Multiple choice (5 pts each) – circle the correct answers.

- 1. For a hydrogen atom, the electron is in the state with n = 7, l = 4, $m_l = -2$. Determine the number of nodes in the r part of the wave function, the θ part of the wave function, and the ϕ part of the wave function: (n_r, n_θ, n_ϕ) . HWK 10, Prob 3
 - (a) (7, 4, -2)(b) (7, 4, 2)(c) (7, 2, 2)(d) (2, 2, 2) (V1) (e) (2, 4, 2) (V2) (f) (2, 2, -2)
- 2. A particle moves in a 2D potential energy with the form $U(x,y) = (1/2)k(x^2+y^2)$. An eigenstate has the form $\psi_{n_x,n_y}(x,y) = \psi_{n_x}(x)\psi_{n_y}(y)$. What is the eigenenergy? **HWK** 9, Prob 2
 - (a) $E = (h^2/[8ML^2])(n_x^2 + n_y^2)$ (b) $E = h^2 n^2/(8ML^2)$

 - (c) $E = (n_x + n_y + 1)\hbar\omega_0$
 - (d) $\overline{E} = (n + 1/2)\hbar\omega_0$
 - (e) none of the above are correct.
- 3. A particle experiences a step potential energy which is U(x) = 0 for x < 0 and $U(x) = U_0 > 0$ for x > 0. The particle is incident on the step from the left. If it has an energy $E < U_0$, it reflects from the step but can tunnel a distance L into the x > 0 region with probability 0.01. If the mass of the particle is increased by a factor of 4, but U_0 and E are the same, the probability to tunnel a distance L into the x > 0region is HWK 8, prob 5
 - (a) 0.01×4 (b) 0.01/4(c) 0.01×10 (d) 0.01/10(e) 0.01/100 (V1) (f) 0.01/1000 (V2)
- 4. The ³H nucleus has a half life of 12.3 years. You make exactly 10,000 ³H when you are 20 years old. When you are 56.9 years old, predict how many ³H are left? HWK 11, prob 5
 - (a) exactly 1250
 - (b) exactly 2500
 - (c) exactly 0
 - (d) a 12.5% chance of 10,000 and 87.5% chance of 0
 - (e) a 25% chance of 10,000 and 75% chance of 0
 - (f) There will be approximately 1250 left but exactly how many can't be predicted. (V1)
 - (g) There will be approximately 2500 left but exactly how many can't be predicted. (V2)
 - (h) None of the above are correct.
- 5. There's a potential energy which has the eigenstate $\psi_n(x) = A(L^2 x^2)e^{-\alpha x^2}$ which is defined for all x. The parameters L > 0 and $\alpha > 0$. Which eigenstate is it?
 - (a) The lowest energy state: n = 1.
 - (b) The first excited state: n = 2.
 - (c) The second excited state: n = 3.
 - (d) An eigenstate with $n \ge 4$.
 - (e) This is a trick question because this function can't be an eigenstate.

Problems: Show all work to receive full credit. Fundamental constants (e, h, masses, etc) are top of the equation page.

- 10 pts 1. The potential energy, U(x), is finite everywhere. An energy eigenstate is $\psi(x) = Ae^{-\alpha x} + Be^{\alpha x}$ for x < 0 and $\psi(x) = Ce^{ikx} + De^{-ikx}$ for x > 0. The parameters $\alpha > 0$ and k > 0. a) Do any of A, B, C, D have to be 0? Explain why. b) Give the two equations that determine C and D in terms of the other parameters. **HWK 7 Prob** 1, see Chap 5
 - a) The A = 0 because otherwise the wave function diverges as $x \to -\infty$

b) Because the wave function is continuous B = C+D. Because the potential energy is finite everywhere, the derivative of the wave function must be continuous $\alpha B = ik(C - D)$

10 pts 2. A hydrogen atom is in the 3p state at a spot where the magnetic field points in the z-direction with magnitude 2.00 T. The magnetic field gives an interaction energy of $U = -\vec{\mu} \cdot \vec{B}$ from the spin of the electron. Find all the energies that come from the magnetic interaction. Are there any energies that have more than 1 possible state? **HWK 10 Prob 2 extended, see Chap 7**

