a. FRB progenitors:
Model independent constraints from 121102
b. A coherent radio emission mechanism

Eli Waxman Weizmann Institute of Science

[arXiv:1703.06723 (2017 ApJ 843:34)]

The persistent radio source associated with FRB121102: Key properties

Assumption: The FRB source is associated with the persistent source, and resides within it.

- 1. d_L=970 Mpc, d_A= 680 Mpc.
- 2. t > 4 yr.
- DM = 558±3 pc/cm³, local DM< 200 pc/cm³.
- 4. Angular size consistent with scatter broadening, $\theta = 0.2 \left(\frac{\nu}{5 \text{ GHz}}\right)^{-2}$ mas.
- 5. 10 to 30% variability on10 d time scale at 3 GHz.
- 6. vf_v peak 2x10⁻¹⁷erg/cm²s (2x10³⁹erg/s) at 10 GHz.
- 7. $vf_v \sim v^1$ down to ~1 GHz

[Spitler et al. 16; Chatterjee et al. 17; Tendulkar et al. 17; Marcote et al. 17]

Persistent source size

- 1. Size consistent with scatter broadening $\rightarrow \theta_s \ll 0.2 \text{ mas}$, R << 2×10¹⁸cm.
- 2. ~30% variability at 3GHz on ~10d.
 - Intrinsic \rightarrow R < 10¹⁷cm.
 - Refractive scintillation:

$$\begin{split} \theta_{d} &= 0.2 \left(\frac{\nu}{5 \text{ GHz}}\right)^{11/5} \left(\frac{SM_{-3.5}}{80}\right)^{3/5} \text{mas}, \\ t_{s} &= 20 \ \frac{\theta}{0.2 \text{ mas}} \left(\frac{\nu}{50 \text{ km/s}}\right)^{-1} \frac{d}{1 \text{ kpc}} \text{ day}, \\ \frac{\Delta f}{f} \Big|_{\max} &= 0.13 \ \left(\frac{\theta_{s}}{0.1 \text{ mas}}\right)^{-17/66} \left(\frac{SM_{-3.5}}{80}\right)^{-1/22} \\ \text{at } \nu \Big|_{\max} &= 3 \ \left(\frac{\theta_{s}}{0.1 \text{ mas}}\right)^{-5/11} \left(\frac{SM_{-3.5}}{80}\right)^{3/11} \text{GHz} \text{ [e.g. Goodman 97].} \end{split}$$

→ Variability dominated by scintillation, R < 10¹⁸cm.

Persistent source plasma properties

- 1. R/t < 10¹⁰ cm/s, no highly relativistic expansion.
- 2. No self-absorption
 - → $\gamma_e > 10^{1.5} R_{17.5}^{-2}$, relativistic e⁻ ($R = 10^{17.5} R_{17.5}$ cm).
- → Consider a sphere R of relativistic radiating e⁻, with density n_e and magnetic field B.
- 3. The peak flux and freq. provide 2 constraints on $\{R, \gamma_e, n_e, B\}$,

$$B = 10^{-1.5} \gamma_{e,2.5}^{-2} \text{G}, \ n_e = 0.1 \gamma_{e,2.5}^2 R_{17.5}^{-3} \text{cm}^3 \ (\gamma_e = 10^{2.5} \gamma_{e,2.5}).$$

4. The v<10 GHz spectrum is consistent with no significant cooling, $t < t_{cool}$

→ $\gamma_e > 250 \ (t/10^9 \text{s})^{1/3}$.

The surrounding plasma

1. Expansion
$$v \approx \sqrt{\frac{U_e + U_B}{n_c m_p}} < R/t$$

 \rightarrow a lower limit to n_c .

