Multi X-line magnetic reconnection and particle acceleration

J. F. Drake	University of Maryland
J. Dahlin	University of Maryland
R. Fermo	Boston University
M. Swisdak	University of Maryland

Astrophysical reconnection

- Solar flares
- Pulsar magnetospheres, winds, PWNe
- AGN (e.g., blazar) jets, radio-lobes
- Gamma-Ray Bursts (GRBs)
- Magnetar flares

RHESSI observations

- July 23 γ-ray flare (Holman, *et al.*, 2003)
- Double power-law fit with spectral indices: 1.5 (34-126 keV)
 2.5 (126-300 keV)

RHESSI occulted flare observations

- Observations of a December 31, 2007, occulted flare
 - A large fraction of electrons in the flaring region are part of the energetic component (10keV to several MeV)
 - The pressure of the energetic electrons approaches that of the magnetic field
 - Remarkable!

The importance of the reconnection outflow

• Most of the magnetic energy release during reconnection takes place downstream of the x-line where newly reconnected field line relax their tension

- Not around the x-line

- Magnetotail observations suggest that the ions carry most of the released magnetic energy (Eastwood et al 2013)
 - Bulk Alfvenic flow
 - Ion heating enthalpy flux

Ion energy gain during reconnection

- Wind spacecraft observations in the solar wind (Phan et al 2006)
- What is the mechanism for ion heating?

Counter-streaming ions within reconnection exhausts

- In the exhaust outflow frame
- Counter-streaming ions are measured throughout the magnetosphere(Hoshino et al '98, Gosling et al '05, Phan et al '07)
- Basically a Fermi reflection mechanism
 - curvature drift along the reconnection
 electric field

Basic mechanisms for electron energy gain during reconnection

- Electron heating and acceleration less well understood
- In the guiding center limit

$$\frac{d\varepsilon}{dt} = \frac{\mu}{\gamma} \frac{\partial B}{\partial t} + qv_{\parallel}E_{\parallel} + q\vec{v}_{c} \bullet \vec{E} + q\vec{v}_{B} \bullet \vec{E}$$

where drift $v_{c} = \frac{\gamma v_{\parallel}^{2}}{\Omega} \vec{b} \times (\vec{b} \bullet \vec{\nabla} \vec{b})$

- Curvature drift
 - Slingshot term (Fermi acceleration) increases the parallel energy

Grad B drift
$$v_B = \frac{\gamma v_{\perp}^2}{2\Omega} \vec{b} \times \frac{\vec{\nabla}B}{B}$$

- Betatron acceleration increases (or decreases) perpendicular energy
- Magnetic moment

$$\mu = \frac{m\gamma^2 v_{\perp}^2}{2B}$$

Electron heating during reconnection

- Carry out 2-D PIC simulations of electron-proton system with a weak and strong guide fields (0.2 and 1.0 times the reconnection field)
 - 819.2d_i x 409.6d_i
 - Mass-ratio $m_i/m_e = 25$
 - Compare all of the heating mechanisms

Electron heating mechanisms: weak guide field

- Slingshot term dominates (Fermi reflection)
- Parallel electric field term small a surprise
- Grad B term is an energy sink
 - Electrons entering the exhaust where B is low lose energy because μ is conserved.

Spatial distribution of heating: weak guide field

• The distribution of Fermi and E_{\parallel} heating

Electron heating mechanisms: strong guide field

• Fermi and parallel electric field term dominate

Spatial distribution of heating: strong guide field

- The distribution of Fermi and E_{\parallel} heating
- Longer current layers and electron holes (Buneman)
 - Not much heating from electron holes

Electron energy spectra

- Electron energy spectrum from guide field unity simulation
- Most rapid electron energy gain early in time when many small islands develop and merge
- No powerlaws no loss mechanism in periodic system

Electron spectral anisotropy

- The dominant acceleration mechanisms accelerate electrons parallel to the local magnetic field Fermi slingshot and E_{\parallel}
 - Extreme anisotropy in the spectrum of energetic electrons
 - More than a factor of 10^3
 - What limits the anisotropy?

Fermi acceleration

- How do the most energetic particles gain energy?
 - Reflection from the ends of contracting islands
 - Increase of parallel energy and pressure

Multi-island particle acceleration

- How does a multi-island environment develop?
- What is the size distribution of magnetic islands? (Fermo '10, Uzdensky '10)
- How does a bath of growing and merging islands accelerate particles?
 - Need a generalized Parker transport equation to describe reconnection driven particle acceleration
- How do energetic particles feed back on island growth?
 - firehose
- What is the upper limit on electron acceleration in a multiisland system?
 - Gyro-synchrotron radiation is significantly reduced in a system with extreme anisotropy – guide field case

Multi-island reconnection with a guide field

- Narrow current layers spawn multiple magnetic islands in reconnection with a guide field (Drake et al 2006; Daughton et al 2011, Fermo et al 2012)
- Multi-island reconnection is generic

Development firehose limits reconnection

- The Fermi mechanism drives
 the system towards
 the firehose
 threshold even in a
 system with very
 low initial β
- At the firehose threshold magnetic fields have no tension
 - No reconnection drive

