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Abstract. The immersion of a single ion confined by a radiofrequency (RF)
trap in an ultracold atomic gas extends the concept of buffer gas cooling to a new
temperature regime. The steady-state energy distribution of the ion is determined
by its kinetics in the RF field rather than the temperature of the buffer gas.
Moreover, the finite size of the ultracold gas facilitates the observation of back-
action of the ion onto the buffer gas. We numerically investigate the system’s
properties depending on atom–ion mass ratio, trap geometry, differential cross-
section and non-uniform neutral atom density distribution. Experimental results
are well reproduced by our model considering only elastic collisions. We identify
excess micromotion to set the typical scale for the ion energy statistics and
explore the applicability of the mobility collision cross-section to the ultracold
regime.
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1. Introduction

Trapped ion systems are among the most promising candidates for quantum information
processing [1, 2], precision measurements [3] and quantum chemistry [4]. For many of these
applications it is required to cool the ions to low temperatures. To this end, various techniques
such as laser cooling, resistive cooling, sympathetic cooling by other ions, or buffer gas cooling
are routinely used. Ultracold atomic gases have recently become available in hybrid systems
with trapped ions [5]–[10], extending the concept of buffer gas cooling to ultralow temperatures.
Understanding this new regime and how it relates to conventional buffer gas cooling is essential
for any future application to trapped ions.

Cooling of an ion in a buffer gas is caused by elastic collisions. They are dominated by the
long range polarization interaction, and cross-sections are considerably larger than for collisions
between two neutral atoms [11]–[21]. Therefore, collision rates are large and cooling is expected
to be efficient [22]. Moreover, it has been proposed that internal degrees of freedom of ionic
molecules could also be cooled by using an ultracold buffer gas [23]. Another specific feature
of the polarization interaction is that collisions affecting the ion’s mobility happen with rates
independent of the collision energy [24]. This can lead to simplified system behaviour and has,
for example, been applied in ion mobility spectrometry [25].

The motion of an ion in a radiofrequency (RF) trap can be decomposed into a fast driven
motion, the micromotion and a slow secular motion. In every collision the energy of the
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RF-field couples via the micromotion to the neutral atom’s energy and the ion’s secular energy.
This can lead to ion energy removal or intake, sensitive to the RF-phase in the moment of
the collision [26]–[28]. The average effect of many collisions results in cooling or heating and
depends on parameters such as the ratio between the mass of the ion m i and the mass of the
neutral atom mn. For very heavy neutrals runaway heating of the ion is expected [26], whereas
very light neutrals enable efficient buffer gas cooling. In the mass ratio regime between the
two extremes increased ion trap loss can be observed [29, 30]. This effect has been explained
by non-thermal energy distributions of the ion obtained from Monte Carlo simulations [31].
Such numerical simulations are a well-established tool to model a trapped ion interacting with a
buffer gas [32]–[34]. They can account for energy-dependent scattering rates, complex electric
field geometries, and other experimental parameters, which are difficult to treat analytically. In
previous calculations, buffer gases at ambient temperatures have been assumed, and the cooling
of the ion has been limited to the buffer gas temperature. However, in the recent experiments
with ultracold neutral buffer gases a new energy scale related to excess micromotion has become
dominant. The direct relation between the ion’s mean energy and the excess micromotion has
been observed in [8], for a system of Yb+

− Rb.
Here, we investigate the kinetics of a single ion colliding elastically with an ultracold buffer

gas by applying Monte Carlo techniques. The effects on the ultracold neutral cloud are modelled
using a semiclassical differential cross-section. The results on neutral atom loss and temperature
increase, and the dependence of ion energy on excess micromotion are in good agreement with
experiments.

The paper is organized as follows. In section 2 we describe the basic simulation procedure
and the underlying physical model. The classical Langevin interaction model is applied in
section 3 to derive the ion’s energy statistics depending on the mass ratio, trap geometry, and
scattering rate. In section 4, we explain effects on the neutral atom cloud as a result of the
energy-dependent differential cross-section and the non-uniform neutral density distribution.

2. Simulation model

The time evolution of a trapped single ion colliding with ultracold atoms is modelled using
a simulation consisting of an analytical and a numerical part. In the time between collisions,
trajectories are analytically described using the pseudo-potential approximation, while elastic
collisions are taken into account using Monte Carlo techniques.

