
On to the Planck scale
• SOME new physics should exist at the TeV scale, to explain

why the Higgs is light, ie, why the EWSB happens at ~ 246
GeV and not at a much higher energy scale (shorter distance
scale).

• Whatever it is (SUSY, technicolor, …), that new physics may
demand newer physics at a somewhat higher energy scale, in
order to regularize its own short-distance divergences. And so
on…

• It may be turtles all the way down to the Planck mass…
• There is still an enormous gap  (the “desert”) between the 1000

GeV scale and the GUT scale @ 1016 GeV, or the Planck scale
at 1019 GeV when
– gravity becomes strong
– a theory of quantum gravity takes over
– shorter distances (higher energy scales) become meaningless due

to strong quantum fluctuations in space-time itself
• Is that desert populated by new physics (laws, particles)?



But is the Planck scale really that high?
• Maybe the Planck mass scale is much lower (eg, the weak scale ~ 1

TeV), and the Planck length much bigger, because G is much larger

• This can happen if gravity actually lives in more than 3 spatial
directions.

• In string theory, open strings (which can represent all the SM particles,
including photons, fermions, gauge bosons, Higgs…) must remain
attached to a three-spatial-dimension hyperplane on the boundary of a
d-dimensional (d>3) “bulk” space. Since gravity is curved space, it sees,
and acts in, the bulk, while the SM particles live only on the
hypersurface and don’t see the bulk.

• So the possibility exists that gravity lives
in d (>3) dimensions, making the
“shortest” distance and “highest” energy
much closer to the weak scale.
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Extra dimensions
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Why extra dimensions?
• Come on, if there were extra dimensions, we would have noticed!
• Unless they are “compactified”. Origins in the work of Kaluza and

Klein, in the 1920’s.
• But what do they for us? Extra dimensions at the TeV scale can

address some of the deepest problems in modern physics:
– addressing the hierarchy problem (ADD, 1999; Randall-Sundrum 1999)
– producing electroweak symmetry breaking without a Higgs boson
– the generation of the ordinary fermion and neutrino mass hierarchy, the

CKM matrix and new sources of CP violation
– TeV scale grand unification or unification without SUSY while

suppressing proton decay
– new Dark Matter candidates and a new cosmological perspective
– black hole production at future colliders as a window on quantum gravity

(Giddings et al, 2002)…
• And, thinking about extra dimensions is fun, and almost always lead

to surprising and unanticipated results.



Compact dimensions
• If there are more than 3 spatial dimensions (+ time), the additional

ones must be too small for us to see, and/or inaccessible to SM
particles such as the photon (ie, only gravity, the graviton)

• Compact dimensions can be curled up on themselves (in GR, space
is curved), finite in extent, obeying Dirichlet boundary conditions:
any field ψ satisfies ψ(x4) = ψ(x4+2πR) where R is the radius and
LC= 2 πR is the extent of the “4th spatial dimension”.

• A particle travelling in that dimension would return to where it started
in a very short time.

• At each point in ordinary 3-space (x1, x2, x3) there would be a curled-
up circle, or 2-ball, or (d-3)-dimensional-ball.



Kaluza-Klein theory
• Kaluza-Klein (KK) theory (1926) attempts to unify gravity and

electromagnetism (the only known forces at the time) by including
one extra dimension.

• The theory actually works at some level, but in the end it failed to
give a realistic theory, including matter particles.

• Quantizing non-relativistic motion in one extra compact dimension
(square well, bead on ring) yields standing waves with quantized
energies En = (2πħ)2/2mLC

2 in a “Kaluza-Klein (KK) tower”.
• In a relativistic theory, mnc2 = (2πħc/LC)n  is an equally-spaced tower

of excitations, including a lowest, massless one.
• The smaller the space, the larger the mass of the KK excitations.