The total magnetic moment of the hydrogen atom is $\vec{\mu}_L + \vec{\mu}_S$. Thus, the $H = (e/[2m])B_z(L_z + 2S_z)$. The eigenvalues of L_z and S_z are $m_l\hbar$ and $m_s\hbar$ with $m_l = 1, 0, -1$ and $m_s = 1/2, -1/2$ giving allowed energies of $(m_l + 2m_s)e\hbar B_z/(2m)$. Therefore there are 5 energies: $(2, 1, 0, -1, -2) \times e\hbar B_z/(2m)$. The 0 energy can be done 2 ways: $m_l = 1, m_s = -1/2$ and $m_l = -1, m_s = 1/2$. The combination $e\hbar B_z/(2m)$ is 1.85×10^{-23} J for (V1) and is 2.32×10^{-23} J for (V2).

10 pts 3. An electron with a kinetic energy of 25.0 eV hits a stationary hydrogen atom in its ground state. The atom makes a transition to an n = 2 state but hardly changes it's center of mass velocity. What is the electron's kinetic energy after the collision? Chap 7,8 class discussion

This is a conservation of energy problem. When the electron is far from the hydrogen atom, the total energy is the kinetic energy of the electron plus the internal energy of the hydrogen atom: $E_n = -13.60 \ eV/n^2$. Doing conservation of energy gives

$$KE_{before} + E_{n,before} = KE_{after} + E_{n,after}$$
$$KE_{after} = 25 \ eV - 13.60 \ eV/1^2 - (-13.60 \ eV/2^2) = \underline{14.8 \ eV} \ (V1)$$
$$KE_{after} = 20 \ eV - 13.60 \ eV/1^2 - (-13.60 \ eV/9^2) = \underline{7.91 \ eV} \ (V2)$$

10 pts
4. The nucleus ²³⁶₉₂U fissions into ⁹²₃₆Kr and ¹⁴²₅₆Ba plus neutrons. a) How many neutrons?
b) Estimate the total kinetic energy of the Kr and Ba by approximating that they start from rest with a center-to-center separation of 2/3 the U diameter. Inverse of HWK 9 Prob 4 and slide 13 of Chap 12 slides

a) Since the total number of protons doesn't change, the number of neutrons can be found from 236 - 92 - 142 = 2. b) This is a conservation of energy problem. Just after the fission, the Kr and Ba only have potential energy given by $PE = zZe^2/r$ with z, Z their charges and r being the separation. The repelling potential pushes them apart so that all of the potential energy is converted to kinetic energy. The diameter of the U can be found from $diam = 2R = 2R_0A^{1/3} = 2 \times 1.2 \times 10^{-15} m \ 236^{1/3} = 1.48 \times 10^{-14} m$

$$KE = \frac{36 \times 56 \times 8.99 \times 10^9 \times (1.6 \times 10^{-19})^2}{9.89 \times 10^{-15}} \ J = \underline{4.69 \times 10^{-11} \ J} = \underline{293 \ MeV} \ (V1)$$

$$KE = \frac{36 \times 56 \times 8.99 \times 10^9 \times (1.6 \times 10^{-19})^2}{11.1 \times 10^{-15}} \ J = \underline{4.17 \times 10^{-11}} \ J = \underline{261 \ MeV} \ (V2)$$

15 pts 5. As a part of your evil plot to take over the world, you have stolen 120 kg of of tritium, ³H. The tritium decays into a ³He nucleus, an electron, and a neutrino. The mass of neutrinos are so small they have not yet been measured. a) How many tritium nuclei decay in the first minute you have it? b) After 4.0 years, how many tritium nuclei decay in a minute? c) In the first minute, how much kinetic energy is released? HWK 11, Prob 5 see Chap 12

a) To solve this problem, you need to first find out how many tritium nuclei you start with. From the table, the mass of 1 tritium atom is 3.016049 u which is 5.01×10^{-27} kg. The starting number of tritium is $N_0 = total \ mass/(mass \ of 1)$. The rate that the tritium decays is the activity which is $a = (0.693/t_{1/2})N$ with $t_{1/2} = 12.3 \ y = 12.3 \times 365 \times 24 \times 3600 \ s = 3.88 \times 10^8 \ s$. Because the duration I ask is so much shorter than the half-life, you can just multiply the activity by the duration to get how many decay during that time.

