Multiple choice (5 pts each) – circle the correct answers.

- 1. Alice travels past you at 0.866 c. You measure that it takes 2 seconds as measured by your clock for her clock to advance by 1 second. Alice measures that it takes
 - (a) 1 second by her clock for your clock to advance by 2 seconds.
 - (b) 4 seconds by her clock for your clock to advance by 2 second.
 - (c) 2 seconds by her clock for your clock to advance by 2 second.
 - (d) none of the above.
- 2. A perfectly black sphere of radius 1 m emits 1 W of light when it is at a temperature of 34.4 K. What happens when the temperature is raised?
 - (a) it emits more than 1 W of light.
 - (b) it emits less than 1 W of light.
 - (c) it emits 1 W of light.
- 3. When C_{60} molecules go through a pair of holes at a speed of 220 m/s, they make an interference pattern on a screen with peaks separated by 24 μ m. If the only thing that changes is the speed of the molecules to 110 m/s, the peaks will be separated by
 - (a) 12 μ m.
 - (b) 24 μm.
 - (c) 48 μm.
- 4. The diameter of a nucleus is 10×10^{-15} m. Suppose you want to study the diffraction of photons by nuclei. What energy of photons would you choose?

(a) 4×10^{-11} J (b) 4×10^{-14} J (c) 4×10^{-17} J (d) 4×10^{-20} J (e) 4×10^{-23} J (f) 4×10^{-26} J

- 5. For an object of mass M and charge q that can only move in one dimension, what are the units of Ψ ?
 - (a) meter
 - (b) 1/kilogram
 - (c) Coulomb
 - (d) $1/\sqrt{\text{meter}}$
 - (e) none of the above
- 6. One of the pieces of evidence for the existence of dark matter is
 - (a) galaxies rotate faster than expected based on the amount of visible matter.
 - (b) galaxies rotate more slowly than expected based on the amount of visible matter.
 - (c) neither. The rotation of galaxies is *not* relevant.

Problems: Show all work to receive full credit. Fundamental constants (e, h, masses, etc) are top of the equation page.

10 pts 1. For an electron, $\Psi(x, 0) = iAx(L - x)$ for 0 < x < L and is otherwise equal to 0. a) Determine A. (If there are math steps you can't do, just define it to be some parameter and move on. Most of the credit will be for correct concepts.) b) Roughly, what is the uncertainty in the momentum?

10 pts 2. A photon with a wavelength of 2.10×10^{-14} m is traveling in the +x-direction. It hits an initially stationary muon and the photon goes in the +y-direction. a) What is the final wavelength of the photon? b) What is the momentum vector of the muon? 10 pts 3. Astronauts journey to a star that is 10.0 light-years from earth. (A light-year is the distance light travels in 1 year.) They travel there and back at a speed of 0.80 c. a) How long does the trip take as measured by someone who stayed on earth? b) How much do the astronauts age over the trip?

10 pts 4. In 1960, Pound and Rebka sent $\lambda = 8.63 \times 10^{-11}$ m photons vertically upward 22.5 m in a lab at Harvard. What was the change in frequency of these photons? Make sure to be clear whether the frequency increased, decreased, or remained the same.

15 pts 5. Light with an intensity of 1.30 W/m² and wavelength 450 nm is incident normal on solid Na. Electrons are ejected from the Na. a) What is the minimum wavelength of the electrons ejected? b) If the Na surface is a square with edge length 1.90 cm and all of the incident light is absorbed, what is the maximum rate that the electrons are ejected? For the last question, the answer should be a number per second.

15 pts 6. A wejy is a fundamental particle with mass 2.34 kg. In your lab, you measure a wejy traveling at a speed of 0.888 c. It hits a stationary wejy and converts to a nugy. The nugy is moving at a speed v_n . a) What is the mass of the nugy? b) What is the speed of the nugy?

$$g = 9.80 \frac{m}{s^2} \qquad h = 6.63 \times 10^{-34} \ J \ s = 4.14 \times 10^{-15} \ eV \ s \qquad \hbar = \frac{h}{2\pi} \qquad c = 3.00 \times 10^8 \ \frac{m}{s}$$
$$M_{elec} = 9.11 \times 10^{-31} \ kg \qquad M_{prot} = 1.67 \times 10^{-27} \ kg \qquad M_{muon} = 1.88 \times 10^{-28} \ kg$$
$$1.60 \times 10^{-19} \ J = 1 \ eV \qquad \text{Work functions: Na 2.28 eV, Al 4.08 eV, Cu 4.70 eV}$$