2.1. Ion trajectory

We consider a single ion confined by the RF-quadrupole potential of a linear Paul trap

8RF = V0
x2

− y2

2 RT
2 sin(�T t) . (1)

Here, V0 is the RF-voltage amplitude applied with frequency �T to electrodes at a distance
RT away from the trap symmetry axis. In addition, we consider a static quadrupole potential
confining the ion along the trap symmetry axis with trapping frequency ωz,

8static =
m i

2 Q
ω2

z

(
z2

−
1

2
(x2 + y2)

)
. (2)
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Q is the ion’s charge. Mathieu equations describe the classical motion of an ion in the combined

potential (see for example [35, 36]), using the parameters a = 2 ω2
z

�2
T

and q =
√

8 ωp

�T
with

ωp =
Q

√
2 mi

V0

RT
2 �T

. For a < q2/2 � 1 the Floquet solution to first order in q yields

rion,x = Ax sin(ωx t + ϕx)
[
1 +

q

2
sin(�T t)

]
, (3a)

rion,y = Ay sin(ωy t + ϕy)
[
1 −

q

2
sin(�T t)

]
, (3b)

which is usually referred to as the pseudo-potential approximation. It consists of a rapidly
oscillating micromotion term and the secular motion, which is harmonic with frequencies

ωx,y =

√
ω2

p −
1
2ω

2
z and amplitudes Ax,y =

1
ωx,y

√
2 Ex,y

mi
. A full secular trajectory Ersec including

the harmonic motion along the trap symmetry axis is described by three energies E j and three
phases ϕ j , j ∈ {x, y, z}, with

rsec, j =
1

ω j

√
2 E j

m i
sin(ω j t + ϕ j). (4)

This formula, describing a three-dimensional harmonic oscillator, will be used throughout the
following calculations to approximate the ion’s position. The total secular energy Ex + Ey + Ez

will be referred to as the ion energy.
The motion of the ion is affected by collisions with the neutral atoms. We assume them to

be instantaneous, meaning the timescale of the collision is shorter than �−1
T , which is the shortest

timescale of the motion of the ion. This assumption implies that every collision is sensitive to
the momentary relative velocity, including the micromotion2. Therefore, we consider a number
of effects causing contributions to the micromotion. Firstly, the intrinsic micromotion described
in equation (3) is proportional to the distance of the ion from the centre of the RF-quadrupole
field. Secondly, static offset electric fields displace the minimum of the ion trapping potential
by a distance (1x, 1y) from the symmetry axis of equation (1). Thirdly, RF pickup on end-
cap electrodes can lead to micromotion along the trap symmetry axis. These contributions are
summed in the expression

Evmm =
√

2 ωp

 rsec,x(t) + 1x
−rsec,y(t) − 1y

cz

 cos(�T t), (5)

where cz parametrizes the micromotion along the trap symmetry axis3.
The ion velocity considered for collisions is

Evion = Evsec + Evmm, (6)

with Evsec =
d
dt Ersec. This is similar to the time derivative of equation (3) but includes all the excess-

micromotion terms.
2 This assumption is valid for collision energies above h̄ �T.
3 Not included in this expression are possible additional micromotion terms that are π/2 out of phase, therefore
proportional to sin(�T t), which can arise, for example, from RF-phase mismatches on opposing electrodes. They
are added to Evmm for simulations where specific experimental data are to be represented [8].
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2.2. Collision dynamics

The simulation uses classical trajectories for the motion of the ion. Therefore, its validity is
restricted to ion energies well above the energy quanta of secular motion h̄ω. The temperature
of the ultracold buffer gas is assumed to be well below this energy scale, and in the collision the
neutral atom’s initial energy is neglected. Due to conservation of energy and momentum, the
elastic scattering process is defined by the scattering angles (θ, φ). The ion’s velocity changes
according to

Evion,f = (1 − β) Evion,i + βR Evion,i , (7)

with Evion,i (Evion,f) being the initial (final) velocity given by equation (6) at the time of the collision,
β =

mn
mi+mn

and R is the rotation matrix determined by θ and φ, with respect to the direction of
Evion,i. From Evsec,f and Ersec a new set of ϕ j and E j can be determined, which describes the ion’s
trajectory after the collision.

To illustrate its impact on the motion of the ion, equation (7) can be rewritten in terms of
the secular velocity, yielding

Evsec,f = (1 − β) Evsec,i + βR Evsec,i + β(R− 1) Evmm. (8)

This expression shows how Evmm couples to the secular velocity in every collision. Note that Evmm

is, by definition of equation (5), the same before and after the collision since it only depends on
the position Ersec and time t of the instantaneous collision.

2.3. Scattering rate

The probability dPc for the ion to collide with a neutral atom within a short time interval dt
defines the scattering rate

0(t) =
dPc

dt
= n(Ex) σ (Ec) vion(t). (9)

It is proportional to the neutral atom density n(Ex) at the ion’s position. The cross-section σ(Ec)

is usually a function of the collision energy Ec, which, neglecting the energy of the neutral atom,
is given by Ec = β mi

2 v2
ion.

The ion’s position changes on a timescale of ω−1
j while the velocity of the ion vion changes

on a timescale of �−1
T . In general, 0(t) will therefore be time dependent in a non-trivial way.

The sampling method used to efficiently choose the time of collision is explained in appendix A.
A technical description of the main simulation loop is given in appendix B.