$$N_{0} = \frac{120}{5.01 \times 10^{-27}} = 2.40 \times 10^{28} \quad a = 2.40 \times 10^{28} \times 0.693/3.88 \times 10^{8} \ s^{-1} = 4.28 \times 10^{19} \ s^{-1}$$
$$decay = 60 \ s \times 4.28 \times 10^{19} \ s^{-1} = \underline{2.57 \times 10^{21}} \ (V1)$$
$$N_{0} = \frac{140}{5.01 \times 10^{-27}} = 2.80 \times 10^{28} \quad a = 2.80 \times 10^{28} \times 0.693/3.88 \times 10^{8} \ s^{-1} = 4.99 \times 10^{19} \ s^{-1}$$
$$decay = 60 \ s \times 4.99 \times 10^{19} \ s^{-1} = 2.99 \times 10^{21} \ (V2)$$

b) At the later time, the activity is reduced by the factor of $e^{-0.693 t/t_{1/2}}$. The number that decay in the interval is decreased by the same amount.

$$decay = 2.57 \times 10^{21} \times e^{-.693 \times 4.0/12.3} = \underline{2.05 \times 10^{21}} (V1)$$
$$decay = 2.99 \times 10^{21} \times e^{-.693 \times 8.0/12.3} = 1.91 \times 10^{21} (V2)$$

c) For this you need to find the kinetic energy released by one decay and multiply by the number of decays in the first minute. If you count the electrons, you will see that the decay can be written as a tritium atom decays into a ³He atom plus a neutrino. Therefore, it is easiest to just subtract the atomic masses: $\Delta m = 3.016049 - 3.016029$ u gives 2×10^{-5} u. Converting this to energy gives 0.019 MeV per decay or 3.0×10^{-15} J.

$$energy = \frac{7.7 \times 10^6 J}{9.0 \times 10^6 J} (V1)$$
$$energy = \frac{9.0 \times 10^6 J}{10^6 J} (V2)$$

$$g = 9.80 \frac{m}{s^2} \qquad h = 6.63 \times 10^{-34} \ J \ s = 4.14 \times 10^{-15} \ eV \ s \qquad \hbar = \frac{h}{2\pi} \qquad c = 3.00 \times 10^8 \ \frac{m}{s}$$
$$M_{elec} = 9.11 \times 10^{-31} \ kg \qquad M_{prot} = 1.67 \times 10^{-27} \ kg \qquad M_{muon} = 1.88 \times 10^{-28} \ kg$$
$$1.60 \times 10^{-19} \ J = 1 \ eV \qquad e = 1.60 \times 10^{-19} \ C \qquad 1/(4\pi\varepsilon_0) = 8.99 \times 10^9 \ N \ m^2/C^2$$