The scalar “radion” field φ plays the role of a Higgs, giving mass to the KK tower of Aµ.
The lowest state remains massless and preserves gauge invariance.
In theories that include gravity, one radion field φ remains, describing fluctuations in
the size of the extra dimension.



E fields in different dimensions

• Gauss’ law in 3-D  …              and d-spatial dimensions
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Surfaces and volumes
in d spatial dimensions
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What is MP in d dimensions?
• Easiest to work with the gravitational

potential, analogous to the electric
scalar potential.

• Gravitational potential of a mass
distribution has units of
Energy/mass, independent of
dimensionality of space

• It satisfies a Poisson Equation, valid
in any number of spatial
dimensions.

• LHS always has units of
energy/mass/length2

• RHS has units of G×mass/lengthd.
• Therefore, G has units of

energy/mass2 ×lengthd-2,
different units in different spatial
dimensions.

• Planck mass and Planck length will
be different as well.
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The Planck scale in d dimensions
• The dimensionality of G

changes: G(d)  ~ (L)(d-3) GN

• The Planck scale is defined
uniquely by forming
combinations of G, ħ, c with
dimensions of mP, LP, tP .

• So the Planck scale will also
change in d dimensions.

• Can we bring MP
(d) much

closer to the weak scale of
~ 1 TeV by invoking compact
dimensions?
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Gravity in d spatial dimensions
• In d spatial dimensions, the force laws

change their power-law behavior;
• The dimensions of the gravitational

constant G(d) change.
• What stays the same? The Poisson

equation for the gravitational potential.

• So how does G(d) change in the
presence of (d-3) small compact
dimensions of length LC?
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Can we bring the Planck scale down to,
say 2 TeV?

• The “true” Planck length in d spatial dimensions
is LP

(d)

• The larger the size of the compact dimensions
Lc, the larger is G(d) and thus  LP

(d), and the
smaller is MP

(d) , reducing the severity of the
hierarchy problem, bringing the scale of quantum
gravity closer to the weak scale.

• Can we bring MP
(d) much closer to the weak

scale of ~ 1 TeV by invoking compact
dimensions?

• Let’s try MP
(d)c2 ~ 2 TeV, or LP

(d) ~ 10-19 m.
• With one extra spatial dimension, LC = 1013 m.

This does not work!
• With two, LC ~ 10-3 m.

Surely we would have noticed that by now!
• Not if photons and fermions are constrained to

live in the large 3 spatial dimensions we know
and love.

• Only gravity sees these extra dimensions, and
the 1/r2 law of gravity has not been tested
accurately down to such short distances!
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Tests of deviations of Grav
potential at short distances

MP
(5) could be as small as a few TeV in the ADD model!







Kaluza-Klein excitations
• If the SM fields are not fixed to our (3+1)-brane (as in string theory),

but can live in the compact dimensions, they will have KK towers.
• If we haven’t seen their KK excitations, they must be too high in

mass for us to see them; the first excitations are > 100 GeV and LC
< 10-18 m.

• To get MP
(d) of order ~ 1 TeV, need d ≥ 3+10 dimensions.

• In any case, the graviton lives in the compact dimensions, and its
KK excitations should be of order 100 GeV or less.

• These fields couple to standard model particles with (the larger, d-
dim) gravitational coupling strength.

• They will be produced at high energy accelerators. The coupling is
weak, but if the KK tower contains many particles with mass < ECM,
the total cross section may be large enough to observe.

• Except, they interact only weakly, so they won’t register in the
particle detectors, except as missing energy/momentum.





Missing energy signature at LHC
• Signals may be visible

above background for “true”
Plank mass scales in the 4-
8 TeV range, with up to 4
extra compact dimensions.

• At a high-energy e+e- linear
collider (ILC), the
backgrounds are much
smaller, and the beam
energy can be varied; one
can easily distinguish
different models of extra
dimensions from each other
and from other new physics
sources of missing energy
(like SUSY).

• Graviton exchange as SM
particles scatter at the ILC
will also produce unique
signatures.


