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OUTLINE

Introduction: Radiative magnetic reconnection in
astrophysics.

Astrophysical examples of radiative reconnection:

— Strong synchrotron cooling in pulsar magnetosphere
reconnection.

— Relativistic pair plasma reconnection and Crab Nebula y-flares.

— Other examples: Magnetar Flares; Blazar TeV flares; GRBs;
black-hole accretion-disk coronae, etc.

Sweet-Parker model for resistive reconnection with
strong radiative cooling.
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News Flash!! New Results on Particle
Acceleration in Relativistic Pair Reconnection!
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Particle Acceleration in Relativistic Pair
Reconnection (Werner et al. 2014)

e 2D simulations using Vorpal (and Zeltron) PIC codes.

* Simplest setup: no radiation, no guide field, L, =L = L.

* Focus on relativistic (o"Pstea™ >> 1), large-system
(L/p, >> 0 >> 1) regime (p,=m_c?/eB,).

General Goal:

 completely characterize the resulting final particle
energy distribution function in terms of L and o.

* |sthere a nonthermal power law tail and to what
energies does it extend (how far beyond <y>)?
What determines the high-energy cutoff?



Particle Acceleration in Relativistic Pair
Reconnection (Werner et al. 2014)
Main Findings:
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Particle Acceleration in Relativistic Pair
Reconnection (Werner et al. 2014)
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Main Findings:
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Particle Acceleration in Relativistic Pair
Reconnection (Werner et al. 2014)
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OUTLINE

News Flash!! New Results on Particle
Acceleration in Relativistic Pair Reconnection!

Introduction: Radiative magnetic reconnection in
astrophysics.

Astrophysical examples of radiative reconnection:

— Strong synchrotron cooling in pulsar magnetosphere
reconnection.

— Relativistic pair plasma reconnection and Crab Nebula y-flares.
— Other examples: Magnetar Flares; Blazar TeV flares; GRBs, etc.

Sweet-Parker model for resistive reconnection with
strong radiative cooling.

Summary
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Traditional Magnetic Reconnection in
the Solar System
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Reconnection in Astrophysics

Pulsar magnetospheres, winds, PWNe
AGN (e.g., blazar) jets, radio-lobesf™™
Gamma-Ray Bursts (GRBs)

Magnetar (SGR) flares
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Radiative Reconnection in Astrophysics
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Radiation in Astrophysical Reconnection

* |n conventional reconnection studies (space/solar/lab),
plasma consists of electrons and ions --- no photons!

* In contrast, in many high-energy astrophysical situations
radiation is important --- strongly affects reconnection:

- Radiative cooling; - Radiative drag on recn. outflow;
- Radiation pressure; - Compton-drag resistivity.

* In addition, radiation is our only observational diagnostic
into astrophysical reconnection.

How does a reconnection layer look like, literally?

— what are (prompt) radiative signatures (spectra, light curves)
of reconnection seen by an outside observer - | @

20} e

F
Radiative magnetic reconnection is a -
new frontier in plasma astrophysics!! % "
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Astrophysical Example of
Reconnection with Strong
Radiative Cooling:
Pulsar Magnetosphere

(Uzdensky & Spitkovsky AplJ 2014)
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Detailed modeling of pulsed emission is affected by realistic geometry
(oblique rotator), relativistic kinematics, etc. (Bai & Spitkovsky 2010).

But what are the basic plasma parameters in the emitting region?
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Pulsar Magnetosphere: General Structure

equatorial
current sheet

Rys = 10 km Spitkovsky’06
R.c=¢/Q =1000 km

Light Cylinder



Reconnecting Pulsar Magnetosphere

e Equatorial current sheet should be tearing-unstable (Lyubarsky’ 96),
leading to a hierarchical chain of (merging) plasmoids/flux ropes.

Light Cylinder Q

N . Fe)rs—

(Loureiro et al. ‘07, ’12)

econnecting plasmoid chain

\ Light Cylinder
equatorial (Bucciantini et al. 2006;
current sheet Contopoulos & Spitkovsky 2007)

* Questions:

— What are the basic plasma conditions inside inter-plasmoid
current sheets (actual sites of energy dissipation) ?

— What are the observational consequences ?

5/13/2014 D. Uzdensky 18



Reconnection with strong synchrotron
cooling near pulsar Light Cylinder

* Whatare T, n,and 6 in pulsar-wind comoving frame (I, = 100)?

=— . —
° Th 1 . — < M. _ °v S
ree equations: D e

— Pressure Balance: B,?/8m=2nT =" |

rrrrrr t 2L

— Energy balance with strong synchrotron cooling (c.f. Lyubarsky’ 96):

c | . ) | | B?
S, = yp EBy ~2nA(B,vr)d where A(B,v)=2o0rc gi v
/\ O/

— Ampere’s Law: j,=2nevy = 2necPy "~ (c/4n)B,/ b

e Dimensionless parameters:

— dimensioness rec. rate: f,..=E/B, ~ 0.1 (PIC simulations)

— e*/e drift velocity: By =vy/c=1 & 6 =p



RESULTS

Obtain 3 comoving plasma parameters (7,n,6) in terms of B, (¥4 MG):

* Temperature:
VT= T/rnec2 ~ (Bdr [')’rec)l/2 b_l/z ~ 4x 104 (Bdr Brec)l/2

-- at synchrotron radiation-reaction limit: e E . ¢ = Ay, (V, By)

e Density:
n- (Bdr Brec)-l/z (BOZ/ST[ meCZ) b1/2 ~ 2x108 cm3 (Bdr Brec)-l/2

-- rad. cooling = strong plasma compression >> ambient density
(Uzdensky & McKinney 2011)

e Layer thickness: ZJS

S o  e—_

6 ~ (Brec/ Bdr)l/2 r.e b-3/2 ~ 30cm (Brec/ Bdr)l/2 o

normalized magnetic field: b =B,/B, =r./p.<<1; B, = e/r,? = 6x10®G.



Astrophysical Implications (for Crab, etc.):

* Pulsed GeV FERMI y-ray emission:
(c.f. Lyubarsky ’96, Petri 12, Arka & Dubus ‘13)

Comoving temperature T = 10 GeV at the -
radiation-reaction limit [e E,.. ¢ = Ay n(V, Bol- |

10’

Synchrotron radiation at standard max. Iimit:':w-:l,,-,f?’/
€on" Brec Me €2/ @ = 20 MeV > GeV emission |4 /
after Doppler boost (due to rel. pulsar wind).

Energy (keV)

* Pulsed VHE (> 100 GeV) MAGIC/VERITAS y-ray emission:

Inverse Compton scattering on hot pairs (e =T T=1 TeV) in the layer.

* Pulsed radio emission:
dynamic reconnecting plasmoid chain with cm-scales...




SUMMARY

(0,L) parameter-space PIC study of relativistic pair reconnection:

— power law f(y) ~ y® with a = 1.3 and [exp (- V/v.;) X exp (- v/y.,)?] cutoff;

— Y~ 0oL%3<10<y>; vy, ~L-total voltage drop.

Radiation is often important in high-energy astro reconnection!
Radiation is our only direct diagnostic of astrophysical reconnection.
Reconnection with strong synchrotron cooling in pulsar (e.g., Crab)
magnetosphere outside LC:

— Reconnection layer parameters (comoving T, n, ) depend only on B,

— Can potentially explain FERMI observations of pulsed gamma-ray (GeV)
emission for Crab and other pulsars.

Sweet-Parker resistive MHD reconnection with strong rad. cooling:

— heating/cooling balance determines layer temperature;
— cooling leads to plasma compression and faster reconnection.



