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Outline

• Plasma dynamics in 2D and 3D reconnection	


• Features of energetic particle distribution	


• Diagnostics for understanding particle acceleration	


• Analysis for formation of power-law distributions	


• Summary

Particle Acceleration in Magnetic Reconnection Layers

We focus on understanding the primary acceleration 
mechanism and formation of power-law distributions 
in kinetic simulations 



2D Magnetic Reconnection

MHD simulations	

Loureiro et al. 07	


Bhattacharjee et al. 09	

Uzdensky+ 10

Fully kinetic approach	

Daughton et al. (2009)
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Relativistic flows 	

in relativistic case	
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Energy Spectrum for Gamma=16 and Sigma=400

-1.2

Spectral index p ~ 1

Power-law range	

𝛾2 ~ σ

Fast variability ~ Lx/c

Erec up to ~ 0.2B0 for σ>>1  

εmax =

∫
|qErec|cdt

𝛾2

A relativistic run with σ = 6400, 𝛾0  = 16

Guo et al. 2016 ApJL
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3D Magnetic Reconnection

Nonrelativistic	

Reconnection	


mi/me=100
Daughton et al, 2011

Relativistic reconnection	

σ = 100, mi/me=1

Guo et al. 2014 2015
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8 billion cells, 2 trillion particles 	

using 100k cores on blue waters
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Energy spectra from 2D and 3D PIC simulations

Guo et al. 2014 PRL, 2015 ApJ, 2016 PoP	
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Add spectrum of	

initial waves ... to drive	

additional turbulence
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4096⇥ 2048⇥ 2048 cells

track ⇠ 108 particles⇠ 5.2⇥ 1012 particles
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Trinity runs	




Energy distribution for different magnetization
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The additional turbulence does not strongly 	

modify nonthermal acceleration. 
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Guide field dependence



Many 2D studies ...

Acceleration mechanism & Power law distribution

Direct acceleration

Fermi/Betatron accelerations 

Particle move along B 	

or in weak B

Curvature/grad-B drift 
motion transverse to B

E
nonideal

= E+ u⇥B/c

E
motional

= �u⇥B/c

u



Many 2D & 3D studies ...

Acceleration mechanism & Power law distribution

u

We track a large number of particle trajectories, and 	


• Identify their acceleration pattern	


• Statistically calculate several important quantities 	


•  acceleration rate 	


•  drift motion,         and contribution to acceleration	


•  magnetic field and electric fields at particle positions	


!

• Add additional test-particle to probe acceleration mechanism	
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Fermi Acceleration Pattern Vx



sample particle trajectories

Fermi acceleration is still operating in 3D simulation



Diagnostics for understanding primary acceleration

mjc
2 d�

dt
= qjv ·E = qjvkEk + qjv? ·E?

Evaluate exact expression for energy gain of all particles:

Also evaluate energy gain from guiding center approximation

Dominant acceleration term is from the curvature drift 
for anti parallel reconnection

mjc
2(��)gc = qj

Z
(vcurv + vrB) ·E dt

vcurv =
�v2k
⌦ce

[b⇥ (b ·r)b]

v = vD + vg

energy change

energy change



The acceleration is dominated 
by energy gain through 
curvature drift motion

Fermi acceleration formula 
agrees with the acceleration 
by curvature drift motion.

∆t = Lx/vx
α = ∆γ/(γ∆t)
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Acceleration mechanism

Direct acceleration

Fermi/Betatron accelerations 

E
nonideal

= E+ u⇥B/c

E
motional

= �u⇥B/c

Evaluating                   from different electric fields
Z

qv · E



Fermi acceleration dominates for antiparallel reconnection. 	

!
Direct acceleration is important for strong guide field case.

2D and 3D simulations show similar features
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Power-law formation
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Fokker-Planck Equation for understanding nonthermal distribution



Power-law formation
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New simulation and analysis for power-law formation
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In a 2D PIC simulation, add a test-particle component without !
feedback. The component only experience Eideal=-uxB field.

Test-particle density

Test-particleElectron
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• 2D and 3D kinetic simulations for relativistic magnetic 
reconnection show that the reconnection layer is dominated by 
development of flux ropes. 	


• Despite turbulence in the reconnection layer, nonthermal particles 
are efficiently generated and form power-law distributions. 	


• Using a number of diagnostics, we show the contributions from 
different acceleration mechanism. For anti-parallel case, the 
acceleration is dominated by Fermi acceleration, and this can lead 
to power-law distribution.  Acceleration by parallel electric field is 
important for reconnection with a strong guide field.	


• The acceleration mechanism and power-law formation are quite 
robust and general.

Summary and Several take-aways