2.4. Inelastic collisions

Inelastic processes such as charge exchange, spin exchange or molecule formation have been
predicted to occur in the hybrid system ([11, 22], [37]–[39]). In experiments [6]–[9], charge
exchange, which is typically signalled by the loss of the ion, has been observed at rates many
orders of magnitude lower than the elastic collision rate, in the non-resonant case. Spin exchange
collisions can occur with rates comparable to elastic scattering [22], and energy from internal
states can be transferred to the external degrees of freedom. In a spin-stretched configuration,
however, spin exchange is suppressed.

In our simulation, we can include inelastic effects by introducing additional, competing
rates, defined as in equation (9), but with inelastic cross-sections σi(Ec) instead. The effect
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of any inelastic event on the hybrid system depends primarily on the question of whether the
original ion still exists after the process. If this is not the case, the simulation can be stopped
at the first occurrence. If the ion continues to exist, the amount of energy released or absorbed
by the internal states of the colliding particles needs to be considered in a modified version of
equation (7). In either case, our simulation is able to predict the rate at which inelastic events
occur, given the inelastic cross-section σi(Ec). On the other hand, the simulation can be used, if
a rate is measured experimentally, to determine σi(Ec).

In the following sections, we consider elastic processes only, assuming inelastic processes
either to happen very rarely, in line with the experiments [7]–[9], or to involve only small
amounts of internal energy, which do not significantly affect the system.

3. Langevin scattering

For the motion of an ion in a neutral gas, mainly large angle scattering is considered relevant,
as small deflections do not significantly change the ion’s trajectory. This assumption leads to
the Langevin scattering model, which successfully describes the ion’s mobility in previous
experiments with ions in a neutral buffer gas. Here, we apply the Langevin scattering model to
the trapped ion system, including the effects of micromotion. We investigate the properties of the
ion’s energy and will later compare these results with those from a more complete semiclassical
scattering model, in section 4. We will indeed find good agreement between the two models in
describing the energy distribution of the ion, confirming the above assumption, that large angle
scattering events determine the evolution of the ion’s energy.

The ion–neutral interaction is dominated by the attractive polarization interaction, which
is of the form

V (R) = −
C4

2R4
, (10)

with C4 = α0 Q2/(4πε0)
2 being proportional to the neutral particle polarizability α0. R is the

internuclear separation.
Classically, one can define a critical impact parameter bc = (2 C4/Ec)

1/4 [40]. Collisions
with impact parameter b > bc lead to small deflections and are neglected. Impact parameters
b < bc result in inward-spiralling trajectories, which lead to almost uniformly distributed
scattering angles into all directions as in hard-sphere scattering. The resulting cross-section
for large angle scattering, σL = π b2

c is proportional to the inverse collision velocity, and leads
to a scattering rate independent of the collision energy [24].

3.1. Energy scale

Our aim is to determine the energy scale of the ion on its classical trajectory after many
collisions such that the initial conditions for E j can be neglected. Neither the Langevin
scattering at its energy-independent rate, nor the ultracold neutral buffer gas, which we assume
at T = 0, introduce such a scale. As a consequence, the only energy scale in the system is
defined by the excess micromotion; see equation (5). This is in contrast to the case of a buffer
gas with non-negligible temperature, where the energy scale is rather set by the temperature of
the neutral gas [31].
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Figure 1. Energy spectra of the ion for three different mass ratios. 108 energies
are sampled into logarithmically spaced bins with an energy resolution of 100
bins per decade. We choose 1x = 1y and cz = 0 and trap parameters q2

a = 50.
In the case where the ion mass is twice the neutral mass (black) the ion’s mean
energy is 0.8 Emm,e, in the case for equal masses (red) 5 Emm,e. The red dashed
line corresponds to a thermal energy distribution with 5 Emm,e. The spectrum for
a lighter ion, mn

mi
= 1.7 (blue), contains a significant contribution of very high

energies, typically leading to quick ion loss due to finite trap depth.

To associate the excess micromotion with an energy scale we define

Emm,e =
m i

2
v2

mm,e, (11)

with vmm,e being the full velocity amplitude of the micromotion for an ion in the centre of the ion
trapping potential. vmm,e depends on the displacement (1x, 1y) caused by the uncompensated
offset electric field. Note that when the offset electric field is compensated using a photon
correlation measurement [41, 42], photon shot noise usually limits the lowest achievable Emm,e.

Since Emm,e is the only energy scale in the colliding system it is sufficient to express
all energies in units of Emm,e. This gives general results for any amplitude of uncompensated
micromotion. It also implies that any statistical measure of ion energy has to scale with Emm,e

and therefore with the square of the excess-micromotion amplitude. Such quadratic dependence
of the mean ion energy has been experimentally observed in [8].