Galilean relativity	$x' = x - ut, v'_x = v_x - u$	2.1	Lorentz velocity	$v_x' = \frac{v_x - u}{1 - v_x + u^2},$	2.5
Einstein's postulates	(1) The laws of physics are the same in all inertial frames. (2) The speed of light has the same value c in all inertial frames.	2.3	transformation	$v'_{y} = \frac{v_{y}\sqrt{1 - u^{2}/c^{2}}}{1 - v_{x}u/c^{2}},$ $v'_{z} = \frac{v_{z}\sqrt{1 - u^{2}/c^{2}}}{1 - u^{2}/c^{2}},$	
Time dilation	$\Delta t = \frac{\Delta t_0}{\sqrt{1 - u^2/c^2}}$ (Δt_0 = proper time)	2.4	Clock synchronization	$v_z = \frac{1 - v_x u/c^2}{1 - v_x u/c^2}$ $\Delta t' = \frac{uL/c^2}{\sqrt{1 - u^2/c^2}}$	2.5
Length contraction	$L = L_0 \sqrt{1 - u^2/c^2}$ (L_0 = proper length)	2.4	Relativistic momentum	$\vec{\mathbf{p}} = \frac{m\mathbf{v}}{\sqrt{1 - v^2/c^2}}$	2.7
Velocity addition	$v = \frac{v' + u}{1 + v'u/c^2}$	2.4	Relativistic kinetic energy Rest energy	$K = \frac{mc^2}{\sqrt{1 - v^2/c^2}} - mc^2$ $E_0 = mc^2$	2.7 2.7
Doppler effect (source and	$f' = f_{\star} \sqrt{\frac{1 - u/c}{1 - u/c}}$	2.4	Relativistic total energy	$E = K + E_0 = \frac{mc^2}{\sqrt{1 - v^2/c^2}}$	2.7
observer separating)	$\sqrt{1+u/c}$		Momentum-energy relationship	$E = \sqrt{(pc)^2 + (mc^2)^2}$	2.7
Lorentz transformation	$x'=\frac{x-ut}{\sqrt{1-u^2/c^2}},$	2.5	Extreme relativistic approximation	$E \cong pc$	2.7
	y' = y, z' = z, $t' = \frac{t - (u/c^2)x}{\sqrt{1 - u^2/c^2}}$		Conservation laws	In an isolated system of particles, the total momentum and the relativistic total energy remain constant.	2.8
Hubble's law v	$=H_0d$	15.1	Age of matter-		
March 1 and 1 and 1		15.0	dominated	$t = 1/\sqrt{6\pi G \rho_{\rm m}}$	15.7

dominated universe

Temperature of universe at

Fraction of photons above

age t

 E_0

Number density of photons	$N/V = (2.03 \times 10^7 \text{photons/m}^3 \cdot \text{K}^3)T^3$	15.2
Energy density of photons	$U = (4.72 \times 10^3 \mathrm{eV/m^3 \cdot K^4})T^4$	15.2
Gravitational frequency change	$\Delta f/f = gH/c^2$	15.4
Deflection of starlight	$\theta = 2GM/Rc^2$	15.5
Perihelion precession	$\Delta\phi = \frac{6\pi GM}{c^2 r_{\min}(1+e)}$	15.5
Schwarzschild radius	$r_{\rm S} = 2GM/c^2$	15.6

dominated universe	$t = 1/\sqrt{6\pi G \rho_{\rm m}}$	15.7
Age of radiation-		

$$t = \sqrt{3/32\pi G\rho_{\rm r}}$$
 15.7

$$T = \frac{1.5 \times 10^{10} \,\mathrm{s}^{1/2} \cdot \mathrm{K}}{t^{1/2}}$$
 15.8

$$f = 0.42e^{-E_0/kT} \times \left[\left(\frac{E_0}{kT}\right)^2 + 2\left(\frac{E_0}{kT}\right) + 2 \right]$$

