Production and decay of magnetic energy in a relativistic fluid

Jonathan Zrake (KIPAC)

Purdue University

Tuesday May 13, 2014

Why turbulence?

arth ... oceans, rivers, atmosphere, geo-dynamo

oace ... sun, solar wind, heliopause (MHD)

terstellar medium ... supersonic, giant radio lobes

upernovae ... mixing / nuclear burning

eutron stars ... superfluid, relativistically warm, magnetized

ternal shocks ... GRB prompt, Blazar emission (kinematically ativistic)

<u>kternal shock ... GRB afterglow (magnetic field decay)</u>

Relativistic hydrodynamic turbulence

Magnetic energy production by turbulent dynamo

Magnetic energy decay in a relativistic fluid: universa

turbulence

lust use gamma-beta, not v/c!

olmogorov 1941: P_v(k) ~ k^{-5/3}

he-Leveque 1994: intermittency

Numerical calculations

riven turbulence (stirred "by hand" at large scales

eriodic box ... resolutions up to 2048³

elativistic turbulent cascade, fluctuating y~3

Zrak MacF (2(

Summary

elativistic hydrodynamic turbulence must be haracterized relativistically

caling is nearly K41, but at sufficiently high resoluti

ignificant deviations

ntermittency consistent with She-Leveque if proper haracterized

Time history of the magnetic energy for a representative run at 128³, together with the empirical model (Equation 3) with best-fit parameters. The horizontal dashed line indicates From left to right, the vertical dashed lines mark the end of the startup, the magnetic energy, E_{sat} at the dynamo completion. Figure 3.

Neutron star merger

Liu et al. (2008) Anderson et al. See also: Giacomazzo (20

Jourpartition

Uer 1/2 10^{13} g/cm³ $_{\rm MS} \gtrsim 10^{16} {
m G}$

Figure 4. Top: Convergence study of the k growth time τ_1 (blue) and the dynamo completio defined as $t_{n1} + \tau_2$. Bottom: Convergence st fit model parameter E_{sat} expressed as the ratikinetic energy E_M/E_K . The converged value averaged $E_M/E_K \approx 0.6$. Nevertheless, at in

Zrake and MacFadye

Summary

riven relativistic MHD turbulence achieves quipartition with turbulent kinetic energy oldreich-Sriedhar scaling evident, but anisotropy is nore weakly dependent on the scale

S-NS mergers produce copious magnetic energy, 10⁵⁰ ergs if turbulence is prevalent

w do magnetic field fluctuations decay in a ativistic fluid?

 $\boldsymbol{\kappa}(t=0) \propto \delta(k-k_0)$

In particular

lassical MHD flow problem

there an "inverse cascade" in MHD?

o current sheets emerge from generic initial data?

the dissipation "bursty"?

nagnetic energy loss mediated by resistivity, or so linear process?

Simplest possible model

elativistic MHD equations

$\sim p_{gas}$

deal (artificial resistivity and viscosity)

hree dimensions, periodic, cartesian

imulate stationary gas embedding a tangled nagnetic field, let it go

lagnetic field is initially Gaussian random

Why power law decay?

 $/t_A(t)$ E(t)/H(t)

Power spectrum B is consistent w current sheets

Summary

agnetic energy decay self-similar ~ t⁻¹ independent of grid resolu

explosive dissipation seen with beta ~ 1 fluid

onsistent with Alfven wave cascade, but also with current sheet

rmation: which controls the decay?

