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Under-dense vs. over-dense

Can the plasma screen out the electric field?

Answer depends on the electron density and time available

ω/ωpe ≪ 1 YES – over-dense

ω/ωpe > 1 NO – under-dense

. . . and on the amplitude ωpe =
(

4πnee
2/〈γ〉m

)1/2

Over-dense: only MHD modes (magnetosonic, Alfven), phase

speeds subluminal

⇒ use ideal-MHD, force-free. . .

Under-dense: high-frequency, transverse electromagnetic

modes possible, with superluminal phase speed

⇒ use (at least) two-fluids.
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Under-dense zones in a conical e± jet/beam

Three dimensionless jet parameters:

1 (Mass-loading)−1
µ = L/Ṁc2

2 Magnetization σ0 = Poynting flux/K.E. flux

3 A parameter describing the jet composition: e/m

Cross-jet potential × e/mc2: a0 = eBr/mc2

(Dimensionless luminosity/unit solid angle)1/2
:

a0 = (4πL/Ωs)
1/2
(

e2/m2c5
)1/2

Constraints/Estimates:

1 a0 = 3.4 × 1014
√

4πL46/Ωs

2 σ0 . µ
2/3 (for a supermagnetosonic jet)

3 Pair multiplicity κ0 = a0/(4µ) > 1
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Under-dense zones in a conical jet

a0 ≫ µ ≫ σ ≫ 1Fluctuation wavelength λ,

Over-dense
r = Ża0/µ

Under-dense
r = Ża0/σ0 r = Ża0

Subluminal
constant γ, σ ≈ σ0 acceleration

zone
particle
dominated

Superluminal
no propagation propagation

1 pc (blazar jet)Crab t.s.

Peri — apastron, PSR 1259-63
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Two-fluid simulations

Simplest description that includes superluminal, electromagnetic

modes is one with two charged fluids Amano & Kirk ApJ (2013)

Relativistic, finite temperature electron & positron fluids

1D in space, 3D in momentum and EM fields

Initial conditions:

Left half: circularly polarized, cold, static shear, γ = 40,

σ = 10, λ ≈ λg/4
Right half: shocked (R-H conditions) unmagnetized plasma
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Time evolution
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Wave helicity
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Positive helicity injected wave (E+, B+).

Backwards propagating, negative helicity waves generated.

E > B in precursor and downstream (vwave = B/E).
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Simulation Results and Implications

Poynting flux dissipated completely

A precursor containing strong electromagnetic waves is

formed

A hydrodynamic shock remains

Particles are not tied to magnetic field lines in the downstream

medium
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Radiation-damped precursor

Analytical model of wave deceleration by radiation damping

Mochol & Kirk ApJ (2013).

Radiation mechanisms:

synchro-Compton radiation (but with γ ∼ a)

Ωpulsar → eBeff/γmc

Frequency ∝ γ2Beff ∝ γ3 ∝ 1/r3

Power ∝ γ2B2
eff
∝ γ4 ∝ 1/r4

enhanced inverse-Compton radiation, in the presence of
target photons

Frequency ∝ γ2νtarget ∝ 1/r2

Power ∝ γ2Utarget ∝ 1/r2

⇒ Gamma-ray binaries
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Be star-pulsar binary

X-rays from interacting

winds Tavani & Arons (1997)

Be star wind:

Ṁ ∼ 10−8 M⊙ yr
−1

vwind ∼ 103 km s−1

Pulsar wind:

Ls.d. ≈ 8 × 1035 erg s−1

Momentum balance:

rBe

rp
=

√

Ls.d.

Ṁvwindc
∼ 0.7

periastron

SS 2883

pulsar orbit
period = 3.4 years
eccentricity = 0.87

wind interface

wind flow line

stellar disc?
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GeV flare from PSR B1259−63

Abdo et al ApJL 2011
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Conclusions

Under-dense flows present in pulsar winds and possibly also

in AGN jets

Their interactions with obstacles differ substantially from those

of MHD flows.

An observable signature is predicted from “thermal” particles

in an electromagnetic precursor (gamma-ray binaries)

Future work: particle acceleration properties. . .
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