$$3H^2$$
15.9

Critical density
$$\rho_{cr} = \frac{5H}{8\pi G}$$

of universe $= 0.97 \times 10^{-26} \text{ kg/m}^3$ 15.10

Double-slit maxima	$y_n = n \frac{\lambda D}{d} n = 0, 1, 2, 3, \dots$	3.1	Rayleigh-Jeans formula	$I(\lambda) = \frac{2\pi c}{\lambda^4} kT$	3.3
Bragg's law for X-ray diffraction	$2d\sin\theta = n\lambda$ $n = 1, 2, 3, \cdots$	3.1	Planck's blackbody distribution	$I(\lambda) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$	3.3
Energy of photon	$E = hf = hc/\lambda$	3.2	Compton	$1 - 1 - 1$ (1 - 200 θ)	2.4
Maximum kinetic energy of photoelectrons	$K_{\max} = eV_{\rm s} = hf - \phi$	3.2	scattering	$\frac{\overline{E'}}{E'} - \frac{\overline{E}}{E} = \frac{1}{m_e c^2} (1 - \cos\theta),$ $\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos\theta)$	5.4
Cutoff	$\lambda_{ m c}=hc/\phi$	3.2	Bremsstrahlung	$\lambda_{\min} = hc/K = hc/e\Delta V$	3.5
wavelength			Pair production	$hf = E_+ + E =$	3.5
Stefan's law	$I = \sigma T^4$	3.3		$(m_{\rm e}c^2 + K_{+}) + (m_{\rm e}c^2 + K_{-})$	
Wien's displacement law	$\lambda_{\rm max}T = 2.8978 \times 10^{-3} \mathrm{m}\cdot\mathrm{K}$	3.3	Electron-positron annihilation	$(m_{\rm e}c^2 + K_+) + (m_{\rm e}c^2 + K)$ = $E_1 + E_2$	3.5

De Broglie wavelength Single slit diffraction	$\lambda = h/p$ $a\sin\theta = n\lambda \ n = 1, 2, 3, \dots$	4.1 4.2	Statistical momentum uncertainty	$\Delta p_x = \sqrt{(p_x^2)_{\rm av} - (p_{x,\rm av})^2}$	4.4
Classical position-wavelength	$\Delta x \Delta \lambda \sim \varepsilon \lambda^2$	4.3	Wave packet (discrete k)	$y(x) = \sum A_t \cos k_t x$	4.5
uncertainty			Wave packet	$y(x) = \int A(k) \cos kx dk$	4.5
Classical frequency-	$\Delta f \Delta t \sim \varepsilon$	4.3	(continuous k)		
time uncertainty			Group speed of wave	$d\omega$	16
Heisenberg position-	$\Delta x \Delta p_{\pi} \sim \hbar$	4.4	nacket	$v_{\text{group}} = \frac{1}{dk}$	4.0
momentum uncertainty			pucket		
Heisenberg	$\Delta E \Delta t \sim \hbar$	4.4			
energy-time uncertainty					

Time-independent Schrödinger equation	$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + U(x)\psi(x) = E\psi(x)$	5.3	Infinite potential energy well	$\psi_n(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L},$ $F_n = \frac{h^2 n^2}{L} (n = 1, 2, 3, \dots)$	5.4
Time-dependent Schrödinger equation	$\Psi(x,t)=\psi(x)e^{-t\omega t}$	5.3	Two-dimensional	$\mathcal{L}_n = \frac{1}{8mL^2} (n = 1, 2, 3, \ldots)$ $\psi(x, y) = \frac{2}{L} \sin \frac{n_x \pi x}{L} \sin \frac{n_y \pi y}{L}$	5.4
Probability density	$P(x) = \psi(x) ^2$	5.3	infinite well	$E = \frac{h^2}{m^2} (n_r^2 + n_r^2)$	
Normalization condition	$\int_{-\infty}^{+\infty} \psi(x) ^2 dx = 1$	5.3	Simple hormonia	$8mL^2 < x^{-1/2}$	5 5
Probability in interval x_1 to x_2	$P(x_1:x_2) = \int_{x_1}^{x_2} \psi(x) ^2 dx$	5.3	oscillator ground state	$\psi(x) = (m\omega_0/nx)^{-1} e^{-(x-1)/2}$	5.5
Average or expectation value of $f(x)$	$[f(x)]_{\mathrm{av}} = \int_{-\infty}^{+\infty} \psi(x) ^2 f(x) dx$	5.3	Simple harmonic oscillator energies	$E_n = (n + \frac{1}{2})\hbar\omega_0 \ (n = 0, 1, 2, \ldots)$	5.5
Constant potential energy, $E > U_0$	$\psi(x) = A \sin kx + B \cos kx,$ $k = \sqrt{2m(E - U_0)/\hbar^2}$	5.4	Potential energy step, $E > U_0$	$\psi_0(x < 0) = A \sin k_0 x + B \cos k_0 x$ $\psi_1(x > 0) = C \sin k_1 x + D \cos k_1 x$	5.6
Constant potential energy, $E < U_0$	$\psi(x) = Ae^{k'x} + Be^{-k'x},$ $k' = \sqrt{2m(U_0 - E)/\hbar^2}$	5.4	Potential energy step, $E < U_0$	$\psi_0(x < 0) = A \sin k_0 x + B \cos k_0 x$ $\psi_1(x > 0) = Ce^{k_1 x} + De^{-k_1 x}$	5.6

