

Pulsar as plasma generator

Andrey Timokhin

NASA Goddard Space Flight Center

Workshop on Relativistic Plasma Astrophysics, Purdue Univresity, May 11-15, 2014

4 D N 4 B N 4 B N 4 B

Pulsar: rapidly rotating magnetized neutron star "Electric lighthouse"

Andrey Timokhin (GSFC)

Pulsar as plasma generator

A (10) A (10) A (10)

Pulsars: What we see

- Pulse peaks are narrow
- Negligible energy budget

PWNe feed by dense plasma

< 6 k

Energy goes there

Pulsar Magnetosphere: Theorist view

The global circiut in the electrical generator

Andrey Timokhin (GSFC)

Plasma creation in the polar cap

Cascades are electromagnetically driven

Numerical code for cascace modeling PAMINA

PIC And Monte-Carlo code for cascades IN Astrophysics

Modeling from the first principles:

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Limit cycle: series of discharges

No particles extraction from the NS

Andrey Timokhin (GSFC)

Pulsar as plasma generator

Purdue Workshop 7 / 32

- **A**

Formation of a low energetic flow for $j/j_{\rm GJ} < 1$

Free particle extraction from the NS

Waves during discharge

It did not escape our attention...

- T

Free particle extraction from the NS

Andrey Timokhin (GSFC)

Pulsar as plasma generator

Purdue Workshop 10 / 32

Particle acceleration with no particle extraction

Andrey Timokhin (GSFC)

Pulsar as plasma generator

Purdue Workshop 11/32

Electron-positron cascade

Cascade - splitting of primary particle energy into energy of pairs

$$\kappa_{\rm max} \simeq 2 \frac{\varepsilon_p}{\varepsilon_{\rm th}} \, .$$

Cascade efficiencly

- flux of primary particles
- energy of primary particles
- · efficiency of splitting the energy

Full cascade

Synctrotron cascade

Curvature Radiation

Andrey Timokhin (GSFC)

Pulsar as plasma generator

Photon absorption in magnetic field

$$\begin{split} \alpha_B(\epsilon_{\gamma},\psi) &= 0.23 \, \frac{\alpha_f}{\lambda_C} \, \frac{B}{B_q} \, \sin \psi \, \exp\left(-\frac{4}{3\chi}\right) \\ \chi &\equiv \frac{1}{2} \, \epsilon_{\gamma} \frac{B}{B_q} \, \sin \psi \,, \\ \tau(\epsilon_{\gamma},l) &= \int_0^l \alpha_B(\epsilon_{\gamma},\psi(s)) \, ds \,, \end{split}$$

In the approximation of constant magnetic, $B \approx \text{const} (r \ll R_{\text{NS}})$

$$\tau(\chi) = A_B \frac{\rho_c}{\epsilon_{\gamma}^2 (B/B_q)} \left[\frac{1}{6} \chi (3\chi - 4) \exp\left(-\frac{4}{3\chi}\right) - \frac{8}{9} \operatorname{Ei}\left(-\frac{4}{3\chi}\right) \right]$$

Andrey Timokhin (GSFC)

The Sec. 74

 $1/\chi_a$: $\tau(\chi_a) = 1$

2

ヘロト 人間 とくほとくほう

Energy of escaping photons

< 17 >

Fraction of photon energy going into synchrotron radiation: ζ_{syn}

Andrey Timokhin (GSFC)

Pulsar as plasma generator

Purdue Workshop 17 / 32

Effect of magnetic field on Synchrotron cascade

Decrease in multiplicity:

- high $B \to \text{small photon MFP}$, lower ψ_a , more energy in pair kinetic energy
- low $B \rightarrow$ large escaping energy

There should be an optimum magnetic field: $B \sim 10^{12} \text{ G}$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fraction of the primary particle energy going into Curvature Radiation: ζ_{CR}

Andrey Timokhin (GSFC)

Multiplicity of CR-Synchrotron cascade: log κ

э

Efficiency of CR-Synchrotron cascade: κ/κ_{max}

$$\kappa_{\max} \simeq 2 \frac{\epsilon_p}{\epsilon_{esc}}$$
.

Andrey Timokhin (GSFC)

Pulsar as plasma generator

Purdue Workshop 21 / 32

э

Particle acceleration

$$E(x_p) = 4\pi \eta_{GJ}^0 \, \xi_j \, (x_0 - x_p); \qquad \xi_j \equiv \frac{j - j_m}{j_{GJ}^0} \left(1 + \frac{c}{v}\right);$$

$$\epsilon_{\pm,\,acc} \simeq 5 \times 10^7 \, \chi_a^{2/7} \, \xi_j^{1/7} \rho_{c,7}^{4/7} P^{-1/7} B_{12}^{-1/7}$$

Andrey Timokhin (GSFC)

Pulsar as plasma generator

Purdue Workshop 22 / 32

2

Energy of primary particles

< 🗇 🕨

Multiplicity of polar cap cascade: $\kappa \sim 10^5$

Dependence on ρ_c partially cancels out:

- small $\rho_c \rightarrow$ high splitting efficienly, but low primary particle energy
- large $\rho_c \rightarrow$ low splitting efficienly, but high primary particle energy

Discharge: RS flow

• electrons • positrons • γ -rays

- · Low heating of NS surface
- Duty cycle: can be as low as $h_{\rm gap}/R_{\rm NS}\sim 1/100$ (for Crab)

Discharge: super-GJ SCLF

• electrons • positrons • γ -rays

- Low heating of NS surface
- Duty cycle: ~ 1/few

Cascade Portrait

Andrey Timokhin (GSFC)

Pulsar as plasma generator

Cascade Portrait

Andrey Timokhin (GSFC)

Pulsar as plasma generator

Purdue Workshop 28 / 32

PSR J1057-5226: Polar cap emission?

Conclusions

- Particles can be accelearted faster and at lower altitudes
- Maximum multiplicity of polar cap cascades $\kappa \sim 10^5$
- Maximum multiplicity is not sensitive to pulsar parameters
- Plasma distribution is non-uniform
- Pair yield is mostly determined by primary particle flux: super-GJ space charge limited flow zones should produce the highest pair yield
- Gamma-ray emission from polar caps is at lower energies ($\sim 10-100 \; \text{MeV})$

3

イロト イポト イラト イラト

Quest for Unicorns

Andrey Timokhin (GSFC)

Pulsar as plasma generato

イロト イヨト イヨト イヨト

Unicorns DO EXISTS!

Andrey Timokhin (GSFC)

イロト イヨト イヨト イヨト