

How much plasma a pulsar can make

Andrey Timokhin

NASA/Goddard Space Flight Center

Workshop on Relativistic Plasma Astrophysics

Purdue University, 10 May 2016

Andrey Timokhin (NASA/GSFC)

Pair production in PSRs

Pulsar: rapidly rotating magnet surrounded by plasma "Electric lighthouse"

Pulsars: What we see

Pulse peaks are narrow Negligible energy budget

PWNe feed by dense plasma Energy goes there

Andrey Timokhin (NASA/GSFC)

Crab Nebula Spectrum

Radio emission of PWNe suggests multiplicities well in excess of $10^5,$ e.g. for Crab $\kappa \sim 10^6-10^7.$

Pulsar Magnetosphere: Large scale view

"Plasma machine"

Pulsar Magnetosphere: Theorist view

Electrical generator

The magnetosphere is charged characteristic charge density – "Goldrech-Julian" charge density η_{GJ} .

Pair creation processes

Single photon pair creation in strong magnetic field $\gamma B \rightarrow e^+ e^-$ – close to the NS

Two photon pair creation $\gamma \gamma \rightarrow e^+ e^-$ - outer magnetosphere

The outer magnetosphere is transparent to gamma-rays up to few GeV, $\varepsilon_{esc} \sim 10^4 \textit{mc}^2.$

Very high multiplicity can be produces only close to the NS.

Electron-positron cascade is splitting of primary particle's energy into energy of pairs

Multiplicity is the number of particles created in cascade per single primary particle:

$$\kappa_{
m cascade} \simeq 2 rac{\epsilon_{
m primary}}{\epsilon_{\gamma,\,
m esc}} f.$$

f – is the cascade efficiency.

For pulsars multiplicity is excess of plasma density relative to the Goldrech-Julian number density:

$$\kappa_{\rm PSR} \simeq 2 \frac{n_{\rm plasma}}{n_{\rm GJ}} \, .$$

Plasma creation in the polar cap

Particle acceleration is regulated by pair production

Multiplicity of polar cap cascade rough estimate

$$\kappa_{cascade} \simeq 2 \frac{\varepsilon_{primary}}{\varepsilon_{\gamma,\,esc}} \simeq 5 \times 10^5 \; \xi_j^{1/7} \rho_{c,7}^{-3/7} P^{-1/7} B_{12}^{6/7}$$

Andrey Timokhin (NASA/GSFC)

Polar Cap Electrodynamics

Rotation of the NS

 $\nabla \cdot \boldsymbol{\textit{E}} = 4\pi(\eta - \eta_{GJ})$

Twist of magnetic field lines

$$\nabla \times \boldsymbol{B} = \frac{4\pi}{c}j + \frac{1}{c}\frac{\partial \boldsymbol{E}}{\partial t}$$

 $\boldsymbol{E} = 0$ if both

$$\eta = \eta_{GJ}$$

 $j = j_{m} \equiv rac{c \,
abla imes oldsymbol{B}}{4\pi}$

Limit cycle: series of discharges

No particles extraction from the NS

Free particle extraction from the NS

(AT & Arons'13)

Full cascade in young PSRs AT & Harding '15, '16 (in prep) **Resonant ICS** Ŕ Radiation "feeds" on ε_{\parallel} Synchrotron Radiation "feeds" on ϵ_{\perp} e e+ synchrotron photon CR photon pair creation 2 generation # 0 **Curvature Radiation** neutron star Andrey Timokhin (NASA/GSFC)

Purdue 2016 14 / 26

General polar cap cascade diagram

Cascade efficiency: f

$$\kappa = 2 \frac{\epsilon_p}{\epsilon_{\rm esc}} f.$$

Cascade multiplicity as a function of $\varepsilon_{\pm} \colon \text{log}\,\kappa$

Multiplicity of the polar cap cascade: $\kappa \sim few \times 10^5$

Dependence on ρ_c partially cancels out:

small $\rho_c \to$ high splitting efficiency, but low primary particle energy large $\rho_c \to$ low splitting efficiency, but high primary particle energy

Cascade Portrait: Synchrotron Cascade

Andrey Timokhin (NASA/GSFC)

Pair production in PSRs

Cascade Portrait: Synchrotron-RICS Cascade

Andrey Timokhin (NASA/GSFC)

Pair production in PSRs

Discharge: RS flow

Discharge: super-GJ SCLF

Conclusions

Maximum multiplicity of polar cap cascades $\kappa \sim few \times 10^5$

Maximum multiplicity is not sensitive to pulsar parameters

Pair yield is mostly determined by primary particle flux: super-GJ space charge limited flow zones should produce the highest pair yield

Inclinations angle should be the most important factor determining the overall pulsar pair multiplicity

Gamma-ray emission from polar caps is at lower energies ($\sim 10 - 100 \text{ MeV}$)

Pair multiplicity is not enough to account for population of Radio emissting electrons in PWNe

Advanced Energetic Pair Telescope (AdEPT)

Gamma-Ray Polarimeter

Gas detector: preserves polarization information

AdEPT science: Overview

Energy Range: 2-500 MeV

- Poorly explored domain
 - Detailed look at known accelerators
 > PSRs, PWNs, SNR, AGN, GRBs
 - Yet unseen accelerators
 - > polar cap emission in PSRs
 - magnetars
 - > new class(es) of sources
- $\pi^0
 ightarrow \gamma\gamma$ @ E > 67.5 MeV
 - π^0 telltale signature of hadrons
 - leptonic vs. hadronic
 - Dark Matter

Polarization: down to 0.1% MDP

- Polarization measurements:
 - > geometry of accelerators

in contrast to radio band no propagation effects > distinguishes between CR and Synchrotron

Strict limits on polarization:
 > distinguishes π⁰ emission

 $\pi^0 \to \gamma \gamma$ is unpolarized, as opposed to any leptonic process

Angular Resolution: down to 0.2°

- Excellent source localization down to 0.2°/\sqrt{N_{ph}}
- Resolving MeV background
- Dark Matter profiles

AdEPT Characteristics

Polarization Senesitivity