# Radiation-reaction-limited particle acceleration during the relaxation of force-free equilibria

Yajie Yuan

### with Roger Blandford, William East, Krzysztof Nalewajko and Jonathan Zrake



## **Observational puzzles**

- Crab gamma-ray flares
  - $t_{\rm var} \lesssim 10 \ {\rm hr}, L_{\gamma} \sim 10^{36} \ {\rm erg \, s^{-1}}$ (isotropic)
  - Above synchrotron radiation reaction limit
  - If B~1 mG,

$$\overline{t} \equiv \frac{L_{\gamma} t_{\text{var}}}{(c t_{\text{var}})^3 B^2 / 8\pi} \sim 10^3$$

- AGN flares
  - e.g. 3C 279 (FSRQ), GeV  $t_{var}$ ~5 min, isotropic  $L_{\gamma}$ ~10<sup>49</sup> erg S<sup>-1</sup> (Hayashida et al)
  - Polarization angle swing
- GRB



These might be results of efficient particle acceleration and electromagnetic dissipation in a highly magnetized outflow.

## A toy model—the unstable force-free equilibria

- Use the relativistic Particle-In-Cell code Zeltron\* (Cerutti et al 2013)
- Include radiation reaction force

$$\mathbf{F}_{\rm syn} = -\frac{2e^2}{3c^5} a_{L\perp}^2 \gamma^2 \mathbf{v}$$
$$\eta \equiv \frac{1}{\omega_g t_{\rm cool}} = \frac{4\alpha_F \hbar \omega}{9mc^2}$$



 Collect spectrum-resolved radiation power for each observer in real time

See Nalewajko et al 2016 (arXiv: 1603.04850) for a study without radiation; this talk: Yuan et al 2016 (arXiv: 1604.03179)

# **Passive radiation**

-when radiation is *not* significant enough to affect particle dynamics

### Example: σ=3.76, L/r<sub>L</sub>=800, η=1.1e-8



- Complex structures develop self-consistently from an initially smooth configuration!
- Lifetime of the current layers is ~ one dynamic time scale.
- Most intensive radiation is produced by plasmoids and current layer ejecta.

### Variability of observed radiation



### What produces the sharp peaks in the light curve?



Space (x)

### Where does most of the high energy radiation come from?



- In current layers: E<sub>II</sub> acceleration, small radiative loss; high energy particles are bunched by tearing modes
- Exiting current layers: B direction change —> increased trajectory curvature, strong synchrotron radiation

## Particle spectrum





along +x, at t=3.83L/c

### Particle distribution can be quite anisotropic!

## Fast variability results from...

- Anisotropy of accelerated particles (kinetic beaming)
- Spatial bunching of particle beams due to tearing modes

# Active radiation

-when radiation *is significant* enough to affect particle dynamics

### Insignificant cooling (η=1.1e-8)



### Strong cooling (n=2.75e-5)







- Similar dynamics
- E<sub>II</sub> acceleration within the current layer is still efficient
- Later stochastic acceleration process is unable to compete with radiative loss

## Effect of radiation reaction on global dynamics

Helicity change  $\frac{dH}{dt} = -2 \int \mathbf{E} \cdot \mathbf{B} \, dV$ 



In our simulations so far, synchrotron radiation reaction does not help to support volumetric non-ideal E.

#### Variability, radiation efficiency, and time dependent spectrum



# Summary

- We observe:
  - Fast variability in high energy synchrotron radiation (key ingredients: kinetic beaming, spatial bunching)
  - Modest apparent radiation efficiency
  - Separation between the acceleration sites and synchrotron radiation sites for the highest energy particles
- Our current simulations are not yet able to reproduce Crab flares but higher σ runs may be promising.

Back up

### Ideal instability—linear analysis

Force-free evolution

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}, \quad \frac{\partial \mathbf{E}}{\partial t} = \nabla \times \mathbf{B} - \mathbf{j}$$
$$\nabla \cdot \mathbf{E} = \rho, \quad \mathbf{E} \cdot \mathbf{B} = 0, \quad \rho \mathbf{E} + \mathbf{j} \times \mathbf{B} = 0$$
$$\mathbf{j} = \frac{1}{B^2} [(\mathbf{B} \cdot (\nabla \times \mathbf{B}) - \mathbf{E} \cdot (\nabla \times \mathbf{E}))\mathbf{B} + (\nabla \cdot \mathbf{E})\mathbf{E} \times \mathbf{B}]$$

Linearized equations

$$\mathbf{v} = \mathbf{E} \times \mathbf{B}/B^2 \qquad \mathbf{v} = \partial \vec{\xi}/\partial t$$
$$\mathbf{B}_1 = \nabla \times (\vec{\xi} \times \mathbf{B}_0),$$
$$B^2 \frac{\partial^2 \vec{\xi}}{\partial t^2} = (\nabla \times \mathbf{B}_0) \times (\nabla \times (\vec{\xi} \times \mathbf{B}_0)) + [\nabla \times (\nabla \times (\vec{\xi} \times \mathbf{B}_0))] \times \mathbf{B}_0$$

Variational principle

$$V = \int dV (\nabla \times (\vec{\xi} \times \mathbf{B}_0)) \cdot [(\nabla \times (\vec{\xi} \times \mathbf{B}_0)) - \vec{\xi} \times (\nabla \times \mathbf{B}_0)]$$
$$\omega^2 = \frac{V}{\frac{1}{2} \int dV B^2 (\vec{\xi}_\perp)^2}$$

## Two examples in 2D



Linear force-free equilibrium within a spherical wall, I=1, m=0, n=2

### Unstable to even incompressible ideal perturbations!



## A particular ABC field

 $\mathbf{B}_0 = (0, \cos \alpha x, -\sin \alpha x) + (-\sin \alpha y, 0, \cos \alpha y)$ 

## A 3D example



 $\mathbf{B}_0$ 

 $\vec{\xi}$ 







## **Radiation spectrum**









## angular distribution of radiation



# angular distribution of particles



## **Polarization signal**



## Effects of radiation reaction



# Suppression of $P_{syn}/\eta$ near the radiation reaction limit.

In strong cooling regime, the magnetization is kept high.



## Getting beyond radiation reaction limit?

- Large enough potential
- Possibility of accessing this potential quickly
- Separation between the acceleration region and the radiation region



#### Example: $\eta = 1.1e-4$

# Next Steps

- Full 3D simulations
- Higher magnetization and strong radiation reaction regime
- Inverse Compton as dominant radiation mechanism
- Electron-ion plasma