Scintillations and Lensing of FRBs: Near and Far

Jim Cordes, Cornell University

Basic points:
» Galactic scintillations + host galaxy ISS/lensing
* IGM contributes only to DM, not scattering

* Why scintillation/caustics can occur:
* Light-travel size of FRB emission regions << critical size

 Why scintillations don’t always occur:
* Host scattering quenches Galactic scintillations
* Bandwidth or source-size averaging at low Galactic latitudes

« DM/EM/SM - information about source environments

Details:
» Astro-optics of Scattering/Lensing/Scintillation

e Selection effects
e Strongly frequency dependent
* Detection in surveys vs reobservations

* Interpreting the repeater and other FRBs
* Next steps: inferring conditions near FRB sources

A puzzle:

A large number of
FRB sources but
only a small number

detected (23):

* Low burst rate
sources?

* High rate + high
modulation?
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Pileup of ray paths
limited by diffraction
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Extreme “scattering
events”
(Not scattering!)

See also Bannister et
al. 2015; Tuntsov et al.
2016 .




Replace slit in mask with a phase-changing screen:
The equivalent of the slit width/separation is the length over
which the RMS phase = 1 rad

Diffraction
pattern

speckles/scintles ~ 10*km x (kHz to 100 MHz)
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Phase
screen

r

Coherent waves from
compact sources
illuminate turbulent
plasma in the ISM

Scattering angle ~ A2

| Solid angle ~ A*

Scattering causes an
interference pattern at
the Earth’s location

I(x,y,V)
+
Source/Earth velocity
=2 (t, v)

DISS ~ 104 km = min-hr

The pattern is also
influenced by refraction
from larger scales:

RISS ~ AU - days-yr




Notional Wavenumber Spectrum for Galactic &n,

Spectrum = (C2¢~”
(ng) = [dqClq
SM = [dsC?
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« Pulsar DM(t)
 RM variations
« Galactic structure

> o Pulsar DISS

e Angular scattering
(VLBI of AGNs, pulsars)

see also

Armstrong, Rickett, Spangler 1995
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Intergalactic Milky
Medium Way
L igm L o
d —
———————————————————— -—--9® 0
clump in host or
intervening galaxy
nigm ng

N = mean-square scattering angle / unit distance
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Milky Way, IGM, Host & Intervening Galaxies
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Luminosity PDF

Luminosity distribution for a single source
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FRB Populations |

* Pretend propagation
effects do not occur

None
detectable

Detection
volume

* All properties of FRBs are
—  then intrinsic (lack of
repetitions in most; the
repeater FRB121102, etc.)

None
l'to detect

|
|
|
|
|
I

* Need to reconcile:

— High vs low-latitude FRB occurrence rates ~4:1
(Petroff et al. 2015)

— Many repetitions of FRB121102 vs. none for others
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Alternative: FRBs are intrinsically foo weak to detect

Maximum detectable Nearest Sources too weak
distance of brightest source FRB source to detect

Scintillation or ‘ dPOiP’ T

lensing gain g




Extrinsic flux density boosting

DISS from MW long tail of PDF at high |b|
S-boosts Petroff+ 2014, Quenched at low |b]

Macquart+Johnston 2015 : BandW|d.th averagl.ng
JMC+ in preparation * Source size averaging

R-boosts RISS from MW

Narrow PDF
(few tens of %)

Large focal lengths
(>100 Mpc) from host
lenses

Host plasma lensing
L-boosts (ESE lensing in MW)

Gravitational Iensing Not likely unless dense star
cluster surrounds FRB source

or microlensing (surveys could select)

Hybrid Gravitational +
Plasma lensing from Interesting (but relevant?)

L-G boosts? core-halo structures
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G-boosts



Macquart & Johnston 2015
See also JIMC+Chernoff 1997,

JMC, Lazio, Sagan 1997

This case is
only for fully
modulated
DISS.

Need to
include

bandwidth
averaging.

Explaining the FRB rate latitude dependence 3281
10° F7 ' - ]
T Power-law
1000 | « with cutoffs ]
l Increase
< 10f from DISS -
\N/ i
o e Intrinsic E
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Figure 1. The distribution of observed flux densities pz(Z) (blue solid line) for an initial flux density distribution (purple dashed line) that is non-zero over the
range Smin < Z < Smax and with § = 0. The effect of the diffractive scintillations is to draw out the high end of the distribution into a tail that decreases like
z! exp ( — Z), increase the differential event counts over the range Smin < Z < Smax and to extend the low luminosity component of the distribution to zero

flux density.
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FRB Populations I

* All FRB sources intrinsically identical (statistically)

 Compact enough to potentially show S or L-boosts
e cAt~ 107 — 108 cm suffices

* High latitude sources:
— Most from 100-m class telescopes
— S-boosts: x10 or more (population size dependent)

* Low latitude sources:
— No S-boosts (bandwidth and source size)

* Repeater: discovered and initial followup with Arecibo
— Discovery with a 100-m class sidelobe

— Plasma lensing from clumps/filaments may be at play (> x10)
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Quenching of DISS by Bandwidth Averaging

DISS bandwidth strongly direction/frequency dependent

DISS Bandwidth Avy (MHz)

103E :
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I _ —
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- Quenching of
DISS at low
latitudes and low
frequencies

Receiver
bandwidth
B

Scintillation
bandwidth
Av,

- Modulation
~(Av,/B)/2
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10l —~N Bandwidth averaging
increases the number of
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variance reduction
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{ < 103 sources
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Figure 7.  Probabilities P,(> g¢) of the scintillation modulation

for individual lines of sight and for a high-latitude survey similar to

From JMC+, |

the HTRU survey, as labeled. Also shown (dashed line) is the ex- preparation
ponential distribution that applies only to DISS with no bandwidth
averaging. The black points give the values of g that correspond to