Firehose instability during island contraction

- Fermi reflection within islands increases p_{\parallel} and leads to firehose

Fermi acceleration in contracting islands $\downarrow^{W} \Rightarrow \qquad ()$

• Area of the island Lw is preserved

 \Rightarrow nearly incompressible dynamics

- Magnetic field line length L decreases
- Parker's transport equation

$$\frac{\partial F}{\partial t} + \nabla \bullet uF - \nabla \bullet \kappa \bullet \nabla F - \frac{1}{3} (\nabla \bullet u) \frac{\partial}{\partial p} pF = 0$$

- Only compression drives energy gain. Why?
- Parker equation assumes strong scattering \Rightarrow isotropic plasma
- Retaining anisotropy is critical for reconnection

Energy gain in merging islands

- Total area preserved
- Magnetic flux of largest island is preserved
- Particle conservation laws
 - Magnetic moment $\mu = p_{\perp}^2 / 2mB$
 - Parallel action

 $p_{\parallel}\,L$

• Field line shortening drives energy gain

$$\frac{dp_{\parallel}^{2}}{dt} \sim 2 \frac{0.1c_{A}}{r_{1} + r_{2}} p_{\parallel}^{2} \qquad \left(\frac{dp_{\perp}^{2}}{dt} \sim -\frac{0.1c_{A}}{r_{1} + r_{2}} p_{\perp}^{2}\right) \qquad \left(\frac{dp_{\perp}^{2}}{dt} \sim -\frac{0.1c_{A}}{r_{1} + r_{2}} p_{\perp}^{2}\right) \qquad \left(\frac{dp_{\perp}^{2}}{r_{1} + r_{2}} + \frac{1}{r_{1} + r_{2}} p_{\perp}^{2}\right) \qquad \left(\frac{dp_{\parallel}^{2}}{r_{1} + r_{2}} + \frac{1}{r_{1} + r_{2}} p_{\perp}^{2}\right) \qquad \left(\frac{dp_{\parallel}^{2}}{r_{1} + r_{2}} + \frac{1}{r_{1} + r_{2}} p_{\perp}^{2}\right) \qquad \left(\frac{dp_{\parallel}^{2}}{r_{1} + r_{2}} + \frac{1}{r_{1} + r_{2} + r_{2}} + \frac{1}{r_{1} + r_{2} + r_{2} + \frac{1}{r_{1} + r_{2}} + \frac{1}{r_{1} + r_{2} + \frac$$

No energy gain when isotropic

Particle acceleration in a multi-island reconnecting system

- Average over the merging of a bath of magnetic islands
- Kinetic equation for $f(p_{\parallel}, p_{\perp})$ with $\zeta = p_{\parallel}/p$
 - Equi-dimensional equation no intrinsic scale
 - powerlaw solutions
 - Drake et al 2013

$$\frac{\partial f}{\partial t} + \vec{u} \cdot \vec{\nabla} f - \vec{\nabla} \cdot \vec{\vec{D}} \cdot \vec{\nabla} f + R \left(\frac{\partial}{\partial p_{\parallel}} p_{\parallel} - \frac{1}{2p_{\perp}} \frac{\partial}{\partial p_{\perp}} p_{\perp}^{2} \right) f - \gamma \frac{\partial}{\partial \zeta} \left(1 - \zeta^{2} \right) \frac{\partial}{\partial \zeta} f = 0$$

$$R \sim 0.1 \left\langle \frac{\alpha^{1/2} c_A}{r} \right\rangle = \frac{1}{\tau_h} \qquad \alpha = 1 - \frac{1}{2} \beta_{\parallel} + \frac{1}{2} \beta_{\perp}$$

Energetic particle distributions

- Solutions in the strong drive limit balance between drive and loss
 - Characteristic times
 - Heating time based on characteristic island size w: $\tau_{heat} = w/c_A$
 - Loss time based on characteristic system size L: $\tau_{loss} \, \sim L/c_A$
 - Typically heating time short compared with loss time (w \ll L)
 - Require feedback from the high pressure (firehose)
- Pressure of energetic particles rises until it is comparable to the remaining magnetic energy

 $j \sim E^{-2}$

- Equipartitian
- Powerlaw solutions for the particle flux
 - Non-relativistic

$$j \sim p^2 f(p) \sim p^{-3} \sim E^{-1.5}$$

• Relativistic

An upper limit on energy gain during reconnection

- Magnetic reconnection dominantly increases the parallel energy of particles, depending on the degree of magnetization
 - Traditional synchrotron emission may not limit particle energy gain
- An upper limit on energy comes from a balance between the energy gain due to the magnetic slingshot (~ γ /R) and the particle radiation due to its motion along the curved field line (~ γ^4)

$$\gamma < \left(R / R_c \right)^{1/3}$$

- Where $R_c = e^2 / mc^2$ is the classical electron radius and R is the field line radius of curvature.

Conclusions

- The magnetic curvature and associated Fermi reflection is the dominant driver of electron acceleration during reconnection of anti-parallel fields
- Both Fermi and parallel electric fields dominant drivers of electron acceleration during guide field reconnection
- Significant acceleration requires electron interaction with multiple islands
- Energetic particles exhibit extreme anisotropy for reconnection with a guide field
 - What mechanism limits this anisotropy?

Conclusions (cont.)

- A transport equation describing particle heating and acceleration in a bath of merging magnetic islands generalizes the Parker transport equation to include anisotropy
 - Powerlaw solutions controlled by feed back from the pressure anisotropy
 - Can be used to explore particle acceleration in large-scale systems