3.2. Energy spectrum

In order to treat scattering in the presence of micromotion in its most general form we choose
all trap frequencies (ωx,y,z, �T) to have irrational ratios. We assume a very low homogeneous
neutral atom density such that the scattering rate 0 is much smaller than the trap frequencies.
This ensures that two consecutive collisions happen at uncorrelated positions.

We obtain the energy spectrum from the simulation by binning the secular energy after each
collision on a logarithmic scale. This measures a logarithmic energy probability distribution
dP(E)/d log(E). Figure 1 shows such energy spectra for three different mass ratios of the atom
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Figure 2. The exponents α obtained from fitting power laws to the high energy
tails of the ion energy spectra are plotted against the mass ratio coefficient β.
This is done for three different trap geometries, for a spherical trap (q2

a = 6, black

rectangles), for an elongated trap (q2

a = 50, red circles) and for the extreme case

with negligible axial confinement (q2

a = 1010, blue triangles). The data are fitted
with second-order polynomials to extrapolate to βcrit for which the exponent α

becomes 0.

and the ion. For heavier neutral atoms the mean energy of the ion increases and a tail in the
spectrum towards higher energies becomes dominant. Even for equal masses (β = 0.5) the tail
towards high energies is evident when compared to the thermal distribution with the same mean
energy. For any mass ratio, the obtained spectrum distinctly differs from a thermal distribution,
also because very low energies (E � Emm,e) are extremely rare. This supports the validity of
the classical treatment of trajectories and instantaneous collisions (E > h̄�T).

A power law, dP(E)/d log(E) ∝ Eα, nicely fits the tail in the spectrum towards high
energies for mn > m i or β > 0.5 [31]. As β is increased further, towards even heavier neutrals,
the negative exponent α approaches 0, at which point the spectrum no longer converges with
time and runaway heating starts to dominate the evolution of the ion’s energy. The critical mass
ratio parameter βcrit can be found by extrapolating the exponent α(β) towards α(βcrit) = 0. The
quantity βcrit is not a universal number but is a function of the trap geometry. It depends on
the ratio ωp

ωz
or, expressed in the ion trap parameters a and q, on q2

a = (
2ωp

ωz
)2. The dependency

is explained by the fact that axial confinement leads to radial deconfinement and thereby to an
increase of the ratio between average micromotion and secular energy. For three different cases
the extrapolation to βcrit is shown in figure 2. Our data are compatible with the critical mass ratio
previously found for a specific trap geometry [31]. For very elongated traps (ωz � ωp) we find
βcrit = 0.685, corresponding to a mass ratio mn

mi
= 2.17.

3.3. Average energy and lifetime of the ion

To evaluate the effectiveness of buffer gas cooling for different mass ratios we calculate the
average of the energy spectrum of the ion. As a physical measure, the arithmetic mean comes
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Figure 3. For different β the ion’s arithmetic mean energy (black rectangles) and
median energy (red circles) are shown in units of Emm,e. The arithmetic mean
is expected to diverge for β > 0.554. An example for the required trap depth
for Ploss < 10−5 is given (blue triangles) and compared to Etd = Emm,e (Ploss)

1/α

(dotted line) using α obtained from power law fits to the tails of the energy
spectra. All data are for q2

a = 50.

close to the definition of a temperature, albeit the clearly non-thermal distribution. We show
the arithmetic mean in figure 3 for the case q2

a = 50. Although the arithmetic mean diverges
for α >−1, the energy spectrum can still be normalized for α < 0. In this range the median
continues to be a well-defined statistical measure for the energy of the ion.

In experiments, a large probability density at high energies leads to a rapid ion loss due to
a finite trap depth Etd [30, 31]. We have numerically evaluated the required trap depth Etd to
limit the ion loss probability per collision to Ploss (figure 3). For large β we can approximate
the required trap depth by Etd = Emm,e (Ploss)

1/α. The results show that mass ratios with light
neutrals are preferred for efficient buffer gas cooling. However, even for the heavy neutral
scenario stable trapping and buffer gas cooling are possible for carefully chosen trap geometry,
trap depth and micromotion compensation.

3.4. Higher collision rates

For all the results discussed so far the collision rate has been assumed very low, and as long as
the condition 0 � ω is fulfilled the results remain unchanged. As the collision rate approaches
or even exceeds the trap frequency ωx,y , the probability to have consecutive collisions at
correlated positions increases. Under this condition we observe a reduced median energy and
an increased power-law tail.

4. Semiclassical scattering

Up to this point the classical Langevin model has been used to explore the ion’s energy spectrum
and its dependence on mass ratio, trap geometry and collision rates. Here we make use of a
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semiclassical description of the interaction process. The solution to the quantum mechanical
scattering problem can be found by expanding the wavefunction into partial waves. In the regime
where many partial waves contribute, the total elastic cross-section scales like E−1/3

c [37]. The
resulting energy dependent scattering rate and angular dependence lead to additional effects as
compared to the Langevin model. These are necessary to explain the back action on the neutral
cloud.