P,(>g) =10"% and 105,

13/6/17 FRB Scintillations/Lensing: Near and Far

n

18




Distant FRBs:
* More of them (dN ~ d?dD)
* > larger chance for large S-boost gain g

Larger g*L needed for detection

Fewer nearby FRBs /
- Fewer chances for

large scintillation
boost

Smaller g*L needed Obserm
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FRBs intrinsically too weak fo detect

Maximum detectable
distance of brightest source

None
to detect

Scintillation or
lensing gain g

Nearest
FRB source

Sources too weak
to detect

Next slide:
simulation with
d =d,

pop, min

Bis
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Figure 10. Simulation of detections vs Galactic coordinates. The
color scale shows the number of sources detected out of a total of
1.5 x 10'° sources. The luminosities and distances of the popula-
tion are set up so that no sources are detectable in the absence of
ISS. The results are for a power-law a = 0 with cutoffs of 100 and
750 Jy Mpc? and a homogeneous population between 50 and 2000
Mreshold pc. The survey threshold is 0.3 Jy and bandwidth aver-
aging has been included over a 300 MHz bandwidth centered on
1.5 GHz. Reduction of survey sensitivity by temporal broadening
has not been included, so that dearth of detections at low latitudes
toward the inner Galaxy is more severe than is shown.
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Detection of FRBs favored
at high latitudes:

DISS is quenched by
bandwidth averaging and
possibly source-size
suppression

Simulations include
luminosity function, steady
burst rate, and DISS with
bandwidth averaging (but
point sources, no pulse
broadening)

No FRBs detectable without
DISS
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Galactic Longitude (deg)
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Plasma Lensing
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Lensing from filaments in the Crab Nebula

1997 DAY NUMBER
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PULSE PHASE
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Incident waves
Y
Lens plane
Ray traces for a 1D
| Gaussian plasma lens
1 Slightly different
DMs and arrival times
Observer plane _Zo——r5——55 3 0 5 10 15 2C
/"
1 image
3 images Single parameter in the lens equation:
)\ZIeDMO dsldlo 3430 DMO dsl,kpc d]o
o = —
Ta? dso (VaAU)2 dso

13/6/17 FRB Scintillations/Lensing: Near and Far 25



Lens gain vs frequency and source position
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Number of clusters
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o s| dIo
Focal distance and focal frequency : Qd

SO

Full caustic (largest gain) seen for distances d_, > focal distance d;

di(v) = dho (22 ) = 7 (av) Qin (dso>

o r«c2DMj dgy
(CLAU V)2 dso sl - Gpc for
~ (0.65 Mpc X -
P& DM, 106 v

Equivalently, need frequency < focal frequency v,

V2o ( roDMj dsldlo> t/2

DM_/?

AAU

~39.1 GHz x
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Spectral diversity for different source positions
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Figure 5. Spectral slices of the gain GG at a few observer locations for
a = 60 AU and DM = 10 pc cm™°.
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Bursts from FRB 121102
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Figure 2. Dynamic spectra for each of the bursts detected in 2015 November and December using GUPPI (bursts 12 — 16) and PUPPI
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Bursts from FRB121102

Intrinsic vs. extrinsic f-t
structure?

Multiple imaging:

Distinct burst components
VS.

Overlapping components +
interference effects

Not sure that aligning gaps
gives the correct DM in the
imaging picture



A puzzle

* Why does plasma lensing appear important for
FRB12102 but not for high-latitude (or other FRBs)?

— i.e. if lensing is responsible for the repeats, why not for
high-latitude sources?

e Possible (but weak) answer: S-boosts of high-
latitude sources select sources that are not at
appropriate focal distances for L-boosts
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FRB Selection Effects

* Presence or absence of DISS, RISS, or lensing

* Reduction in S/N of matched filter detection by
scattering broadening of burst:

S/N o< [142(rg/W;)2] "
* Free-free absorption

* Negligible for most Galactic directions (except Galactic center)
2

2
* Hostgalaxy: pyv > Mo _ 10%pc em—® (DMloo())
o Lh Lkpc

2
Tff Z 00033 V—2.1T6—41.35 DMlOOO
7 Lkpc
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S/N Reduction by pulse broadening & ff absorption
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RISS from ISM occurs only if source size from extragalactic
scattering is small enough = near to source

108 L ~ bD=10kpc

w! NO DISS —— 2o
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100 }
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0.1p

Apparent Source Size 60, (uas)

0.01F
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Summary/Going Forward

* Scintillation boosts: required for most FRB detections?
— FRBs may be selected for by S boosts
— Low latitudes/frequencies do not receive large boosts

* Lensing boosts: required for FRB1211027
— Highly chromatic, strong frequency structure, caustics

— detection strategy: Strong spectral dependence > search in
frequency if not seen in one band

— Testing and exploiting plasma lensing:
* FRB broadband spectra (at least 0.4 - 10 GHz)
* VLBI to resolve subimages (~ mas splittings typical)
* Fringing in time-frequency of burst components
« 6DM, 6TOA, 6EM, 6RM, all informative on host environment

— Non-gaussian lenses (key element: inflection points in total phase
including DM,,,.)

* Observing goal: broadband spectra <1 to 20+ GHz

* Any study of log N-log S, rates etc. needs to consider distance
distribution, intrinsic luminosity PDF, and D/R/L boosts
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