Scattering impact
$$b = \frac{zZ}{2K} \frac{e^2}{4\pi\varepsilon_0} \cot \frac{1}{2}\theta$$
 6.3
parameter

Fraction scattered $f_{>\theta} = nt\pi b^2$ at angles $> \theta$

 $N(\theta) =$

 $d = \frac{1}{4\pi\varepsilon_0} \frac{zZe^2}{K}$

Rutherford scattering formula

Distance of closest approach

Balmer formula

 $\lambda = (364.5\,\mathrm{nm})\frac{n^2}{n^2 - 4}$ $(n = 3, 4, 5, \ldots)$ $r_n = \frac{4\pi\varepsilon_0\hbar^2}{2}n^2 = a_0n^2$

 $\frac{nt}{4r^2} \left(\frac{zZ}{2K}\right)^2 \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \frac{1}{\sin^4 \frac{1}{2}\theta}$

Radii of Bohr orbits

Ener

orbits in hydrogen
$$(n = 1, 2, 3, ...)$$

Energies of Bohr
orbits in hydrogen $E_n = -\frac{me^4}{32\pi^2\varepsilon_0^2\hbar^2}\frac{1}{n^2}$ 6.5
 $= \frac{-13.60 \text{ eV}}{n^2}$ $(n = 1, 2, 3, ...)$

 $|\vec{\mathbf{L}}| = \sqrt{l(l+1)}\hbar$ Orbital angular 7.2 $(l = 0, 1, 2, \ldots)$ momentum

Orbital magnetic $L_z = m_l \hbar$ $(m_l = 0, \pm 1, \pm 2, \dots, \pm l)$ quantum number

 $\cos\theta = \frac{L_z}{|\mathbf{L}|} = \frac{m_l}{\sqrt{l(l+1)}}$

Spatial quantization

density

Angular momentum uncertainty relationship

Hydrogen $n = 1, 2, 3, \ldots$ $l = 0, 1, 2, \ldots, n - 1$ quantum numbers $m_l = 0, \pm 1, \pm 2, \ldots, \pm l$

 $\Delta L_{\tau} \Delta \phi \ge \hbar$

Hydrogen energy
$$E_n = -\frac{me^4}{32\pi^2 \varepsilon_0^2 \hbar^2} \frac{1}{n^2}$$

levels

Hydrogen wave
$$\begin{split} \psi_{n,l,m_l}(r,\theta,\phi) &= \\ R_{n,l}(r) \Theta_{l,m_l}(\theta) \Phi_{m_l}(\phi) \end{split}$$
functions Radial probability $P(r) = r^2 |R_{n,l}(r)|^2$

Pauli exclusion
principleNo two electrons in a single
atom can have the same
set of quantum numbers
$$(n, l, m_l, m_s)$$
.8.1Filling order of
atomic subshells $1s, 2s, 2p, 3s, 3d, 4s, 3d,$
 $4p, 5s, 4d, 5p, 6s, 4f, 5d,$
 $6p, 7s, 5f, 6d$ 8.2 Capacity of
subshell nl $2(2l + 1)$ 8.2