We model the interaction potential by the long range polarization interaction of
equation (10) plus repulsion at short distances. The full differential cross-section is calculated
using [43]

dσ

d�
=

1

k2

∣∣∣∣∣
∞∑

l=0

(2l + 1) eiηl sin(ηl) Pl(cos θ)

∣∣∣∣∣
2

. (12)

The angular momentum of a partial wave is h̄l and h̄k =
√

2µEc is the collision momentum. The
scattering phase ηl can be obtained by solving the radial Schrödinger equation, which involves
the centrifugal potential h̄2 l(l+1)

2µR2 . The resulting centrifugal barrier increases in height with angular

momentum (∼ (h̄l)4). Partial waves with l < l0 = 1/h̄
√

2µ
√

2C4 Ec have a collision energy
larger than the height of the centrifugal barrier, probe the deep potential well and are reflected
from the hard core. The exact form of the potential, relevant to determine ηl , is typically not
known. Therefore phase shifts ηl for l < l0 are assumed to be uniformly distributed within
[0, 2π) [11]. In this approximation each partial wave contributes with σl =

2πl
k2 to the total cross-

section. Summing σl up to l0 reproduces the Langevin cross-section.
The full quantum mechanical cross-section includes additional contributions from partial

waves with l > l0. As the centrifugal barrier is higher than the collision energy, these partial
waves are scattered from the centrifugal barrier, if tunnelling effects are neglected. The phase
shifts can be semiclassically approximated by [11, 37]

ηl = −
µ

h̄2

∫
∞

R0

V (R)√
k2 − ((l + 1/2)2/R2)

dR (13)

with R0 =
l+1/2

k .

4.1. Modelling the differential cross-section

The probability distribution for the deflection angle θ

I (θ, Ec) =
dσ

dθ
=

∫ 2π

0

dσ

d�
sin θ dφ (14)

is numerically calculated using equations (12) and (13) and randomly distributed ηl for l < l0.
We sum equation (12) for l up to 20 000 and average over 100 different random sets of ηl . The
differential cross-section calculated in this way depends on the reduced mass µ, the collision
energy Ec =

h̄2 k2

2 µ
and C4 only. For the case of a 174Yb+ ion colliding with a 87Rb atom, four

probability distributions of the form of equation (14) are shown in figure 4. The main feature of
I (θ, Ec) is a forward scattering peak, which gets more pronounced as the energy increases [39].
The integral of the differential cross-section reproduces the expected E−1/3

c energy dependence,
and its magnitude is in agreement with [11].

New Journal of Physics 13 (2011) 053020 (http://www.njp.org/)

http://www.njp.org/


11

Figure 4. (a) The probability distributions I (θ, Ec) for the scattering angle θ

in elastic collisions between 174Yb+ and 87Rb are numerically calculated. The
unknown scattering phases for close encounters (l < l0) are chosen randomly.
The four curves are for different collision energies Ec. The forward scattering
peak at small θ is more pronounced for higher energies. Its shape is emphasized
in (b) where the scattering angle θ is displayed logarithmically. The normalized
I (θ, Ec) (smooth lines) for the four different energies are compared with
logarithmically binned output from the random θ -generating function (step like
lines). The approximation is optimized to reproduce the height and position of
the forward scattering peak.

To implement the differential cross-section in the Monte Carlo simulation a parametrization
of the normalized I (θ, Ec) is used to create a function that returns a random θ for a given
collison energy. The distribution I (θ, Ec) is modelled in four intervals using two power laws
(∝ θ p), a flat top and a flat background. The parameters peak height, background offset and
interval limits are energy dependent and are well approximated by power laws (∝ E p′

c ). These
power laws are obtained from fits to differential cross-sections for more than 30 different
energies Ec in the range between kB × 1 µK and kB × 100 K. The θ -generating function uses
these parameter functions and inverse transform sampling. Figure 4(b) compares sampled output
of the θ -generating function with the normalized differential cross-sections.

4.2. Effects of the energy-dependent scattering rate on the ion energy spectrum

We have simulated the kinetics of the ion in an ultracold buffer gas using the parametrized
differential cross-section to investigate how this affects the ion energy spectrum. Different
from the Langevin case, the collision rate depends on the instantaneous ion energy. Therefore,
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efficient simulation relies on the collision time sampling described in appendix A. The ion
energies are binned and weighted by the time the ion remains at the specific energy.

