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Figure 2. (a) Power spectrum of the four-velocity field at resolutions 2563, 5123, 10243, and 20483 (increasing in weight from gray to black). (b) The same data as
in (a) but compensated by k5/3 and offset, stretched to exaggerate deviations from a 5/3 law. An arbitrary vertical offset is given to each curve in order to clarify the
spectral shape between k/2π (= 1/L) = 10 and 100. (c) Power spectrum of the Helmholtz decomposed four-velocity field. The compressive component Pc(k) (black)
follows a power law with index 1.80. (d) The same data as in (c) but compensated by k5/3.

the resolution increases from 2563 to 10243, a short interval
obeying the 5/3 law emerges. But the subsequent resolution
of 20483 reveals a more featureful spectrum of four-velocity,
consisting of a broken power law which is steeper (1.92) at
the largest scales and shallower (1.56) at moderate scales. This
may be due to the bottleneck effect, which is characterized
by an accumulation of power at the small-scale end of the
inertial range (Falkovich 1994). There has been substantial effort
to distinguish true inertial scaling from the contamination of
bottlenecks (Beresnyak & Lazarian 2009). We report that the
power spectrum of four-velocity is broadly 5/3, owing to the
fact that each higher resolution adds additional scales which,
on the average, obey 5/3 scaling. In relativistic turbulence,
asymptotically converged scaling behavior may not yield a
single power law. This is because a relativistic cascade contains
a new dimensionless number, the Lorentz factor, at each scale.
As a simple illustration, a cursory application of the K41
dimensional argument to relativistic eddies reveals that the
Lorentz factor at a scale " satisfies

(γ" − 1)3(γ" + 1)
γ 2

"

= Cε2"2/c6, (3)

where ε is the energy injection rate per unit mass and C is
analogous to the Kolmogorov constant. This relation does not
admit a single power-law solution. Instead, solutions are γ" ∝ "
for large γ , and γ" ∝ "2/3 for small γ .

Unlike the total fluid four-velocity, the compressive four-
velocity component u

µ
c is strictly self-similar over the inertial

interval. This is evidence that a local cascade of acoustic modes

is operating across those scales. The Helmholtz decomposition
of spatial components of four-velocity is done in the Fourier do-
main, with the compressive part ũc

k = ũk ·k/k and the solenoidal
part ũs

k = ũk − ũc
k. As shown in Figures 2(c) and (d), the power-

law range of dilatational power spectrum Pc(k) extends through
the energy injection scale. This is because only the vortical
modes are being directly excited. Its slope is 1.80, which is in
contrast with the supersonic limit of highly compressible tur-
bulence, where all the compressive power is in shocks, and the
dilatational power spectrum Pc(k) ∝ k−2. The power spectrum
of solenoidal Ps(k) four-velocity is not at all self-similar, and
accounts for the majority of power (82%) throughout the cas-
cade. We remark that thermally relativistic turbulence admits
a novel mechanism for energy exchange between the vortical
and compressive motions of the fluid. The mechanical work
done in compressing a fluid volume goes into internal energy,
which for a relativistic gas enhances its inertia through the cou-
pling of total enthalpy to fluid four-velocity expressed by the
term ρhuµuν in the energy–momentum tensor. This additional
mechanism of energy transfer adds qualitatively new dynamics
to the turbulent cascade. In particular, it may break the statistical
decoupling between the compressive and vortical cascades that
was recently discovered for non-relativistic compressible turbu-
lence (Aluie 2011). The signature of this effect is proposed to
be an enhanced coherency among the phases of similar-scale
shearing and dilating velocity modes, which can be determined
from the bi-spectrum of fluid four-velocity.

Modern descriptions of turbulence have recognized that
two-point correlations of velocity are not normally distributed
around the mean fluctuating fluid velocity (Kolmogorov 1962;
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