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FIG. 2: The Device.

some electrons can still be pulled out at a rate needed to
sustain the saturation.
We start off without any charges inside the Device,

with B = 0, and with potential electric field E = −∇φ
which is given by ∇2φ = 0 and the boundary values
of φ. The walls start to emit electrons creating B and
changing E, as described by Maxwell equations (9) (with
appropriate boundary conditions at the walls describing
the electron pull-out rate).

D. Exact Solution

Assume that the Device does saturate. The resulting
fields should satisfy stationary AE equations of §IVB.
One can check that the following expressions do solve the
equations and satisfy the boundary conditions specified
above:

φ(x, y) = e−y, (18)

B(x, y) =

{

−e−ysign(x), |x| > π
2
;

−e−y sin(x), |x| < π
2
.

(19)

The domain π
2
< |x| < a is a force-free zone. Here the

Grad-Shafranov equations (14, 15) are obeyed:

E0 = 0, B = ±φ, ∇2φ = φ = B
dB

dφ
. (20)

The domain |x| < π
2
is a radiation zone. Here the non-

force-free stationary AE equations (16, 17) are obeyed

E0 = e−y cos(x), (21)

∇φ ·∇B = ∂yφ∂yB = φB = B∇2φ, (22)

ẑ ·∇φ×∇B = −∂yφ∂xB = −E0∇
2φ. (23)

E. Discussion

The electromagnetic field and the corresponding
Poynting fluxes in the force-free zones are shown in
Fig.(2). In the left force-free zone electrons are moving
to the right (along the lines of constant B shown in the
figure). In the right force-free zone electrons are moving
to the left.
The two electron beams carrying the Poynting fluxes

are so polarized (opposite signs of B with collinear E),
that if they were to interpenetrate, a purely-electric re-
gion would have been created, where the electrons would
have to move strictly down, rather than towards each
other. A radiation zone must therefore separate the two
force-free zones.
In the radiation zone, the Poynting flux remains par-

allel to the x-axis, flowing towards the y-axis, but
none of it reaches the y-axis: S = (EyB,−ExB, 0) =
(−e−2y sin(x), 0, 0). The entire Poynting flux gets anni-
hilated into curvature radiation.
To discuss radiation, it makes sense to restore dimen-

sions. We can do it by prescribing the wall potential as
φ = FRe−y/R where F has dimensions of electromag-
netic field and R has dimensions of length. Then the
curvature of electron trajectories in the radiation zone is
∼ R−1, the proper electric field is ∼ F . According to the
formulas of §III, the Device emits curvature photons of
characteristic energy

Ec ∼ c!e−3/4F 3/4R1/2. (24)

Calling L ∼ cF 2R2 the power, erg/s, we get (as we
should) the formula [1] expressing the photon cutoff en-
ergy Ec in terms of the power L and the size of the emit-
ting region R:

Ec ∼
mc2

α
Ar3/8, (25)

where m is the mass of electron, α is the fine structure
constant,

Ar ≡
L

Le

(

R

re

)−2/3

, (26)

is the Aristotle number of the Device, re = e2

mc2 = 2.8 ×

10−13cm is the classical electron radius and Le =
mc3

re
=

8.7× 1016erg/s is the “classical electron luminosity”. AE
is applicable at large Aristotle numbers,

Ar & 1. (27)

V. CONCLUSION

• Pulsars shine by annihilating colliding Poynting
Fluxes into curvature radiation.

• To solve a pulsar one can use AE.
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II. MAGNETOSPHERE

First solve Maxwell equations

Ḃ = −∇×E, (3)

Ė = ∇×B− j, (4)

in entire space. The current j is given by two different
expressions, which we call Ohm’s laws, inside and outside
the star of radius Rs.
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FIG. 1: Thin blue: A, integer multiples of 0.1Amax, Amax =
0.25. Black and thin red: ψ and φ, 0.1,0.2, and integer mul-
tiples of 0.4. Thick green: the radiation zone boundary.