We have performed simulations for an ion trap with frequencies ωx,y,z = 2π ×

{151, 153, 42} kHz, �T = 2π × 42.5 MHz, excess-micromotion parameters 1x = 1y = 2 µm
and neutral density n = 1018 m−3 for the system 174Yb+

−
87 Rb, reproducing conditions

comparable to [8]. We find good agreement with the previous results from the Langevin model
and conclude that the Langevin model is sufficient to describe the ion’s energy statistics.
Formally, however, the system does not necessarily continue to scale only with the excess-
micromotion energy Emm,e, as the differential cross-section introduces its own energy scale.
In the next section we will demonstrate that the full differential cross-section is necessary to
predict effects on the cold neutral atoms.

4.3. Neutral cloud evolution

Ultracold neutral atomic clouds have atom numbers ranging up to 109. Compared to a
room-temperature buffer gas, this limited number of atoms and the good isolation from the
environment allow the observation of collision effects on the neutral gas. The main observables
are the number of neutral atoms Na and their temperature Ta. In experiments, these values can
be obtained from time-of-flight imaging and are suitable to verify the simulation model.

The back-action of the ion onto the neutral gas is a result of the energy transfer per collision.
For general two-body elastic collisions it is given by

Et = 4 (1 − β) Ec sin2(θ/2), (15)

depending on the scattering angle θ . For very small deflections θ � 1, resulting from the
forward scattering peak in the differential cross-section, only very little energy is transferred
to the neutral atom. The distribution of transferred energies Et, shown in figure 5, can be
understood as a convolution of the collision energy distribution and the energy dependent
differential cross-section.

Figure 5 also shows distributions for Ec and Et obtained using the Langevin model for
comparison. The Langevin collision rate is obviously smaller, explained by the different energy
dependence of the cross-sections, σL ∝ E−1/2

c versus σ ∝ E−1/3
c . The semiclassical distribution

of Ec is also slightly shifted towards higher energies with respect to the Langevin Ec, since
collisions are more likely to happen at higher energies. The transferred energies differ only little
between to two models for Et & kB × 0.03 K. This reflects the statement that the ion’s mobility
is well described by Langevin type collisions. However, the significant peak at low Et of the
semiclassical distribution causes most of the effects on the cold neutral gas.

So far all the results were obtained assuming a uniform density distribution of neutral
atoms. This will now be replaced by a spatial distribution for a thermal gas in a harmonic trap
with temperature Ta and atom number Na. Considering a finite trap depth Etd,a for the neutral
atoms, every collision with Et > Etd,a will lead to an atom loss, whereas every Et < Etd,a will
increase the temperature Ta. The simplified model used in the simulation assumes immediate
thermal equilibration of the neutral gas. Then a collision with Et < Etd,a simply increases Ta by

Et
3 kB Na

. The loss of an atom for Et > Etd,a will decrease Na by 1 but also affect the temperature
depending on the atoms energy. The new temperature is calculated

Ta,f =
Na,i 3 kB Ta,i − (3/2) kB Ta,i − Epot(Er)

(Na,i − 1) 3 kB
(16)
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Figure 5. Distributions of collision energy Ec (dotted line) and transferred energy
Et (solid line). The data are obtained by binning 108 collisions on a logarithmic
energy scale, comparing Langevin scattering (red) with the full semiclassical
differential cross-section (blue). The vertical axis indicates the scattering rate in
kHz per decade of energy at which collisions with the specific energies occur.
The inset is a magnification of the region relevant for Langevin scattering. The
settings for this simulation run are n = 1018 m−3 for the uniform neutral atom
density and 1x = 1y = 2 µm, resulting in an excess-micromotion energy of
Emm,e/kB = 160 mK. Note the similarity between the two models for large and
the significant difference for small transferred energies Et.

using the total energy of the neutral cloud, and the potential and average kinetic energy of the
lost atom known from the position Er of the collision. This can lead to evaporative cooling or
heating effects depending on the position of the ion in the neutral gas.

For ion trajectories larger than the size of the buffer gas the ion can only collide in the
centre of the trap where its motional energy is mostly related to the secular motion rather than
the micromotion. This suppresses the power-law tail of the ion energy distribution and reduces
the ion’s average energy. Hence, using tight traps to confine the neutral atoms might help to
overcome the constraints on ion trap depth, trap geometry and mass ratio.

4.4. Comparison to experimental data

Here we compare the simulation predictions for the effects on neutral atoms with experimental
data from Yb+

− Rb [8]. The measured quantities are the loss of neutral atoms and temperature
increase of a cold thermal cloud, after 8 s of interaction and for different excess-micromotion
energies Emm,e. Figure 6 displays the data together with the simulation results.

Initial conditions for the neutral 87Rb cloud in the simulation are given by Ta,0 = 250 nK
and Na,0 = 2.25 × 106. Neutral trap frequencies of 2π × {28, 28, 8} Hz result in an initial central
density of n(0) = 1.9 × 1018 m−3. The neutral trap depth is Etd,a = kB × 8 µK.
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Figure 6. Comparison between experimental measurements (black circles)
and the simulation predictions for (a) neutral atom loss and (b) the neutral
temperature increase. The semiclassical model (blue) fits the data well.
The Langevin model (red) systematically underestimates the collision effects on
the neutral atoms. The contribution of evaporative heating (equation (16)) in the
semiclassical model is indicated with the blue dashed line. The experimental data
are taken from [8].