Excitation energy $E_n - E_1$ of level n

 $|E_n|$

Binding (or ionization) energy of level n

6.3

6.3

6.3

6.4

6.5

7.2

7.2

7.2

7.3

7.3

7.3

7.4

Hydrogen wavelengths in Bohr model

Single-electron atoms with Z > 1Reduced mass of proton-electron system

Angular probabi-

Orbital magnetic

dipole moment

Spin magnetic

dipole moment

Spin angular

Spin magnetic quantum number

Spectroscopic

Selection rules for

photon emission

Normal Zeeman

Fine-structure

notation

effect

estimate

momentum

lity density

$$\lambda = \frac{64\pi^3 \varepsilon_0^2 \hbar^3 c}{m e^4} \left(\frac{n_1^2 n_2^2}{n_1^2 - n_2^2} \right)$$

$$= \frac{1}{R_{\infty}} \left(\frac{n_1^2 n_2^2}{n_1^2 - n_2^2} \right)$$

$$r_n = \frac{a_0 n^2}{Z}, E_n = -(13.60 \text{ eV}) \frac{Z^2}{n^2}$$

$$6.5$$

$$m = \frac{m_e m_p}{m_e + m_p}$$

$$6.8$$

 $P(\theta,\phi) = |\Theta_{lm_l}(\theta)\Phi_{m_l}(\phi)|^2$ 7.5

$$\vec{\mu}_{\rm L} = -(e/2m)\vec{\rm L}$$
 7.6

$$\vec{\mu}_{\rm S} = -(e/m)\vec{\rm S} \qquad 7.6$$

$$|\vec{\mathbf{S}}| = \sqrt{s(s+1)}\hbar = \sqrt{3/4}\hbar$$
 7.6
(for $s = 1/2$)

$$S_z = m_s \hbar (m_s = \pm 1/2)$$
 7.6

$$s (l = 0), p(l = 1), d(l = 2),$$
 7.7
 $f(l = 3), ...$

$$\Delta l = \pm 1$$
 $\Delta m_l = 0, \pm 1$ 7.7, 7.8

$$\Delta \lambda = \frac{\lambda^2}{hc} \Delta E = \frac{\lambda^2}{hc} \mu_{\rm B} B$$
 7.8

$$\Delta E = mc^2 \alpha^4 / n^5 \quad (\alpha \approx 1/137) \qquad 7.9$$

Energy of
$$E_n = (-13.6 \text{ eV}) \frac{Z_{\text{eff}}^2}{n^2}$$
 8.3
Moseley's law $\Delta E = (10.2 \text{ eV})(Z-1)^2$ 8.5
for K_{α} X rays
Adding angular $L_{\text{max}} = l_1 + l_2$, 8.6
momenta l_1, m_{l1} $L_{\text{min}} = |l_1 - l_2|$, 8.6
momenta l_2, m_{l2} $M_L = m_{l1} + m_{l2}$
Hund's rules for First $S = M_{S,\text{max}}$, then 8.6
ground state $L = M_{L,\text{max}}$

6.5

6.5

Nuclear radius	$R = R_0 A^{1/3}, R_0 = 1.2$ fm	12.2	Q value of	$Q = [m_{\rm X} - (m_{\rm X'} + m_{\rm X})]c^2$	12.6
Nuclear binding energy	$B = [Nm_{\mathrm{n}} + Zm(^{1}_{1}\mathrm{H}_{0}) - m(^{A}_{Z}\mathrm{X}_{N})]c^{2}$	12.3	decay $X \rightarrow X' + x$		
Proton separation	$S_{\rm p} = [m(^{A-1}_{Z-1}{\rm X}'_N) + m(^{1}{\rm H}) - m(^{A}_{Z}{\rm X}_N)]c^2$	12.3	Q value of alpha decay	$Q = [m(X) - m(X') - m(^{4}He)]c^{2}$	12.7
energy			Kinetic energy	$K_{\alpha} \cong Q(A-4)/A$	12.7
Neutron separation	$S_{n} = [m({}^{A-1}_{Z}X_{N-1}) + m_{n} - m({}^{A}_{Z}X_{N})]c^{2}$	12.3	of alpha particle		
energy			Q values of	$Q_{\beta^-} = [m(^A \mathbf{X}) - m(^A \mathbf{X}')]c^2,$	12.8
Range of	$mc^2 = \hbar c/x$	12.4	beta decay	$Q_{\beta^+} = [m(^{A}X) - m(^{A}X') - 2m_{\rm e}]c^2$	
exchanged particle			Recoil in gamma decay	$K_{\rm R} = E_{\gamma}^2 / 2Mc^2$	12.9
Activity	$a = \lambda N, \lambda = \ln 2/t_{1/2} = 0.693/t_{1/2}$	12.5			
Radioactive decay law	$N = N_0 e^{-\lambda t}, a = a_0 e^{-\lambda t}$	12.5			