Inside the star, for spherical radii R < Rs, use the
standard Ohm’s law (in a rotating frame, angular veloc-
ity Ω) plus a fixed external toroidal current. The con-
ductivity of the star is arbitrary, but $ 1/Rs. The value
and poloidal profile of the external current are arbitrary;
they just determines the magnetic moment of the star µ;
and µ scales out of the final results which will be given
in terms of the pulsar observables: the spin-down power
Lsd and the angular velocity of the star Ω.
Outside the star, R > Rs, use the following Ohm’s law

j =
ρE×B+ |ρ|(B0B+ E0E)

B2 + E2
0

, (5)

where

ρ ≡ ∇ ·E (6)

is the charge density.
Start with initial fields equal to zero. Regularize

Maxwell equations (3) by small diffusivities η∇2B and
η∇2E with η & Rs. Regularize the Ohm’s law (5) by

E0 → E0 + ε with ε & the characteristic magnetic field
value.
After a while the electromagnetic field saturates at

what is shown in Fig.1. All results (unless specified oth-
erwise) are given in “pulsar units”:

c = Ω = Rlc = µ = 1, (7)

where Rlc = c/Ω is the light cylinder radius.
In cylindrical coordinates, (r, θ, z), the saturated fields

depend only on r and z and can be written as

E = (−∂rφ, 0,−∂zφ) , (8)

B =
1

r
(−∂zψ, A, ∂rψ) . (9)

The electric field is represented by the electrostatic po-
tential φ. The poloidal magnetic field is represented
by the “magnetic stream function” ψ, equal to the θ-
component of vector potential divided by r. The toroidal
magnetic field is represented by the quantity A equal to
twice the integrated poloidal current.
The thick green line in Fig.1 is the boundary between

the force-free zone and the radiation zone. In the force-
free zone, which lies inside the green line, E0 = 0. In the
radiation zone, which lies outside the green line, E0 > 0.
The electric current flows along magnetic surfaces A =

const. It is seen that the current flows everywhere in the
radiation zone, while part of the force-free zone is free
from poloidal current: this is the corotation zone, where
the charges just rotate with the angular velocity of the
star Ω.
Calculating the Poynting flux emanating from the star,

Lsd = 1
2

∮

dφA, we get the spin-down power

Lsd ≈ 0.3
µ2Ω4

c3
, (10)

which is well below the standard force-free pulsar lumi-
nosity2.
We must state that our numerical simulation has in-

sufficient resolution (we use the same primitive code as
in [4] except that now we calculate the electric current
from the Ohm’s law instead of particle densities). It ap-
pears that one needs a star smaller than our Rs = 0.25
and a simulation box larger than our 5x10. As it is, our
simulation results do not quite converge even at our ul-
timate 1600x3200 resolution. To take a crude guess, our
numerical values are perhaps ∼10% uncertain.

III. EMISSION

Given the electromagnetic field, one calculates emis-
sion as follows. The force-free zone does not radiate. In

2 For the force-free pulsar (first calculated by [5], improved by

[6], done by [7]), Lsd ≈ µ2Ω4

c3
(1 + sin2 θ), where θ is the spin-

dipole angle. But as discussed at the end of §3.4 of [4], the very
existence of force-free pulsars is questionable.
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the radiation zone, the radiated power per unit volume
is

q = c|ρ|E0. (11)

This power is emitted along

v =

{

v+, ρ > 0;
v−, ρ < 0;

(12)

where v± are from eq.(1). The power is emitted with
synchrotron spectrum of critical photon energy

Ec = (3/2)7/4c!e−3/4E3/4
0 K−1/2, (13)

where the curvature K is given by

K = |v ·∇v|. (14)
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FIG. 2: Thin blue: radius of curvature to cylindrical radius ra-
tio, (Kr)−1, integer multiples of 0.5, increasing with increas-
ing r. Red: E0, integer multiples of 0.1E0 max, E0 max = 0.65.