A single 172Yb+ ion is trapped with parameters given in section 4.2. The excess
micromotion parameters 1x and 1y are varied between 0 and 15 µm, and additionally there
is micromotion along the trap symmetry axis with cz = 2 µm. The excess-micromotion energy
scale, Emm,e/kB thus ranges from 90 mK to 7 K.

The semiclassical simulation predicts both the shape and the magnitude of the experimental
results well. In contrast, the Langevin scattering is not suited to model these measurements
because the ultracold atoms are highly sensitive to small energy transfer Et. They correspond to
collisions with small deflection angles, which are neglected by the Langevin model, cf figure 5.

5. Conclusion

We have numerically investigated the kinetics of a single trapped ion interacting with an
ultracold neutral gas. Our results explain the effects of the mass ratio, trap geometry and
excess micromotion on the ion’s energy spectrum. We have applied two different collision
models of the atom–ion interaction, the Langevin and the semiclassical scattering model. Both
yield similar ion energy statistics. The greater simplicity of the Langevin model introduces
a characteristic energy scale for the ion energy statistics. However, experimentally observed
effects on the neutral cloud can only be explained by the semiclassical model. Forward
scattering events with small energy transfer affect both the neutral cloud temperature and the
atom loss rate. Cold atom–ion collisions could then be used to locally remove atoms, resulting
in efficient cooling of quantum gases.
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Appendix A. Collision time sampling

A scattering rate 0 sets the probability for a collision to take place within a time interval dt . In
our case

0(t) = n(Ex) σ (Ec) vion(t), (A.1)

with n being the neutral atom density, σ the cross-section and the velocity vion as defined in
equation (6). Usually the density is a function on the ion’s position, the cross-section depends
on the collision energy and vion oscillates rapidly in time, leading to a 0(t) with non-trivial time
dependence. In the following we explain the method used to randomly generate collision times
t with the exact distribution defined by 0(t).

In general, the process of an event (collision) taking place with a rate 0(t) can be modelled
using a differential equation for the probability Q(t) that the event has not yet happened after
the time t ,

dQ(t) = −0(t) Q(t) dt. (A.2)

The probability distribution for an event to take place after the time t is defined by P(t) =

−dQ/dt . In the simple case with constant 0(t) = 00 the solution is

P00(t) = 00 exp(−00 t), (A.3)

and a random time can be obtained using inverse transform sampling,

t = −1/00 log(r), (A.4)

with r being a uniformly distributed random number in the interval (0, 1]. For time dependent
0(t) the analytic solution for the probability distribution function is

P(t) = 0(t) exp
(

−

∫ t

0
0(t1) dt1

)
. (A.5)

Non-trivial time dependence of 0(t) usually requires a numerical approach to sample t from
equation (A.5). One straightforward method would be to discretize time into small steps,
calculate 0(t) and its contribution to P(t) for every step, thereby numerically integrating the
function P(t) up to a randomly chosen trigger value, at which point the event takes place.

However, another method is employed here, which proves to be much faster and does not
suffer from discretization errors. It works for 0(t) that have an upper bound 0m = sup(0(t)),
or where such a condition can be enforced by introducing a cutoff. In the specific case of
the trapped ion, all factors in equation (A.1) are easily limited by considering the energies
E j defining the trajectory and the excess-micromotion parameters and using the peak neutral
density. This upper bound can be adjusted after each collision event having affected E j and
n(Ex).

The algorithm works by advancing the system by a time t according to equation (A.4) with
00 = 0m. Then the rescaled rate

γ (t) = 0(t)/0m (A.6)
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is calculated for the resulting state of the system after the time t and an event takes place if
γ (t) > r , with r being another uniformly distributed random number in the interval [0, 1). If
the event does not take place (γ (t)6 r ) the algorithm iteratively loops back to advance the
system by an additional t , again according to equation (A.4). The method is exact in that it
reproduces the probability distribution function (A.5). A proof follows below. The efficiency of
the method is the ratio of the average of 0(t) and 0m, ε = 〈0(t)〉/0m = 〈γ (t)〉. This means that
in order to generate N events it can be expected that 0(t) needs to be evaluated N/ε times.

Proof. We start from writing an expression for the probability distribution function Ps(t)
obtained with the suggested method. Since the final t can be the result of any number of
iterations, Ps(t) is a sum of all these possibilities, Ps(t) = Ps,1 + Ps,2 + Ps,3 + · · ·, where Ps,i is
the probability that t results as the time of event after i iterations. The first few terms are given
below.

