Radiating Accretion Disks and Relativistic Jets from Rotating Black Holes

Jonathan C. McKinney UMD

Talk Collaborators Alexander Tchekhovskoy (Berkeley) Aleksander Sadowski (Harvard) Ramesh Narayan (Harvard) Jason Dexter (Berkeley) Roger Blandford (Stanford)

6§ 10⁹M. **BH in M87**

R swlfdo. [0.d +46nsf-633sf

■ M~(6.6+-0.4)E9Msun

(Gebhardt & Thomas 2009)

- D~16Mpc
 Lhal/Lall.1T
- Lbol/Ledd~1E-6
- Lbol/(Mdot c^2)~1E-2

YOED #Udglr=#314sf#- 3134sf##z donhu#hv#dd#+533;,

Role of Magnetic Field / Flux

Blandford-Znajek 77 Jet

 P 2 #si² Ω^2_{H}

Role of Magnetic Field / Flux

Weak Field MRI Disk **Blandford-Znajek Jet** = Flux is Fine-Tuned DISK DISK

PUI### djqhwr0Urwdwlrqdd#Iqvwdelolw

U

E odqgirug) #
l qdmhn +: : ,#P dfG rqdog#) #W kruqh# +; 5 , /Æ doexv) #K dz d
h | #+4 <<4/4<< ; ,

Classic GR-MHD Models

MHD (Fluid) Conservation: Mass-Energy-Momentum-Flux

Physical Setup: Spin: a=0.94 Disk: Radiatively Inefficient Disk: Thick Short-R Disk Field: Limited Magnetic Flux Field: 1-loop dipole (and Quad) Duration: ~5,000M

Numerical Setup: Fully 3D (no syms.) 256x128x32 – 256x128x64 Kerr-Schild Coords. Large outer box radius

Results: Magneto-rotational instability Exponential amplification Arbitrarily Weakly Powered Jet

Role of Magnetic Field / Flux

Weak Field MRI Disk + Blandford-Znajek Jet = Flux is Fine-Tuned

τJ

Saturated Field MAD Disk + Blandford-Znajek Jet = Flux in Force Balance

Бренкан аldumnaral ho anuwidhe тли

] qdmhn#+:9,/#E lvqrydw| lON rjdq#) #U x}p dlnlq# +:7/:9,/#Q dud|dq hw#do#+36,/#U h|qrogv#nw#do#+39,/# Ljxp hqvkfkhy hw#do#+36,/#EN rp lvvdury +3<,

How much Magnetic Flux? Coherent Flux near Galactic Nucleus: • $\Phi \sim 0.1 \text{ pc}^2\text{G}$ or greater Lang, C. C., Morris, M., & Echevarria, L. 1999, ApJ, 526, 727 Magnetospheric Radius (McKinney, Tchekhovskoy, Blandford 2012): 1) Mass Flux: $\Sigma = \dot{M}/(2\pi r \epsilon v_{\rm ff})$ $\dot{M} = \dot{M}_{\rm H} (r/r_g)^n$ 2) Gravity Balancing Field: $GM\Sigma/R^2 \sim 2B_R B_z/4\pi \sim B_z^2/2\pi$ $B_z \sim 10^5 \epsilon_{-1}^{-1/2} m_8^{-1/2} \dot{m}^{1/2} (r/r_g)^{-5/4+n/2} \text{ G}$ 3) Solve for Bz: 4) Integrate Bz within r_m to get magnetic flux (>) within r_m . 5) Solve for r_m : $r_m \sim r_g \left(12000 \left(\frac{3}{4} + \frac{n}{2} \right) \right)^{\frac{4}{3+2n}} \epsilon_{-1}^{\frac{2}{3+2n}} m_8^{-\frac{6}{3+2n}} \dot{m}_H^{-\frac{2}{3+2n}} \left(\frac{\Phi}{0.1 \text{ pc}^2 \text{G}} \right)^{\frac{4}{3+2n}}$ SgrA*: $r_{m} \sim 10^{7} r_{g}$ (n=1) M87 : $r_{m} \sim 10^{2} r_{p}$ (n=1)

Role of Magnetic Flux Accumulation Dim.less Flux: Psi/Mdot^{1/2}

Physical Setup: GRMHD + rho,u floor Spin: a=0.99 (+-0.9,0.5,0.2,0.1,0) Radiatively Inefficient Thick Extended-R Disk Run: ~30,000M to ~100kM

Numerical Setup: Fully 3D (no syms), large Rout Kerr-Schild Coords 288x128x128 – 272x128x256 Explicit Res+Conv Tests

Tchekhovskoy, Narayan, McKinney (2011) McKinney, Tchekhovskoy, Blandford (2012) Narayan et al. (2012)

MAD Structure

Time-Azimuthal Average:

Red: Magnetic Field Lines Gray: Velocity Stream Lines

Blue: Disk-Jet Boundary Green: Outflow Black: Unbound Outflow

- Magnetic Flux Accumulates up to Natural Limit
- Greater than 100% BH and jet efficiencies!
- MRI (magneto-rotational/Balbus-Hawley instability) suppressed!