Forces	Strong, electromagnetic, weak, gravitational	14.1	Conservation of baryon number <i>B</i>	In any process, B remains constant.	14.3
Field particles	Gluon (g), photon (γ), weak boson (W [±] , Z ⁰), graviton	14.1	Conservation of strangeness S	In strong and electromagnetic processes, S remains constant; in	14.3
Leptons	$e^{-}, \nu_{e}, \mu^{-}, \nu_{\mu}, \tau^{-}, \nu_{\tau}$	14.2		weak processes, $\Delta S = 0$ or ± 1 .	
Mesons	$\pi^{\pm}, \pi^{0}, \mathrm{K}^{\pm}, \mathrm{K}^{0}, \overline{\mathrm{K}}^{0}, \eta, \rho^{\pm}, \eta',$ $\mathrm{D}^{\pm}, \psi, \mathrm{B}^{\pm}, \Upsilon, \dots$	14.2	<i>Q</i> value in decays or reactions	$Q = (m_{\rm i} - m_{\rm f})c^2$	14.5, 14.6
Baryons	p, n, Λ^0 , $\Sigma^{\pm,0}$, $\Xi^{-,0}$, Ω^- ,	14.2	Threshold energy	$K_{\rm th} = -Q(m_1 + m_2 + m_3 + m_3 + m_2 + m_3 + m_3 + m_2 + \dots)/2m_3$	14.6
Conservation of lepton number L	In any process, L_e , L_μ , and L_τ remain constant.	14.3	Quarks	u, d, c, s, t, b	14.7

SOME PARTICLE MASSES

	kg	u	MeV/c ²		Ζ	A	Atomic mass (u)	Abundance or Half-life
Electron	$9.1093829 \times 10^{-31}$	$5.485799095 imes 10^{-4}$	0.51099893	Н	1	1	1.0078250	99.985%
Proton	$1.67262178 \times 10^{-27}$	1.0072764668	938,27205			2	2.014102	0.015%
Neutron	$1.67492735 \times 10^{-27}$	1.0086649160	939,56538			3	3.016049	12.3 y
Deuteron	$3.3435835 \times 10^{-27}$	2 0135532127	1875 61286	He	2	3	3.016029	0.000137%
Deuteron	5.5455655 × 10	2.0133332127	1075.01200			4	4.002005	99.9999005%
Alpha	$6.6446568 \times 10^{-27}$	4.001506179	3727.3792	Li	3	6	6.015123	7.59%
						7	7.016005	92.41%
						8	8.022487	0.84 s
				Be	4	7	7.016930	53.2 d
						8	8.005305	0.07 fs
CONVER	CION EACTORS					9	9.012182	100%
GUINVER	SIUM FACIUND					10	10.013534	1.5 My
1 1/ 1 / 0/	10-10 1	11 (1) 10-28 2				11	11.021658	13.8 s
$1 \mathrm{eV} = 1.602$	$217657 \times 10^{-15} \text{ J}$	1 barn (b) = 10^{-20} m^2		B	5	8	8.024607	0.77 s
1 u = 931.4	19406 MeV/c ²	$1 \text{ curie (Ci)} = 3.7 \times 10^{10}$	⁾ decays/s			9	9.013329	0.85 as
- 1.66	$053802 \times 10^{-27} \mathrm{kg}$	1 light year -0.46×10^{10}	5 m			10	10.012937	19.8%
= 1.00	00000000000000000000000000000000000000	$1 \text{ light-year} = 9.40 \times 10$				11	11.009305	80.2%
1 y = 3.156	$5 \times 10^7 \mathrm{s} \cong \pi \times 10^7 \mathrm{s}$	1 parsec = 3.26 light-	year			12	12.014352	20.2 ms