- 2. Shocked shell contribution to DM, δ DM, $vn_c t, vn_c \delta t \propto n_c^{1/2}$, \rightarrow an upper limit to n_c .
- A solution exists- not trivial- for $t < 2 \times 10^9 \text{s} \min \left[R_{17.5}^{4/3}, R_{17.5}^{19/4}, 35 R_{17.5}^5 \right].$

The persistent source properties

- 1. A solution exists- not trivial- for t < 300 yr, $10^{17} \text{cm} < \text{R} < 10^{18} \text{ cm},$ $200 < \gamma_e < 10^3,$ $E_e \approx 10^{48.5} \gamma_{e,2.5}^3 \text{erg}, \frac{E_B}{E_e} \approx 1\gamma_{e,2.5}^{-7} R_{17.5}^3,$ $n_c < 10^{2.5} R_{17.5} \text{ cm}^{-3}, M_c < 10^{-1.5} R_{17.5}^4 \text{ M}_{sun}.$
- Nearly resolved. R may be determined @ 10GHz (directly if 10¹⁸cm, by ∆f/f if 10¹⁷cm).
- 3. $\varepsilon_e \sim m_p c^2$, $\frac{E_B}{E_e} \sim 1$ suggests: Ejection of a mildly relativistic $10^{-5}M_{sun}$ shell, that collided (collisionless shock) with pre-ejected $M_c \sim 10^{-1.5}M_{sun}$ shell/"wind".
- 4. Challenging for "Magnetar wind" models.
 - a. No massive ejecta,
 - b. N_e~10⁵² implies $\mu_{\pm} \sim 10^{12}$.

Coherent emission mechanism

FRBs-most likely produced by unstable plasma configuration leading to coherent emission [Katz, Lyutikov...].

- E_{FRB}~ 10³⁹erg ~ 10⁻¹⁰ E_{persistent}; <L_{FRB}> ~ 10⁻⁵ L_{persistent}
 → Stringent constraints on the sources are unlikely, Identification of a unique instability is unlikely.
- 3. Suggested instabilities, e.g.
 - a. Highly anisotropic e⁻ distribution
 [Sazonov 73; Lyubarski 14; Ghisellini 17]
 (Note: "gyro-freq maser" emission at collisionless, magnetized, perpendicular e+- shocks observed in 1D calculations is suppressed in 2D [Sironi & Spitkovsky 09]).
 - b. "Curvature radiation" from e- bunches [e.g. Kumar et al 17].
- 4. A different mechanism:

Synchrotron "maser" emission in an isotropic non-thermal e- distribution.

Synchrotron maser: Negative reabsorption

 $dn/d\gamma$

γ

1.
$$\alpha_{\nu} = -\frac{1}{4\pi m_{e}\nu^{2}} \int d\gamma_{e}\gamma_{e}^{2}P_{\nu}(\gamma_{e}) \frac{d}{d\gamma_{e}} \left(\gamma_{e}^{-2}\frac{dn_{e}}{d\gamma_{e}}\right)$$
$$= \frac{1}{4\pi m_{e}\nu^{2}} \int d\gamma_{e}\gamma_{e}^{-2}\frac{dn_{e}}{d\gamma_{e}}\frac{d}{d\gamma_{e}} \left(\gamma_{e}^{2}P_{\nu}\right)$$
Necessary:
'non-thermal' $\frac{dn_{e}}{d\gamma_{e}}$ rising faster than γ_{e}^{2} , $\gamma_{e}^{2}P_{\nu}(\gamma_{e})$ decreasing with γ_{e} .

2. The 2nd condition may be satisfied in
the presence of a plasma.
[McCray 66; Zheleznyakov 67; Sazonov 70; Sagiv & Waxman 02]

$$\frac{\omega c}{k} = n, \ c \to \frac{c}{n}, \ \frac{1}{\gamma^2} \to \frac{1}{\gamma^2} + 1 - n^2 = \frac{1}{\gamma^2} + \frac{\nu_p^2}{\nu^2}$$
Instability possible for both $\gamma_e^2 \gg \nu_p/\nu_B$
and $\gamma_e^2 \ll \frac{\nu_p}{\nu_B} \approx \sqrt{\frac{\epsilon_e}{\epsilon_B}}$ [Sagiv & Waxman 02].
For a narrow e⁻ distribution and $\gamma_e^2 \gg \nu_p/\nu_B$,
 $\alpha_{\nu} = \alpha_0 F\left(\frac{\nu}{\nu_{R^*}}\right), \ \alpha_0 = \frac{\pi}{2\sqrt{3}} \frac{\nu_B}{c} \sqrt{\frac{\nu_B}{\nu_p}}, \ \nu_{R^*} = \nu_p \sqrt{\frac{\nu_p}{\nu_B}}$ [Waxman 17].

