Particle Acceleration in Two- and Three-dimensional Magnetically-dominated Reconnection

> Fan Guo, Theoretical Division Los Alamos National Laboratory

Collaborators: Hui Li, Bill Daughton (LANL) Xiaocan Li (UAH),Yi-Hsin Liu (NASA Goddard)

> Second Purdue Workshop on Relativistic Plasma Astrophysics Department of Physics, Purdue University, West Lafayette, IN May 9, 2016

Outline

Particle Acceleration in Magnetic Reconnection Layers

We focus on understanding the primary acceleration mechanism and formation of power-law distributions in kinetic simulations

- Plasma dynamics in 2D and 3D reconnection
- Features of energetic particle distribution
- Diagnostics for understanding particle acceleration
- Analysis for formation of power-law distributions
- Summary

2D Magnetic Reconnection

A relativistic run with $\sigma = 6400, \gamma_0 = 16$

Guo et al. 2016 ApJL

3D Magnetic Reconnection

Nonrelativistic Reconnection $m_i/m_e=100$

Daughton et al, 2011

Relativistic reconnection $\sigma = 100, m_i/m_e = 1$ Guo et al. 2014 2015

 $4096 \times 2048 \times 2048$ cells

Trinity runs

 $\sim 5.2 \times 10^{12}$ particles track $\sim 10^8$ particles

2.6

0.3

He II Sood

 $t\omega_{pe} = 0$

$\sigma = 100$

Add spectrum of initial waves ... to drive additional turbulence

 $L_x = 1000 d_e$

Energy distribution for different magnetization

The additional turbulence does not strongly modify nonthermal acceleration.

Acceleration mechanism & Power law distribution

Fermi/Betatron accelerations

Curvature/grad-B drift $\longrightarrow E_{motional} = -\mathbf{u} \times \mathbf{B}/c$

Direct acceleration

 $\mathbf{E}_{nonideal} = \mathbf{E} + \mathbf{u} \times \mathbf{B}/c$

Particle move along B or in weak B Acceleration mechanism & Power law distribution

We track a large number of particle trajectories, and

- Identify their acceleration pattern
- Statistically calculate several important quantities
 - acceleration rate $< d\varepsilon > /dt$
 - drift motion, v_D and contribution to acceleration $\int qv_D \cdot E$
 - magnetic field and electric fields at particle positions $B_l, E_{l,u \times B}, E_{l,nonideal}$
- Add additional test-particle to probe acceleration mechanism $only \ experience \ E_{l,u \times B}$

Fermi Acceleration Pattern

Fermi acceleration is still operating in 3D simulation

Diagnostics for understanding primary acceleration

Evaluate exact expression for energy gain of all particles:

energy change
$$= q_j \mathbf{v} \cdot \mathbf{E} = q_j v_{\parallel} E_{\parallel} + q_j \mathbf{v}_{\perp} \cdot \mathbf{E}_{\perp}$$

Also evaluate energy gain from guiding center approximation

$$\mathbf{v} = \mathbf{v}_D + \mathbf{v}_g$$

energy change $= q_j \int (\mathbf{v}_{curv} + \mathbf{v}_{\nabla B}) \cdot \mathbf{E} \, dt$

Dominant acceleration term is from the curvature drift for anti parallel reconnection

$$\mathbf{v}_{curv} = \frac{\gamma v_{\parallel}^2}{\Omega_{ce}} \left[\mathbf{b} \times \left(\mathbf{b} \cdot \nabla \right) \mathbf{b} \right]$$

The acceleration is dominated by energy gain through curvature drift motion

Fermi acceleration formula agrees with the acceleration by curvature drift motion.

$$\Delta \gamma = \left(\Gamma^2 \left(1 + \frac{2Vv_x}{c^2} + \frac{V^2}{c^2} \right) - 1 \right) \gamma$$
$$\Delta t = L_x / v_x$$
$$\alpha = \frac{\Delta \gamma}{\gamma} \left(\frac{\gamma \Delta t}{\gamma} \right)$$

Acceleration mechanism

Fermi/Betatron accelerations

$$\mathbf{E}_{motional} = -\mathbf{u} \times \mathbf{B}/c$$

Direct acceleration

$$\mathbf{E}_{nonideal} = \mathbf{E} + \mathbf{u} \times \mathbf{B}/c$$

Evaluating
$$\int qv \cdot E$$
 from different electric fields

Fermi acceleration dominates for antiparallel reconnection.

Direct acceleration is important for strong guide field case.

2D and 3D simulations show similar features

Power-law formation

Fokker-Planck Equation for understanding nonthermal distribution

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial \varepsilon} \left(\frac{\partial \varepsilon}{\partial t} f - \frac{\partial}{\partial \varepsilon} (D_{\varepsilon \varepsilon} f) \right) = \frac{f_{inj}}{\tau_{inj}} - \frac{f}{\tau_{esc}}$$

Power-law formation

New simulation and analysis for power-law formation

In a 2D PIC simulation, add a test-particle component without feedback. The component only experience E_{ideal}=-uxB field.

Summary and Several take-aways

- 2D and 3D kinetic simulations for relativistic magnetic reconnection show that the reconnection layer is dominated by development of flux ropes.
- Despite turbulence in the reconnection layer, nonthermal particles are efficiently generated and form power-law distributions.
- Using a number of diagnostics, we show the contributions from different acceleration mechanism. For anti-parallel case, the acceleration is dominated by Fermi acceleration, and this can lead to power-law distribution. Acceleration by parallel electric field is important for reconnection with a strong guide field.
- The acceleration mechanism and power-law formation are quite robust and general.