Coherent Radio Emission from Magnetar Starquakes

Roger Blandford
KIPAC
Stanford

Why Magnetars?

- Known source!
- Birthrate >~10⁻⁴ yr⁻¹ Galaxy⁻¹
- Repeat activity
- Magnetic energy > 10⁴⁰J
- Elastic energy ~10³⁹J
- Magnetars glitch, wander and flare
 - FRB rotational energy could be much larger
- Active when young
- Pulsars produce coherent radio waves

Starquakes

- Pulsar glitches $\Delta P/P \leftarrow 10^{-6} \sim 10^{35} J$
 - Vortex line unpinning?
- Shear modulus

eg Blaes et al 1989

- $\mu \sim 0.02$ K in lattice
- Surface at N drip: $\rho \sim 4 \times 10^{14} \text{ kg m}^{-3}$; K $\sim 10^{29} \text{Nm}^{-2}$
- Most of crust moves horizontally, incompressible
- Magnetic stress >~ μ
 - Field lies in fault plane (cf Levin &Lyutikov 2012)
 - Shear speed->c; v~100kHz; good transmission
- Magnetic failure following slow evolution

Slow variation: Potential Field

$$B = -\nabla \psi$$

- •e.g. dipole $\psi \sim \cos \theta/r^2$; field lines: $r \sim \sin^2 \theta$
- •ds/dcos θ ~ $(1+3\cos^2\theta)^{1/2}$
- •Slow variation of surface field due to horizontal motion
- •Slower magnetospheric current / twist dissipation time (cf Thompson et al 2002)
- •Incompressible motion—stream function
- •Slowly varying potential fields

Now, consider rapid changes

Force-Free Electrodynamics

•Sufficient plasma for currents; insufficient for inertia

$$\rho E + j \times B = 0 \Leftrightarrow E + V \times B = 0; V = \frac{E \times B}{B^2}$$

$$\frac{\partial E}{\partial t} = (\nabla \times B)_{\perp} - (\nabla \cdot E)V$$

- Characteristics
 - Fast mode: $\omega = k$
 - Intermediate: $\omega = k_{\parallel}$; $V_g = 1$ along B; favored?

Smooth ParticlE ElectroDYnamics

- •Nonlinearity and wave steepening: $\delta B/B \sim B^{-1/2}$ on open field lines
 - Cracking the whip

Perhaps a current front propagates into magnetosphere

Observing a Current Front?

Pairs freely made

- $t_{cool} << t_{dyn}$; min ground gyrational state
- Particles irrelevant; j^{μ}_{ret} -> A^{μ}

- Mode conversion
- $t_{obs} = s(r) n.r$
 - Depends on orientation with respect to open field lines
- Doppler beaming
 - Maximum intensity from point of tangency

Coherent Radio Emission??

- Relativistic pulses are radiatively efficient
 - Calculate as near field or far field?
 - cf EMP
 - cf (not a) PBH search (Rees 1976, Blandford, 1977)
 - No absorption
 - Polarization
 - Radiation reaction important for dynamics
- ~GHz radio emission requires:
 - Either $\Gamma \sim 50$
 - Or current filamentation?

Summary+TBD

- Circumstantial evidence -> conviction?
- Free energy in field and stress
- Relativistic environment -> high energy
- Force-Free simulations
 - Steepening of pulse when nonlinear
 - Rotation
 - Caustics?
- Structure of current fronts
 - High energy emission