Some comments

- 1. The maser instability should be derivable directly from a solution of the plasma dispersion relation.
- 2. The Einstein coefficient method provides a "short cut" that is valid for $v_p^2 v_B / v^3 \ll \frac{c \alpha_v}{v} \ll |1 n|$.
- 3. These conditions are satisfied at v_{R^*} as $v_p^2 v_B / v^3 \approx \left(v_B / v_p \right)^{5/2} \ll \frac{c \alpha_v}{v} \approx \left(v_B / v_p \right)^2 \ll |1 - n| \approx \left(v_B / v_p \right)$.
- 4. A direct solution of the plasma dispersion relation would be useful, especially to verify that the maser instability is the fastest.

Synchrotron maser: Dynamics

- 1. A highly relativistic shell, with energy E_s and $\gamma_s = 10^3 \left(\frac{E_s/10^{41} \text{erg}}{n/0.1 \text{ cm}^{-3}}\right)^{1/8} (\Delta t/0.1 \text{ms})^{-3/8}$, is heated by the reverse shock to $T_s \sim m_p c^2$ at $r \sim \gamma_s^2 c \Delta t$ (for source radius < $c \Delta t$).
- 2. In the shocked shell

$$\gamma_{S} \nu_{R^{*}} = 0.2 \left(\frac{E_{S}/10^{41} \text{erg}}{\Delta t/0.1 \text{ms}} \frac{n/0.1 \text{cm}^{-3}}{\epsilon_{B}/0.01} \right)^{1/4} \text{GHz}$$
$$\alpha_{0} \Delta r = 200 \left(\frac{E_{S}}{10^{41} \text{erg}} \frac{n}{0.1 \text{cm}^{-3}} \frac{\Delta t}{0.1 \text{ms}} \right)^{1/4} \left(\frac{\epsilon_{B}}{0.01} \right)^{3/4}$$

- → For E_s & Δ t typical for FRBs: a. E~ E_s will be emitted over Δ t at ~1 GHz, provided $\frac{dn_e}{d\gamma_e}$ is steeper than γ_e^2 below the peak.
 - b. A burst of ~10 MeV $\gamma 's$ with E<E_{FRB} is predicted from the forward shock.

Summary

- Persistent source properties.
 - t<300 yr, 10^{17} cm < R < 10^{18} cm, E= $10^{49.5}$ erg, E_B/E_e~1, ε_{e} ~1GeV. Plausibly: 10^{-5} M_{Sun} ejected at a mildly relativistic speed.
 - $M_{surround}$ < 10^{-1.5} (R/10^{17.5}cm) ⁴ M_{sun} .
 - Likely: "weak stellar explosion", NS formed with relatively low M & E ejecta.
- FRB mechanism.
 - Synchrotron maser due to non-thermal e⁻ distribution: efficient conversion of kinetic energy to coherent radio emission.
 - The ejection of a highly relativistic shell, $E_s \sim 10^{41}$ erg and $\gamma_s \sim 10^3$ corresponding to $\Delta t \sim 0.1$ ms characteristic of FRBs, produces conditions appropriate for strong GHz synchrotron maser emission.
 - FRBs predicted to be accompanied by bursts of ~10 MeV $\gamma 's$ with E<E_{FRB}.
 - FRBs may be beamed within $\theta_s \sim 1/\gamma_s \sim 10^{-3}$.

The total energy emitted by FRB events over the source lifetime is $<10^{44}\theta_s^2$ erg.