The proper electric field and the curvature are shown in
Fig.(2). The radiated power density and the critical pho-
ton energy as a function of position are shown in Fig.(3).
The insets show the power emitted at critical energies
less than Ec as a function of Ec and the corresponding
emission spectrum (obtained by convolving the spectrum
of critical energies with the synchrotron spectrum); also
shown is the PLEC fit (power law with exponential cut-
off, dN

dE ∝ E−Γe−E/Ecut).
The angle-integrated emission power corresponds to ef-

ficiency ε ≈ 80%. The spectrum is close to PLEC with
Γ = 0.9 (the PLEC fit to synchrotron emission gives
Γsynch = 0.73, but the distribution over critical ener-
gies Ec flattens it).
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FIG. 3: Thin blue: critical energy of the photon spectrum Ec,

integer multiples of 0.1Ec max with Ec max = 2.5mc2

α Ar3/8.
Red: r-normalized power density rq, in octaves, from 0.05 to
3.2. Upper inset: power distribution over critical energies –
total power emitted at critical energies < Ec vs. Ec. Lower
inset: power spectrum, log(E2 dN

dE ) vs. logE, and the PLEC
fit (thin blue).

The cutoff photon energy for the angle-integrated emis-
sion is, in physical units,

Ecut ≈ 1.9
mc2

α
Ar3/8, (15)

where mc2 = 0.511MeV is the electron mass, α = e2

c! =
1

137
is the fine structure constant, and we have introduced

the Aristotle number of a pulsar Ar,

Ar ≡
Lsd

Le

(

Rlc

re

)−2/3

, (16)

where re =
e2

mc2 = 2.8× 10−13cm is the classical electron

radius and Le = mc3

re
= 8.7 × 1016erg/s is the classical

electron luminosity. As we show in §IV, AE is applica-
ble to pulsars with Ar & 1, which is true for all Fermi
pulsars. In astrophysical notation, eq.(15) reads

Ecut ≈ 5.2L3/8
34 P−1/4

ms GeV, (17)

which agrees with the crude estimate of [3].
Observed properties of emission are obtained by count-

ing only photons emitted into a fixed infinitesimal solid
angle. Let χ be the observation angle: the angle be-
tween the spin axis and the direction to the observer.
Then we select only photons emitted by particles with
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FIG. 4: Observed photon cutoff energy Ecut, photon index Γ,
and efficiency ε vs. the observation angle χ.

|vz | ≈ cosχ. We get the observed efficiency ε, photon
index Γ, and photon cutoff energy Ecut shown in Fig.(4).

Serious comparison with observations is only possible
after a 3D simulation. But Table I looks promising.

PSR Pms L34 Ecut Ecut, (17) Γ ε, %

0106 83 2.9 2.7 ± 0.6 2.6 1.2± 0.2 71+60
−31

0357 444 0.6 0.8 ± 0.1 0.9 1.0± 0.1 ...
0622 333 2.7 0.6 ± 0.1 1.8 0.6± 0.4 ...
1057 197 3.0 1.4 ± 0.1 2.1 1.0± 0.1 14± 10
1741 414 0.9 0.9 ± 0.1 1.1 1.1± 0.1 22± 3
1836 173 1.1 2.0 ± 0.1 1.5 1.2± 0.1 180+200

−100

1957 375 0.5 1.0 ± 0.2 0.9 1.3± 0.2 ...
2030+4 227 2.2 1.7 ± 0.3 1.8 1.6± 0.1 ...
2055 320 0.5 1.1 ± 0.1 0.9 1.0± 0.1 ...
2139 283 0.3 1.3 ± 0.3 0.8 1.3± 0.2 ...

TABLE I: All young Fermi pulsars with spin-down power
L34 < 3, from [2], Ecut is in GeV. The fifth column calcu-
lates Ecut from eq.(17).

IV. AE AND WEAK PULSAR

Here we derive the equations used in §§II,III. We first
derive AE and calculate radiation in AE. Then we show
that the magnetosphere calculated in §II is realizable as
an AE flow emanating from the star.

A. AE, radiation in AE

For a generic electromagnetic field, a one-parameter
family of Lorentz frames exists at any event, such that
E is parallel to B in these frames. Assume that in these
frames a positive charge moves at the speed of light along
E and a negative charge moves at the speed of light along
−E. Written in an arbitrary Lorentz frame, this gives the
basic AE equation (1).
Of course, the charges actually move slower than light.

