swinging back and forth with an amplitude of nearly
2 au which is larger than the size of the atomic shells.

Refutation by appeal to a physical picture. The potential obtained by Varro and Ehlotzky
is unreasonable because the atomic wavefunction they employ is unphysical. In the
experiments,ω = 0.0043 au giving a period ofτ = 1460 au. In the Hamiltonian,
equation (3), the nucleus is slowly swinging back and forth with an amplitude of∼1.7 au.
Why do the electrons stay centred at the origin? They do not stay centred, of course.
They track the nucleus giving an atomic wavefunctionψatom = ψg(r1 + α(t), r2 +
α(t), . . .) exp(−iEgt). Using this wavefunction givesV (rN+1, t) = 0 which is not exactly
correct but gives more accurate results than the potential in (4). To obtain the correct
asymptotic potential a more accurate atomic wavefunction needs to be found.

Refutation by correct application of perturbation theory. The form of the asymptotic
potential can be obtained from the correct application of perturbation theory and by the
correct choice of gauge for the electrons. The correct gauge is prescribed by the form of
the laser interaction:E0z in the length gauge,E0pz/ω in the velocity gauge, andE0z/(r

3ω2)

in the acceleration gauge. For the scattering electron,r is very large so the acceleration
gauge is best. For the atomic electrons, distances and momenta are∼1 au and thus the length
gauge is the correct choice since 1/ω ∼ 230 is a large number. This gives a Hamiltonian

H =
N∑

j=1

(
p2

j

2
− N

rj
+ E(t)zj

)
+

N∑
i<j

1

|rj − ri | + p2
N+1

2
+ V̄ (rN+1, t) (5)

whereE(t) = A0ω sin(ωt)/c and

V̄ (rN+1, t) = − N

|rN+1 + α(t)| +
N∑

j=1

1

|rN+1 + α(t) − rj | . (6)

The atomic wavefunction can be obtained by a perturbative expansion of the wavefunction
in powers ofE0 = A0ω/c (unlike the expansion parameter of Varro and Ehlotzky,A0/ωc,
this expansion parameter is small,A0ω/c ∼ 3 × 10−5). The wavefunction accurate to first
order inA0ω/c is

ψatom = e−iEgt

{
ψg +

∑
n

ψn[Bn sin(ωt) + Cn cos(ωt)]

}
(7)

where the coefficients are given by

Bn = A0ω

c
〈ψn|

N∑
j=1

(zj − Rz)|ψg〉
/ (

Eg − En − ω2

Eg − En

)

' A0ω

c
〈ψn|

N∑
j=1

(zj − Rz)|ψg〉/(Eg − En) (8a)

Cn = −iωBn/(Eg − En) ' 0 (8b)

where the small size of the laser frequency compared to the differences in atomic energies
has been used. This wavefunction may be used to obtain the asymptotic form of the potential

V (rN+1, t) = 〈ψatom|V̄ (rN+1, t)|ψatom〉 = −αdE(t)zN+1/r3
N+1 (9)

where αd is the static dipole polarizability of the atom. For He,αd = 1.32 au. This
potential is not new and was used by Geltman (1995) and Rabadán et al (1994). Note that
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Figure 1. Plot of D(t), equation (11), from direct time propagation of the atomic wavefunction
(broken curve) and correct application of perturbation theory (full curve). The fast oscillation
in the numericalD(t) arises from the fast laser rise time. Varro and Ehlotzky’s value would be
104 times larger.

this potential is of the same form as (4) but smaller by a factor ofαdω
2/N ∼ 10−5. Since

the form of the potential is the same, all of the resulting formulae in Varro and Ehlotzky
may be used but with the smaller factor in the potential. The result is that collective field
effects play no role in the experiments.

Refutation by exact numerical solution. Finally, the status of computers and numerical
techniques allows an exact calculation of the atomic wavefunction. The form of the
asymptotic potential does not depend on the type of atom so calculations will be performed
for a soft-core hydrogen atom in cylindrical coordinates. The time-dependent potential in
the acceleration gauge was chosen to beV (r, t) = −1/

√
ρ2 + 1ρ2 + (z + α(t))2 with α(t)

chosen to match the experimental field strength and frequency. The wavefunction was
solved for on a grid inρ andz with 1ρ = 0.2 au and1z = 0.2 au (100 grid points inρ
and 200 grid points inz). The kinetic energy operator was approximated by a three point
difference in each direction. The time propagation was carried out with the second-order
leapfrog algorithm

ψ(t + 1t) = ψ(t − 1t) − 2i1tH(t)ψ(t)

ψ(t + 21t) = ψ(t) − 2i1tH(t + 1t)ψ(t + 1t)
(10)

which has the useful property of exactly unitary propagation as long as 1/1t is larger than
the largest eigenvalue of the discretized Hamiltonian. The largest value of1t that could be
used with the Hamiltonian was1t = 0.01 au.

The form of the asymptotic potential depends on

D(t) ≡ 〈ψatom|z + α(t)|ψatom〉. (11)

Varro and Ehlotzky’s value for this parameter isD(t) = α(t), whereas the correct form
should beD(t) = −αd d2α(t)/dt2. The static polarizability of the softcore atom was
obtained by fitting the numerical ground-state energy in an electric fieldF to Eg(F ) =
Eg(0) + αdF

2/2 giving a value ofαd = 6.61 au. The difficulty with the direct numerical
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solution ofψatom is that the laser periodτ = 1460 au which means 146 000 time steps are
needed to propagate the wavefunction for one period. Three calculations were performed
with different rise times of the laser. A rise time of zero laser periods gave aD(t) with
a fast oscillation with amplitude 0.01 au. With a rise time of one laser period,D(t)

tracked the expected value of−αd d2α(t)/dt2 but with a fast oscillation of amplitude
2.5 × 10−4 au superimposed. In the third calculation, theα(t) = −α0 sin(ωt) sin2(ωt/12)
for t 6 3τ = 4380 au thenα(t) = −α0 sin(ωt) for t > 3τ where α0 = 1.69 au and
ω = 0.0043 au. The laser is turned on over a time of three laser periods. The numerical
result forD(t) is plotted in figure 1 as a broken curve while the perturbation theory value
D(t) = −αd d2α(t)/dt2 is plotted as a full curve. Outside of the small amplitude, fast
oscillation from the fast laser rise time, the two results are in wonderful agreement. Note,
the result given by Varro and Ehlotzky is 10 000 times larger than the functions plotted in
figure 1.

In conclusion, an error in the derivation of Varro and Ehlotzky caused an overestimate
of the collective interaction potential by a factor of 105 for He. Collective field effects do
not play a role in the experiments measuring electron–atom scattering in a laser.
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