Ljxp hqvkfkhy hw#da#+3;/3<,/#V fkhnkryvnr| hw#da#+44/45,/#P fN lqqh| #hw#da#+45,

Advection vs. Diffusion of Magnetic Flux

(Van Ballegooijen 89, Pringle 93, Lubow et al. 94 VS_ Rothstein & Lovelace or Beckwith 09 or Guan & Gammie 09)

Transient Jets Spin Powered?

P lggdnwrq/#P ladnuMrqhv/#I hqghu#+5347,) #I hqghu#nw#da#) #Q dud | dq#hw#daI

Striped Winds/Jets Vs. Magnetospheric Reconnection

Coroniti (90) Begelman (98) Spruit, Daigne, & Drenkhahn (2001) Giannios et al. , McKinney & Uzdensky (2012)

de Gouveia dal Pino, Lazarian (2005,2010) Igumenshchev (2009) Dexter, McKinney, Markoff, Tchekhovskoy (2014) Tagger & Pellat (99), Livio et al. (03), King et al. (04), Begelman & Armitage (14) F#ppingMAD

BH Transient Jets Flux vs. Spin/Rotation

Gh{whu/#P fN lqqh | /#P dunrii/#W fkhnkryvnr | +5347,

BZ: Pjet\propto Psi^2 \Omega_H^2

MR: Pjet\propto Psi^2 v_r

Eddington-Level Accretion

Accretion exceed Eddington? (quasars, TDEs)
Luminosity exceed Eddington? (ULXs)
Inflows, Outflows, M-sigma (AGN, galaxies)
>10⁹M_☉ holes already by z~6 (seeds by z>10)

1. Can growing BHs contribute significantly to reionization?

- 2. How are the z~6 SMBHs with $M_{bh} = \text{few} \times 10^9 M_{\odot}$ assembled?
- 3. Issue: Maybe works at Edd, but then overproduce other BHs

Limits on accretion

is limited by Eddington, i.e.

$$L = \varepsilon c^2 \overset{\bullet}{M}_{acc} \leq L_{Edd} = \frac{4\pi GMc}{\kappa}$$

$$\kappa = \sigma_T / m_p =$$
 `opacity')

and some of rest mass energy turned into radiation, i.e.

$$\overset{\bullet}{M} = (1 - \varepsilon) \overset{\bullet}{M}_{acc}$$

Eddington limited accretion:

$$\frac{\mathbf{M}}{M} < \frac{1 - \varepsilon}{\varepsilon} \frac{M}{t_{Edd}}$$

$$t_{Edd} = \frac{\kappa c}{4\pi G} = 4.5 \times 10^8 \text{ yr}$$

Thus

$$\frac{M}{M_0} < \exp\left(\left[\frac{1}{\varepsilon_{\min}} - 1\right]\frac{t}{t_{Edd}}\right)$$

Final mass exponentially sensitive to 1/efficiency

i.e. a < 0.5. Even lower spin if sub-Eddington in moments. Even smaller spin for UDFy-38135539 at z=8.6.

Rapid BH growth requires:

- Quite low spin [King et al., but overproduces int. BHs: Tanaka & Haiman (2009)]
- Or super-Eddington Accretion

Super-Eddington Accretion

Physical Setup: GRRMHD w/M1 (not FLD) M1 Closure = Rad. Fluid e-Scattering, FF+BF Abs Spin: a=0.9375 (0,0.8) Weak Mag. Field (not MAD) Marg. Bound Torus Run: ~5,000M - 20,000M

Numerical Setup: Fully 3D Kerr-Schild Coords: 256x128x64 Implicit Covariant Rad. 4-force

Sadowski, Narayan, McKinney, Tchekhovskoy (2013) McKinney, Tchekhovskoy, Sadowski, Narayan (2013)

Super-Eddington Accretion

Mass accretion rate can arbitrarily exceed Eddington rateLuminosity near Eddington, so Rad. Eff. very low!

BH can rapidly grow even for large spin

Isotropic Equivalent luminosity >10x Eddington for faceon view (ULXs?)

 Blandford-Znajek jet power scales with Mdot, so exceeds Lrad. May have implication to AGN Feedback Classic Disk-Jet Theory

- Disk with weak Jet(Fat Dog with tiny Tail)
- Weak Magnetic Fields Amplified by the MRI
- Invisible Jets
- Accretion Eddington Limited

Disk & Jet Theory

- Jet can dominate Disk (Dog Chasing Tail)
- Ordered Mag. Flux Piles-up
- Flipping MAD Hot Outbursts
- Super-Eddington Mdot and geom. beamed Lrad and Pjet