Galilean relativity	$x' = x - ut, v'_x = v_x - u$	2.1	Lorentz velocity	$v_x' = \frac{v_x - u}{1 + \frac{u_x}{1 $	2.5
Einstein's postulates	(1) The laws of physics are the same in all inertial frames. (2) The speed of light has the same value c in all inertial frames.	2.3	transformation	$v'_{y} = \frac{v_{y}\sqrt{1 - u^{2}/c^{2}}}{1 - v_{x}u/c^{2}},$ $v'_{z} = \frac{v_{z}\sqrt{1 - u^{2}/c^{2}}}{1 - v_{z}u/c^{2}}$	
Time dilation	$\Delta t = \frac{\Delta t_0}{\sqrt{1 - u^2/c^2}}$ (Δt_0 = proper time)	2.4	Clock synchronization	$\Delta t' = \frac{uL/c^2}{\sqrt{1 - u^2/c^2}}$	2.5
Length contraction	$L = L_0 \sqrt{1 - u^2/c^2}$ (L_0 = proper length)	2.4	Relativistic momentum	$\vec{\mathbf{p}} = \frac{m\mathbf{v}}{\sqrt{1 - v^2/c^2}}$	2.7
Velocity addition	$v = \frac{v' + u}{v' + u}$	2.4	Relativistic kinetic energy	$K = \frac{mc^2}{\sqrt{1 - v^2/c^2}} - mc^2$	2.7
	$1 + v' u/c^2$		Rest energy	$E_0 = mc^2$	2.7
Doppler effect (source and	$f' = f_1 \sqrt{\frac{1 - u/c}{1 - u/c}}$	2.4	Relativistic total energy	$E = K + E_0 = \frac{mc^2}{\sqrt{1 - v^2/c^2}}$	2.7
observer separating)	(1+u/c)		Momentum-energy relationship	$E = \sqrt{(pc)^2 + (mc^2)^2}$	2.7
Lorentz transformation	$x'=\frac{x-ut}{\sqrt{1-u^2/c^2}},$	2.5	Extreme relativistic approximation	$E \cong pc$	2.7
	y' = y, z' = z, $t' = \frac{t - (u/c^2)x}{\sqrt{1 - u^2/c^2}}$		Conservation laws	In an isolated system of particles, the total momentum and the relativistic total energy remain constant.	2.8
Unikila'a law		15.1	A con of motton		
Number density	$v = n_0 a$ $N/V =$	15.2	dominated universe	$t = 1/\sqrt{6\pi G \rho_{\rm m}}$	15.7
of photons Energy density	$(2.03 \times 10^{\circ} \text{ photons/m}^3 \cdot \text{K}^3)T^3$ $U = (4.72 \times 10^3 \text{ eV/m}^3 \cdot \text{K}^4)T^4$	15.2	Age of radiation-	$t = \sqrt{3/32\pi G_0}$	157
0.1.			dommated	$r = \sqrt{3/32\pi O \rho_r}$	1.0.1

universe

age t

 E_0

Temperature

of universe at

Fraction of

photons above

15.4

15.5

15.5

15.6

of photons

Gravitational

Deflection of

starlight

Perihelion

precession

radius

Schwarzschild

frequency change

 $\Delta f/f = gH/c^2$

 $\theta = 2GM/Rc^2$

 $r_{\rm S} = 2GM/c^2$

 $\Delta \phi = \frac{6\pi GM}{c^2 r_{\min}(1+e)}$

$$t = \sqrt{3/32\pi G\rho_{\rm r}}$$
 15.7

$$T = \frac{1.5 \times 10^{10} \,\mathrm{s}^{1/2} \cdot \mathrm{K}}{t^{1/2}}$$
 15.8

$$f = 0.42e^{-E_0/kT} \times \left[\left(\frac{E_0}{kT}\right)^2 + 2\left(\frac{E_0}{kT}\right) + 2 \right]$$