Ps,1 = γ (t) P0m(t), (A.7)

Ps,2 = γ (t)
∫ t

0
P0m(t1) P0m(t − t1) (1 − γ (t1)) dt1, (A.8)

Ps,3 = γ (t)
∫ t

0

∫ t1

0
P0m(t2) P0m(t1 − t2)P0m(t − t1) (1 − γ (t1)) (1 − γ (t2)) dt2 dt1. (A.9)

Note that the products of P0m (as defined in equation (A.3)) in the integrals always combine to
0(i−1)

m P0m(t). Therefore P0m(t) is taken out of the sum as a common prefactor,

Ps(t) = γ (t) P0m(t)
(

1 + 0m

∫ t

0
(1 − γ (t1)) dt1

+0m
2

∫ t

0

∫ t1

0
(1 − γ (t1)) (1 − γ (t2)) dt2 dt1 + · · ·

)
. (A.10)

Now the upper boundaries of all the partial integrals can be set equal to t , since they only induce
ordering to the time series {t1, t2, . . . , tn}. This rescales the terms by the number of possible
orderings (n!). Then the partial integrals reduce to a single integral to the power of n,∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
(1 − γ (t1)) (1 − γ (t2)) · · · (1 − γ (tn)) dtn · · · dt2 dt1

=
1

n!

∫ t

0

∫ t

0
· · ·

∫ t

0
(1 − γ (t1)) (1 − γ (t2)) · · · (1 − γ (tn)) dtn · · · dt2 dt1

=
1

n!

( ∫ t

0
(1 − γ (t1)) dt1

)n
. (A.11)

Combining this with equation (A.10) gives

Ps(t) = γ (t) P0m(t)
∞∑

n=0

0m
n

n!

( ∫ t

0
(1 − γ (t1)) dt1

)n

= γ (t) P0m(t) exp
(
0m

∫ t

0
(1 − γ (t1)) dt1

)
, (A.12)
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and it follows with equations (A.3) and (A.6)

Ps(t) = γ (t) 0m exp
(

− 0mt + 0m

∫ t

0
(1 − γ (t1)) dt1

)
= 0(t) exp

(
−

∫ t

0
0(t1) dt1

)
. (A.13)

This is identical to equation (A.5), which proves that the method reproduces the exact
probability distribution. ut

Appendix B. Structure of the simulation loop

The following is a short description of how the main simulation loop has been implemented.

(1) setup system configuration: ω j , �T and excess-micromotion, β, neutral trap frequencies,
Ta, Na, n(Ex), dσ

d�
, . . . ;

(2) select initial state (E j , ϕ j) j∈{x,y,z};
(3) calculate maximal collision rate 0m, considering nmax(Ta, Na) and E j ;
(4) increment time t by equation (A.4);
(5) calculate ion position and velocity, using equations (4)–(6), (E j , ϕ j , t) → (Erion, Evion);
(6) calculate γ (t) with equation (A.6), proceed to (7) with probability γ (t), else go back

to (4);
(7) choose collision parameters (θ , φ) according to dσ

d�
;

(8) update neutral atom parameters Ta, Na, using equations (15) and (16) and Etd,a;
(9) apply scattering equation (7) to Evion;

(10) calculate new trajectory parameters, using equations (4)–(6), (Erion, Evion, t) → (E j , ϕ j);
(11) loop back to (3).

The setup of the system configuration in (1) contains mainly parameters which do not
change during the collisions, such as trap frequencies or the atom–ion mass ratio. Exceptions
are the neutral atom number Na and temperature Ta, which act as initial conditions. The
initial state for the ion energy in (2) is mostly unimportant, as the simulation will iterate over
many collisions and the information of the initial state is lost after a few collisions. When
looking at steady state statistics of the ion energy, the values after the first few collisions can
simply be ignored, thus effectively letting the system evolve for a short time before measuring
its properties. Points (3)–(7) implement the collision time sampling algorithm described in
appendix A. The maximally possible collision rate 0m is calculated from the peak density
nmax(Ta, Na) of the neutral atoms and on the maximum value of σ(Ec) vion(t). The latter is
limited by the highest possible ion velocity, which depends on the secular energy E j and the
excess micromotion. The calculation of γ (t) in (6) uses the Evion and Erion obtained in (5) to
determine 0(t) with equation (9). If a collision takes place at the chosen time t , (7) gives
the scattering angles according to the differential cross-section. Point (8) simulates the back-
action on the neutral atoms, and (9) modifies the velocity of the ion. In (10) the new trajectory
parameters E j and ϕ j are determined, to represent the motion of the ion up to the next collision.

Information on any system parameter can be retrieved at user-defined points within the
simulation loop. The ion energy is typically registered after (10), the collision and transferred
energies, Ec and Et after (8). Random sampling is used in (4) and (6), to determine the time of
collision, and in (7), for the scattering angles.
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