The terminal Lorentz factor γ is reached when the cur-
vature radiation power balances the accelerating power
of E0:

± ecv± ·E = ecE0 =
2

3
e2cK2γ4, (18)

where the curvature of the trajectoryK can be calculated
using the approximate speed of light motion given by
eq.(1). Knowing the terminal Lorentz factor γ, one gets
the critical energy of the emitted photon spectrum (13).
The distance over which a charge needs to travel in

order to get accelerated to the terminal Lorentz factor

γ is ∼ γmc2

eE0
. Demanding that this distance be much

smaller than Rlc, estimating the curvature as K ∼ R−1
lc ,

and estimating the electric field from Lsd ∼ cE2
0R

2
lc, we

get the AE applicability condition

Ar ≡
Lsd

Le

(

Rlc

re

)−2/3

% 1. (19)

With the same estimates, the critical photon energy given
by (13) is

Ec ∼
mc2

α
Ar3/8, (20)

in agreement with the numerical result (15).

B. AE magnetosphere

In brief, the recipe of §§II,III works because plasma
multiplicity in the radiation zone is zero, meaning that
only a single charge species is present at any point.
This allows to infer the particle density from the electric
charge density and calculate the radiation. Zero multi-
plicity also means that the Ohm’s law (5) is exact in the
radiation zone. In the force-free zone eq.(5) is wrong, but
the actual form of the Ohm’s law in the force-free zone
is irrelevant.
Consider what happens in real weak pulsars (as op-

posed to what happens in the calculation of §II). Near the
star, the standard avalanche mechanism [8] keeps work-
ing to (nearly) nullify E0. This requires permanent pair
production in the near-star zone; and some of the charges
then flow out, thus bringing the electric charge and elec-
tric current to the space around the star. Let ρ± be the
e-normalized number densities of positrons and electrons,
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Fig. 10.— Gamma-ray efficiency η = Lγ/Ė versus spindown power Ė. The error bars are
as in Figure 9. The markers and the side histogram use the same color coding as in Figure
1.

large ξ = 75%, produces a qualitative change: observed Ė = 12 × 1033 erg s−1 decreases to
corrected Ė int = 3× 1033 erg s−1, right at the apparent deathline, and the efficiency changes
from the lowest outlier amongst MSPs, to a low, but typical, η = 1.7%.

The remaining four pulsars with ξ > 60% bear special discussion. Figure 11 plots lines
of constant Ė, Lγ, and transverse velocity vT in µ vs. d space for different assumptions:
Ė = 0, Ė = Lγ, and ηĖ = Lγ with η = 30 %, at the high end of the observed range. The
curve for vT = µd = 150 km s−1 is the 3σ extremum of the MSP velocity distribution of
Lyne et al. (1998). Faster recycled pulsars are possible, but unusual. Allowed (or favored)
regions are to the left of the curves. The curve for Ė = 3 × 1033 erg s−1 shows how an Ė
value lower than those seen to date would compare with the other constraints. The shaded
zones correspond to the measurements and their uncertainties adopted in this paper along
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Table 9. Spectral fitting results for young LAT-detected pulsars

PSRa Photon Flux Energy Flux Γ Ecut TS TScut TSb free Luminosity Efficiencyb

(ph cm−2 s−1) (erg cm−2 s−1) (GeV) (1033 erg s−1) (%)
(×10−8) (×10−11)

J0007+7303 32.9± 0.4 40.1± 0.4 1.4± 0.1 4.7± 0.2 43388 1884 4 94± 1± 40 21.0± 0.2± 8
J0106+4855 1.7± 0.4 1.9± 0.2 1.2± 0.2 2.7± 0.6 544 58 2 21± 2+20

−8 71± 7+60
−30

J0205+6449 10.5± 0.7 5.4± 0.2 1.8± 0.1 1.6± 0.3 1019 86 7 24± 1± 1.0 0.09± 0.01± 0.01
J0248+6021 9.9± 1.3 5.2± 0.4 1.8± 0.1 1.6± 0.3 578 61 0 25± 2± 5 12± 1± 2
J0357+3205 9.0± 0.4 6.4± 0.2 1.0± 0.1 0.8± 0.1 3468 461 2 · · · · · ·
J0534+2200 208± 1 129.3± 0.8 1.9± 0.1 4.2± 0.2 102653 1461 13 619± 4± 300 0.14± 0.01± 0.1
J0622+3749 2.0± 0.3 1.4± 0.1 0.6± 0.4 0.6± 0.1 302 91 0 · · · · · ·
J0631+1036 6.4± 0.6 4.7± 0.3 1.8± 0.1 6± 1 621 39 1 5.6± 0.3+3

