
Case 3: Quantum Waves (v<<c)
Use the relationships for de Broglie waves (l = h/p and 

f = E/h) to get connection between k & w.

What is relation between p and k?
k = 2 p / l = 2 p / (h/p) = 2 p p / h = p / h a p = h k

What is the relation between E & w?
w = 2 p f = 2 p E / h = E / h a E = h w

What is the relationship between k and w?

E = p2 /2M    a hw = (h k)2 / 2M    a w = h k2 / 2M

Determine the phase and group velocity.

vp = w/k = h k / 2M = p / 2 M

vg = dw/dk = h k / M = p / M 1



2



Question #1
For an object that can only move in 1-dimension, the units 

of the wave function, Y, is

(a) m.

(b) J.

(c) m-1/2.

(d)kg m/s.

(e) this is a trick question; Y is a complex function so it 

doesn’t have units.
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Question #2
You confine an electron to a box that extends from x = -L 

to x = L. The electron is in its lowest possible energy state. 

The probability for finding the electron in a small region 

Dx at the center of the box

(a) increases linearly with L.

(b) increases with L1/2.

(c) is inversely proportional to L.

(d) is inversely proportional to L1/2.

(e) does not depend on L.
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Problem 1

If exp[i (k x – w t)] is a solution of the matter wave equation, 

which of the 3 following are also solutions: exp[i (k x + w t)], 

exp[i (-k x – w t)], exp[i (-k x + w t)]? Can the original solution be 

written as

exp[i (p x – E t)/h]? Can the solution be written as cos or sin(k x –

w t)? Can the solution be written using cos or sin in the form 

cos(k x) exp(- i w t) or in the form

cos(k x) exp(i w t)? Which direction does the wave move for the 

solution exp[i (-k x – w t)]?

Substitute the form into the matter wave equation and check if 

solution.
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Electron hitting a wall (hrdwall.mpg)

The wave function at t = 0 has the form

Y(x,0) = A exp[-(x-100)2/102] exp[-i x]

There is an infinitely hard wall at x = 0.

Sketch |Y|2 at t = 0.

What will the wave function do?
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Electron hitting a wall (hrdwall.mpg)
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Electron hitting a wall (hrdwall.mpg)

Why does the packet get broader?

Why does the peak of the packet get smaller?

What is the fast oscillation at the wall?
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Schrodinger Equation w/ Forces

!!!!!!!MEMORIZE THIS EQUATION!!!!!!!

i ℏ
𝜕Ψ(x,t)

𝜕t
= −

ℏ2

2M

𝜕2Ψ(x,t)

𝜕x2
+ 𝑈(x,t)Ψ(x,t)

U(x,t) is the classical potential energy of the object at 

position x, time t. Equation is not relativistically correct: 

error is roughly (h k/M c)2.
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Schrodinger Equation w/ Forces

i ℏ
𝜕Ψ(x,t)

𝜕t
= −

ℏ2

2M

𝜕2Ψ x,t

𝜕x2
+ 𝑈(x,t)Ψ(x,t)

Does this equation have consistent units?

What do you do for the case of non-conservative forces?

If Y(x,t) is a solution, is 8 Y(x,t) a solution?

?????       E = KE + PE       ?????

What do you need to know at t=0 to get Y for all t?
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Normalization Condition

!!!!!!!MEMORIZE THIS EQUATION!!!!!!!




−

=Y 1 dx  )tx,(
2

Why must this condition hold?

Does this limit the range of x where the wave 

function is nonzero?

Can Y(x,0) be proportional to 1/(i + x k)?

|x|/(i + [k x]2)?       exp(i k x – x2/Dx2)?

x1/2/(1 + [k x]4)?          0?

If Y(x,0) is normalized, will it be normalized for all t?
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Electron in Constant F (linpot.mpg)

The wave function at t = 0 has the form

Y(x,0) = A exp[-(x-100)2/102] exp[-i x]

U(x) = –x/100  & starting v = -1

Which direction is the force?

What will the wave function do?

Estimate E.

Where would a classical electron turn around?
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Electron in Constant F (linpot.mpg)
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Electron in Constant F (linpot.mpg)

Why is there no interference structure where the packet 

turns around?
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Harmonic Oscillator (harmosc2.mpg)

The wave function at t = 0 has the form

Y(x,0) = A exp[-x2/102] exp[i x]

U(x) = ½ (x/50)2 & starting v = 1

Which direction is the force?

What will the wave function do?

Estimate E.

Where would a classical electron turn around?
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Harmonic Oscillator (harmosc2.mpg)
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Harmonic Oscillator (harmosc2.mpg)

Why no spreading?
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Down Sloping Potential (downstp.mpg)

The wave function at t = 0 has the form

Y(x,0) = A exp[-(x+50)2/102] exp[i x/2]

U(x) = 1/[1+exp(x3)] & starting v = 1/2

Which direction is the force?