$$3H^2$$
15.9

Critical density
$$\rho_{cr} = \frac{3\pi}{8\pi G}$$

of universe $= 0.97 \times 10^{-26} \text{ kg/m}^3$ 15.10

E. IkT

Double-slit maxima	$y_n = n \frac{\lambda D}{d} n = 0, 1, 2, 3, \dots$	3.1	Rayleigh-Jeans formula	$I(\lambda) = \frac{2\pi c}{\lambda^4} kT$	3.3
Bragg's law for X-ray diffraction	$2d\sin\theta = n\lambda$ $n = 1, 2, 3, \cdots$	3.1	Planck's blackbody distribution	$I(\lambda) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$	3.3
Energy of photon	$E = hf = hc/\lambda$	3.2	Compton	$1 - 1 - 1$ (1 - 200 θ)	2.4
Maximum kinetic energy of photoelectrons	$K_{\max} = eV_{\rm s} = hf - \phi$	3.2	scattering	$\frac{\overline{E'}}{E'} - \frac{\overline{E}}{E} = \frac{1}{m_e c^2} (1 - \cos\theta),$ $\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos\theta)$	5.4
Cutoff	$\lambda_{ m c}=hc/\phi$	3.2	Bremsstrahlung	$\lambda_{\min} = hc/K = hc/e\Delta V$	3.5
wavelength			Pair production	$hf = E_+ + E =$	3.5
Stefan's law	$I = \sigma T^4$	3.3		$(m_{\rm e}c^2 + K_{+}) + (m_{\rm e}c^2 + K_{-})$	
Wien's displacement law	$\lambda_{\rm max}T = 2.8978 \times 10^{-3} \mathrm{m}\cdot\mathrm{K}$	3.3	Electron-positron annihilation	$(m_{\rm e}c^2 + K_+) + (m_{\rm e}c^2 + K)$ = $E_1 + E_2$	3.5

De Broglie wavelength Single slit diffraction	$\lambda = h/p$ $a\sin\theta = n\lambda \ n = 1, 2, 3, \dots$	4.1 4.2	Statistical momentum uncertainty	$\Delta p_x = \sqrt{(p_x^2)_{\rm av} - (p_{x,\rm av})^2}$	4.4
Classical position-wavelength	$\Delta x \Delta \lambda \sim \varepsilon \lambda^2$	4.3	Wave packet (discrete k)	$y(x) = \sum A_t \cos k_t x$	4.5
uncertainty			Wave packet	$y(x) = \int A(k) \cos kx dk$	4.5
Classical frequency-	$\Delta f \Delta t \sim \varepsilon$	4.3	(continuous k)		
time uncertainty			Group speed of wave	$d\omega$	16
Heisenberg position-	$\Delta x \Delta p_{\pi} \sim \hbar$	4.4	nacket	$v_{\text{group}} = \frac{1}{dk}$	4.0
momentum uncertainty			pucket		
Heisenberg	$\Delta E \Delta t \sim \hbar$	4.4			
energy-time uncertainty					

Time-independent Schrödinger equation	$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + U(x)\psi(x) = E\psi(x)$	5.3	Infinite potential energy well	$\psi_n(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L},$ $F_n = \frac{h^2 n^2}{L} (n = 1, 2, 3, \dots)$	5.4
Time-dependent Schrödinger equation	$\Psi(x,t)=\psi(x)e^{-t\omega t}$	5.3	Two-dimensional	$\mathcal{L}_n = \frac{1}{8mL^2} (n = 1, 2, 3, \ldots)$ $\psi(x, y) = \frac{2}{L} \sin \frac{n_x \pi x}{L} \sin \frac{n_y \pi y}{L}$	5.4
Probability density	$P(x) = \psi(x) ^2$	5.3	infinite well	$E = \frac{h^2}{m^2} (n_r^2 + n_r^2)$	
Normalization condition	$\int_{-\infty}^{+\infty} \psi(x) ^2 dx = 1$	5.3	Simple hormonia	$8mL^2 < x^{-1/2}$	5 5
Probability in interval x_1 to x_2	$P(x_1:x_2) = \int_{x_1}^{x_2} \psi(x) ^2 dx$	5.3	oscillator ground state	$\psi(x) = (m\omega_0/nx)^{-1} e^{-(x-1)/2}$	5.5
Average or expectation value of $f(x)$	$[f(x)]_{av} = \int_{-\infty}^{+\infty} \psi(x) ^2 f(x) dx$	5.3	Simple harmonic oscillator energies	$E_n = (n + \frac{1}{2})\hbar\omega_0 \ (n = 0, 1, 2, \ldots)$	5.5
Constant potential energy, $E > U_0$	$\psi(x) = A \sin kx + B \cos kx,$ $k = \sqrt{2m(E - U_0)/\hbar^2}$	5.4	Potential energy step, $E > U_0$	$\psi_0(x < 0) = A \sin k_0 x + B \cos k_0 x$ $\psi_1(x > 0) = C \sin k_1 x + D \cos k_1 x$	5.6
Constant potential energy, $E < U_0$	$\psi(x) = Ae^{k'x} + Be^{-k'x},$ $k' = \sqrt{2m(U_0 - E)/\hbar^2}$	5.4	Potential energy step, $E < U_0$	$\psi_0(x < 0) = A \sin k_0 x + B \cos k_0 x$ $\psi_1(x > 0) = Ce^{k_1 x} + De^{-k_1 x}$	5.6