−2 3.2± 0.2+2
−1

J0633+0632 9.7± 1.1 9.4± 0.5 1.4± 0.1 2.7± 0.3 2448 203 9 · · · · · ·
J0633+1746 416± 1 423.3± 1.2 1.2± 0.1 2.2± 0.1 906994 33861 277 31.7± 0.1+90

−20 97.4± 0.3+300
−50

J0659+1414 7.1± 0.6 2.5± 0.2 1.7± 0.5 0.4± 0.2 419 33 0 0.24± 0.02± 0.05 0.62± 0.04± 0.1
J0729−1448 † · · · · · · · · · · · · 54 26 0 · · · · · ·
J0734−1559 10.8± 0.7 5.6± 0.2 2.0± 0.1 3.2± 0.9 916 39 9 · · · · · ·
J0742−2822 3.2± 0.6 1.7± 0.2 1.7± 0.3 1.6± 0.8 112 11 2 9± 1± 4 6.2± 0.7± 3
J0835−4510 1088± 2 906± 2 1.5± 0.1 3.0± 0.1 1659005 43084 916 89.3± 0.2± 10 1.3± 0.1± 0.1
J0908−4913 7.9± 1.3 4.4± 0.4 1.0± 0.4 0.5± 0.2 315 82 0 35± 3+30

−20 7.1± 0.7+6
−4

J0940−5428 † · · · · · · · · · · · · 14 13 8 · · · · · ·
J1016−5857 6.9± 2.4 5.4± 0.9 1.8± 0.2 6± 3 290 13 0 55± 9+30

−50 2.1± 0.4+1
−2

J1019−5749 † · · · · · · · · · · · · 21 0 0 · · · · · ·
J1023−5746 30± 3 19.5± 1.2 1.7± 0.1 2.5± 0.4 2926 162 20 · · · · · ·
J1028−5819 31± 2 24.3± 0.8 1.7± 0.1 4.6± 0.5 5096 235 28 158± 5± 40 18.9± 0.6± 5
J1044−5737 26± 1 15.6± 0.5 1.8± 0.1 2.8± 0.3 3380 202 19 · · · · · ·
J1048−5832 25± 2 19.6± 0.6 1.6± 0.1 3.0± 0.3 5389 325 30 176± 5± 40 8.8± 0.3± 2
J1057−5226 32± 1 29.5± 0.3 1.0± 0.1 1.4± 0.1 27848 2377 5 4.3± 0.1+5

−3 14.4± 0.2±10

J1105−6107 7.8± 1.6 4.9± 0.6 1.5± 0.3 1.3± 0.6 309 42 8 150± 20± 50 5.9± 0.7± 2
J1112−6103 1.9± 0.9 2.0± 0.5 1.6± 0.3 6± 3 58 6 0 360± 90+600

−200 8± 2+10
−4

J1119−6127 11± 2 7.1± 0.5 1.8± 0.1 3.2± 0.8 661 37 13 600± 40± 60 26± 2± 2
J1124−5916 10± 1 6.2± 0.4 1.8± 0.1 2.1± 0.4 1058 79 6 170± 10+50

−70 1.4± 0.1+0.4
−0.6

J1135−6055 7.4± 0.9 4.8± 0.3 1.7± 0.1 2.4± 0.5 498 61 3 · · · · · ·
J1357−6429 7.8± 1.1 3.4± 0.3 1.8± 0.4 0.9± 0.5 187 20 0 25± 2+10

−8 0.82± 0.08+0.4
−0.3

J1410−6132 † 3± 3 3± 1 · · · · · · 40 9 0 800± 300+900
−400 8± 3+9

−4

J1413−6205 16± 2 15.7± 0.6 1.5± 0.1 4.1± 0.5 1795 180 1 · · · · · ·
J1418−6058 38± 3 30.2± 1.4 1.8± 0.1 5.5± 0.5 3487 172 1 92± 4+100

−60 1.9± 0.1+2
−1