Where is the force large?

What will the wave function do?
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Down Sloping Potential (downstp.mpg)
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Down Sloping Potential (downstp.mpg)

Why is there some reflection? (Reflection total as v g 0!)

Why is the packet broader x > 0?

Why is the interference only at x < 0?
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Finite Barrier (barrier1.mpg)

The wave function at t = 0 has the form

Y(x,0) = A exp[-(x+50)2/102] exp[i x]

U(x) = exp(-x4) & starting v = 1

Which direction is the force? Where is the force large?

Estimate E.

What will the wave function do?
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Finite Barrier (barrier1.mpg)
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Finite Barrier (barrier1.mpg)

Why is there some transmission? (Optics) (Amount of transmission 

e-S/h; S depends on E & U; h is Planck’s constant)

Why is the interference only at x < 0?
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Finite Barrier (barrier2.mpg)

The wave function at t = 0 has the form

Y(x,0) = A exp[-(x+50)2/102] exp[i 3 x/2]

U(x) = exp(-x4) & starting v = 3/2

Which direction is the force? Where is the force large?

Estimate E.

What will the wave function do?
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Finite Barrier (barrier2.mpg)
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Finite Barrier (barrier2.mpg)

Why is the interference only at x < 0?

Why is there some reflection?
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Small, oscillating U (bragg2.mpg)

The wave function at t = 0 has the form

Y(x,0) = A exp[-(x+50)2/202] exp[i 4 x/5]

U(x) = 0.04 sin(2 x) exp(-x2/102) & starting v = 1

Rough description of the force and potential energy.

Estimate E.

What will the wave function do?
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Small, oscillating U (bragg2.mpg)
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Small, oscillating U (bragg2.mpg)

Why is there interference over almost whole region of U?
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Small, oscillating U (bragg1.mpg)

The wave function at t = 0 has the form

Y(x,0) = A exp[-(x+50)2/202] exp[i x]

U(x) = 0.04 sin(2 x) exp(-x2/102) & starting v = 1

Rough description of the force and potential energy.

Estimate E. (Higher than previous)

What will the wave function do?
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Small, oscillating U (bragg1.mpg)
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Small, oscillating U (bragg1.mpg)

Why is the interference only at x < 0?

Why is there substantial reflection for v~1?
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Problem  
A particle of mass M moves in a 1-dimensional box of length L. 

The particle’s wave must go to zero at x = 0 and x = L. (a) Show 

that l can only take specific values. (b) What are the allowed p? 

(c) What are the allowed energies? (d) What is the frequency of 

light if the particle makes a transition from n to n-1? (e) How 

close is this to the classical frequency of the motion?
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Question #3
For a potential energy ½ M w2 x2 , the number of physical 

solutions of the time independent Schrodinger equation (for 

random E), E y(x) = -(h2/2M)d2y/dx2 + U(x) y(x), is 

(a) 0

(b)1

(c) 2

(d)3

(e) depends on V in a complicated way.



Eigenstates & Eigenvalues of S.E.

The time independent Schrodinger equation is

Hop yn(x) = En yn(x)

What is the eigenvalue? eigenstate?

E can not take every possible value if classical motion 

restricted to finite range.

E

U(x)



Question #2
In the classically forbidden region (x where E – U(x) < 0) 

the solution of E y(x) = -(h2/2M)d2y/dx2 + U(x) y(x)

(a) oscillates with x.

(b) is 0

(c) must be imaginary.

(d)exponentially diverges or converges with x

(e) linearly increases with x



Properties of Eigenstates of S.E.

(1) En are all real and increase with n.

(2) The yn(x) are ortho-normal (orthogonal & 

normalized).

(3) The eigenstates can be chosen to be real at every x.

(4) Eigenstates are continuous.

(5) Derivative of eigenstate is continuous if U(x) is finite.

(6) <Hop> does not depend on t.

(7) yn(x) = yn(-x)   or   -yn(-x)   if U(x) = U(-x)



General Behavior

d2y/dx2 = -2 M [E – U(x)] y/h2

What sort of behavior when at positions where E > U(x)?

What sort of behavior when at positions where E < U(x)?

For a given potential where does y oscillate fastest w/ x?

Where are the positions where curvature of y is 0?

Correspondence principle: period = h/(En+1 – En) should 

be approximately the classical period. If we plot E vs n, 

how should the curve look if classical period increases 

with E? decreases with E? is independent of E?



Infinite Square Well



Harmonic Oscillator



Linear Potential, Wall x=0



“Molecule” Vibration



Coulomb Potential (-1/r)



Infinite Square Well



Harmonic Oscillator



Linear Potential, Wall x=0



“Molecule” Vibration



Coulomb Potential (-1/r)



Quantum Dots

Can make small structures that look like tiny parts of a crystal

Leads to quantized energy levels for free electrons inside
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https://www.avsforum.com/threads/electroluminescent-quantum-dots-are-coming-

sooner-than-you-think.3164041/

https://www.slideshare.net/hoangtienbk/quantum-dots-15108239

https://www.avsforum.com/threads/electroluminescent-quantum-dots-are-coming-sooner-than-you-think.3164041/
https://www.avsforum.com/threads/electroluminescent-quantum-dots-are-coming-sooner-than-you-think.3164041/
https://www.slideshare.net/hoangtienbk/quantum-dots-15108239


Semiconductor Quantum Wells

Layer the materials in a semiconductor to get 

quantum wells

Manipulate the properties
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https://www.researchgate.net/publication/314772334_The_theoretical_explanation_of_G

aN-based_laser_anomalous_electrical_properties

https://english.cas.cn/newsroom/archive/research_archive/rp2018/201803/t20180329_19

1167.shtml

https://www.researchgate.net/publication/224830788_Characterization_Parameters_of_I

nGaNInGaN_and_InGaNGaN_Quantum_Well_Laser_Diode

https://www.researchgate.net/publication/314772334_The_theoretical_explanation_of_GaN-based_laser_anomalous_electrical_properties
https://www.researchgate.net/publication/314772334_The_theoretical_explanation_of_GaN-based_laser_anomalous_electrical_properties
https://english.cas.cn/newsroom/archive/research_archive/rp2018/201803/t20180329_191167.shtml
https://english.cas.cn/newsroom/archive/research_archive/rp2018/201803/t20180329_191167.shtml
https://www.researchgate.net/publication/224830788_Characterization_Parameters_of_InGaNInGaN_and_InGaNGaN_Quantum_Well_Laser_Diode
https://www.researchgate.net/publication/224830788_Characterization_Parameters_of_InGaNInGaN_and_InGaNGaN_Quantum_Well_Laser_Diode


Question #1
A gwoster travels to the left with an energy, E. It is in a 

potential that is 0 for x>0 and V0 > E for x<0. The 

probability it will be reflected and travel to the right is

(a) 0%

(b)between 0% and 100%

(c) 100%



Question #2
A gwoster travels to the left with an energy, E. It is in a 

potential that is 0 for |x|>L and V0 > E for |x|<L. The 

probability it will be reflected and travel to the right is

(a) 0%

(b)between 0% and 100%

(c) 100%



Scanning Tunneling Microscope

Electrons can tunnel from the sharp 

metal tip into the sample

Exponential sensitivity

1 atom thick silver 

islands on 

palladium

Atoms on the 

surface of silicon 

carbide (0.3 nm 

separation)
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https://en.wikipedia.org/wiki/Scanning_tunneling_

microscope

https://www.nist.gov/pml/scanning-tunneling-

microscope/scanning-tunneling-microscope-

introduction

https://en.wikipedia.org/wiki/Scanning_tunneling_microscope
https://en.wikipedia.org/wiki/Scanning_tunneling_microscope
https://www.nist.gov/pml/scanning-tunneling-microscope/scanning-tunneling-microscope-introduction
https://www.nist.gov/pml/scanning-tunneling-microscope/scanning-tunneling-microscope-introduction
https://www.nist.gov/pml/scanning-tunneling-microscope/scanning-tunneling-microscope-introduction


Quantum Corrals & Scars

Nonlinear 2D (or higher) potentials 

can lead to classical chaos

Unstable periodic classical orbits can 

lead to “scars” on the resulting 

energy eigenstates
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https://journals.aps.org/rmp/abstract/10.

1103/RevModPhys.75.933

https://en.wikipedia.org/wiki/Quantum_

mirage

https://en.wikipedia.org/wiki/Quantum_

scar

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.75.933
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.75.933
https://en.wikipedia.org/wiki/Quantum_mirage
https://en.wikipedia.org/wiki/Quantum_mirage
https://en.wikipedia.org/wiki/Quantum_scar
https://en.wikipedia.org/wiki/Quantum_scar


Casimir effect (vacuum force)

Two uncharged metal plates in the vacuum 

feel a force at small separations

There is an energy associated with 0 photons

The metal plates don’t allow all possible 0 

photon states
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https://en.wikipedia.org/wiki/Casimir_e

ffect

https://byjus.com/physics/casimir-

effect/

https://www.nature.com/articles/s41565

-021-01026-8

https://en.wikipedia.org/wiki/Casimir_effect
https://en.wikipedia.org/wiki/Casimir_effect
https://byjus.com/physics/casimir-effect/
https://byjus.com/physics/casimir-effect/
https://www.nature.com/articles/s41565-021-01026-8
https://www.nature.com/articles/s41565-021-01026-8
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